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Abstract 
Applications of network analysis to the study of disease can be divided into two main 
categories: disease description, including characterisation, diagnosis and prognosis; and disease 
treatment, including drug target discovery and cellular reprogramming, together with its 
applications to regenerative medicine. In this dissertation, I will critically discuss some research 
projects on which I have been working during my PhD program. In correspondence with the 
two aforementioned categories, these projects can be broken down into two different blocks of 
content, with the common goal of acquiring insights into the study of disease. 

In the first block of contents, corresponding with Chapter 2, I will explain and discuss novel 
strategies for network-based analysis and modelling which have been applied for disease 
description and characterisation in different case-studies, namely the metabolic syndrome, 
prion disease and the epithelial to mesenchymal transition in breast cancer. Indeed, these 
projects exploited the evolutionary conservation of motifs of regulatory interactions and 
consistency between computed and experimentally validated expression so as to reconstruct 
dynamical models and create a network-based characterisation of the corresponding systems. 

With regards the second block of content, corresponding with Chapter 3, I explain and discuss 
novel computational methods which have been developed during my PhD program to address 
the task of the artificial induction of cellular reprogramming; something with a wealth of 
potential applications when it comes to the creation of disease models and in the field of 
regenerative medicine.   

Within the general conclusion discussion focuses on the fact that, although the methodology 
explained in this work was developed in the context of disease study, one may find the 
application of some of these ideas and strategies fitting for other problems. Indeed, the same 
principles applied to detect driver genes capable of changing the cell phenotype when 
perturbed can also be applied to control biological living systems for basic research or industrial 
purposes. These principles could also be potentially extended to higher level systems than the 
cellular level (tissue or cell population level). 
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Chapter 1. Introduction and overview of the research 

1.1. Introduction 
Network analysis and disease: background 

Disease refers to any condition associated with dysfunction of an organism’s normal 
homeostasis. There are four main types of disease: pathogenic disease, deficiency disease, 
hereditary disease and physiological disease. What all of these have in common is the highly 
complex multifactorial nature of the causes of disease pathogenesis. These factors include 
genetic variation, epigenetic modifications and genome-environment interactions. Indeed, it is 
not only the identification of factors but also elucidation of how they interact with each other 
which is essential to understanding the complex and adaptive behaviour of an organism in a 
pathological condition.  

Network analysis applied to disease study constitutes an example of a systems biology 
approach to answering biological questions. Systems biology represents an integrative strategy 
which attempts to understand the higher-level operating principles of living organisms [1,2].  
Systems biology employs tools developed in physics, mathematics and computer science such 
as graph theory, nonlinear dynamics, control theory and modelling of dynamic systems with a 
view to solving questions related to the complexity of living systems. This complexity term 
refers to the concept developed in Complexity theory [2,3,4]; a discipline of physics which 
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focusses on the so called emergent properties. These emergent properties are intrinsic 
properties of the system which cannot be inferred from the separated analysis of its 
constitutive elements. Both Complexity theory and Systems biology are deeply rooted in the 
not always intuitive idea that the whole is more than the sum of its parts. For instance, 
emergent properties in the central nervous system, such as the processes of learning, memory 
and emotions cannot be fully understood even with a detailed analysis of single neurons; it is 
necessary to consider these neurons integrated altogether in a network of interactions in order 
to understand how they perform these processes. From the mathematical point of view, a 
network or graph is the application of a set in itself, i.e., a collection of elements of the set and 
the binary relations between these elements. As a result, networks or graphs are topological 
rather than geometrical objects, with the most important feature the adjacency relationships 
between points. Within the context of Systems Biology, a network can be defined as any 
interconnected group of elements (system) which shares information. For instance, gene 
regulatory networks (GRNs) refers to a collection of genes in a cell which interact with each 
other through their RNA and protein expression products, thereby regulating the expression 
levels of genes in the cell. Network analysis provides a framework through which to deal with 
the complexity of biological systems both in physiological and pathological conditions. The 
application of graph theory’s formalised language, as well as that of vector algebra and 
nonlinear dynamics makes it possible to describe and predict the behaviour of biological 
systems and to explore strategies which can be used to intervene in these systems in order to 
reestablish normal homeostasis or to delay disease progression. Network representation of 
biological systems encodes information regarding regulatory and signaling pathways which 
connect constituent parts like proteins, DNA, RNA or metabolites, in a compact way which can 
be directly visualised and analysed either by a human being or a computer. This analysis 
includes both the network topology [5] and dynamics [5,6]. The first refers to the pattern of 
connectivity between elements of the network in a static snapshot, whilst the latter refers to 
the evolution of the network in time, assuming a given dynamical model. Changes observed in 
the network in time can be changes in node states (representing variation in concentrations or 
level of activity depending on the network) as well as changes in the network topology when 
certain interactions only occur under specific conditions which change during the described 
process. These network changes can be triggered by the disease factors mentioned above 
(genetic, epigenetic or environmental), namely disease pathogenesis characterised by both the 
direct effect of the pathogen agent (if any) and the network response. From this perspective, 
diseases can be viewed as specific types of network perturbation [7]. 

Disease as perturbation of cellular systems 

Cells should be able to adapt to changing conditions, including environmental variation, such as 
temperature, pH or chemicals, as well as noise in biochemical processes, such as transcription 
and translation, which are inherently stochastic. Consequently, the underlying networks of 
interactions which rule cellular processes have developed, during evolution, a certain level of 
complexity. This complexity is used to provide cells with the flexibility to respond and adapt to 
new situations, as well as the robustness to preserve the integrity of cellular functions despite 
internal fluctuations in gene expression, protein and metabolites concentration and 
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environmental conditions variation. This combination of flexibility and robustness means that 
cells are able to exist in a discrete number of stable cellular phenotypes which correspond to 
stable states (attractor states) of the dynamic system on the basis of an underlying network of 
regulatory interactions. The existence of attractor states and their association with cellular 
phenotypes has been experimentally verified [8]. It is also worth mentioning that, despite the 
fact that thousands of genes characterise a specific cellular phenotype, an increasing number of 
examples show that the perturbation of few genes (1 to 5) effectively induce cellular 
reprogramming [9,10,11,12], i.e., induce cells to transit from one attractor to another. A 
popular framework for conceptualising and describing changes in cellular phenotypes is that of 
the landscape proposed by Waddington [13,14,15], where cellular phenotypes may be seen as 
attractors of gene regulatory networks represented as wells separated by the so-called 
epigenetic barriers. It is worth mentioning that for Waddington the meaning of the term 
“epigenetic”  was different from that currently used by molecular biologists to describe 
covalent chromatin and DNA modifications; it referred to something closer to the physicist’s 
concept of an “epigenetic state”[16]; a systems-level stable state which arises from genetic 
interactions. These barriers are established by those elements stabilising the network in their 
attractors. The process of changing the transcriptional program from one cellular phenotype to 
another corresponds to trajectories between wells in the gene expression state space described 
by Waddington’s landscape and with the sequence of transient states followed when moving 
from one attractor to another in a network based dynamical model (see Figure 1). 

In the context of disease, a dual robustness against internal or external fluctuations as well as 
fragility against specific perturbations can explain the formation of certain diseases [17,18]. 
Within the gene regulatory network landscape, diseases can be conceptualised as the result of 
induced transitions to a pre-existing disease attractor or the effect of changing the landscape 
with the creation of new disease attractors where the system remains. Although these two 
ideas may initially seem conceptually very different, they converge on the concept of disease as 
an aberrant stable cellular phenotype pointing to the idea that the same robustness which 
prevents the system from exiting a healthy state (something which sounds reasonable to be 
evolutionary conserved) provides the system with a certain resilience to emerge from the 
disease state; after all, the same molecular mechanisms are operating when it comes to the 
configuration of the general landscape, including both health and disease states. The concept of 
pre-existing disease attractors has been proposed in the context of cancer study as cancer 
attractors [19,20]. This concept constitutes an explanation of some interesting issues, such as 
the fact that there is no “continuum” of tumor transcriptomes, but instead a discrete set of 
cancer cells phenotypes, or the fact that oncogenesis recapitulates ontogenesis. These issues 
are not easily explained solely by the accumulation of random mutations scattered throughout 
the genome. These silent disease attractors resemble sleeping pseudogenes which can 
eventually be reactivated by sporadic mutations or triggering factors. 
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Figure 1 | Biological processes can be defined as transitions between stable states and are 
frequently described using Waddington’s landscape or network-based models. Within 
Waddington’s landscape, wells represent stable steady states (usually termed attractors) whilst 
separation between wells represents the so called “epigenetic barriers”. When assuming a 
dynamical network-based model, such as Boolean based on logic functions or continuous based 
on ordinary differential equations, we can describe the evolution of the network state in time, 
and network attractors are self-maintained network states or states consistent with the 
regulatory logic. Disease can be described with these models as attractors where the system fall 
when intrinsic or extrinsic perturbation let it go out from the basal or healthy stable state. 
 

Network analysis and disease: previous works 

Applications of network analysis in disease study can be divided into two main categories: 
disease description; and disease treatment. Within the category of disease description we find 
several areas including the identification and characterisation of new disease genes, network 
based disease classification and identification and study of disease related subnetworks and 
their properties. Within the category of disease treatment we find a systems approach to 
simple- and multi-target drug design and cellular reprogramming for cell therapy. It is worth 
mentioning that there are also a handful of pioneering works using network analysis to address 
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the study of interactions between different diseases, resulting in, for example, comorbidity 
effects, instead of focusing on the study of a single disease. Following this idea, Goh and co-
workers [21] reconstructed two networks: in the first, diseases as nodes were linked by mean of 
common implicated genes, whilst with the second, disease related genes were linked through 
diseases. These two networks provide a theoretic framework to reveal some of the common 
genetic origins of diseases. The authors found the existence of disease-specific functional 
modules and also discovered that the majority of human disease-related genes are not-
essential and do not encode hub proteins. A selection based model was proposed to explain 
differences between essential and disease genes. Park and coworkers explored the impact of 
cellular networks on disease comorbidity by integrating information on cellular interactions, 
disease-genes relationship and population-level Medicare date. They found correlations 
between disease comorbidity and the structure of cellular networks [22]. 

Identification and characterisation of new disease genes 

Whilst many different strategies have been employed for the investigation of disease related 
genes, all of them rest on two basic assumptions: first, genes involved in disease pathogenesis 
are not randomly positioned in the network. They tend to be in a central network position, 
clustering together and exhibiting high connectivity [21,23,24]; and second, the network 
neighbour of a disease-causing gene is likely to be involved in the same or similar disease 
[21,25,26,27]. These two assumptions arose following a network analysis of the first eukaryotic 
gene regulatory network available (yeast), thus showing that genes associated with a particular 
phenotype or function (especially those essential for this function), such as growth or response 
to genotoxic agents, have special network properties [28,29,30].  

Genes up-regulated in lung squamous cancer tissues were reported highly connected and 
central in a human PPI network [23]. The authors justified this finding by suggesting that these 
genes are essential for tumor growth, and as such share network properties of essential genes. 

Network analysis of genes included in a comprehensive census of human cancer genes [31] and 
revealed that genes related to cancer tend to cluster in the network [24]. In addition, such 
genes tended to participate in more clusters when compared to non-cancer genes. 

Network analysis based on information pertaining to human genetic diseases in the database of 
Online Mendelian Inheritance in Man [32] showed that disease genes exhibit a tendency to 
interact with each other and to be co-expressed in the same tissue [21]. Interestingly, the study 
found that most disease genes are nonessential and have no tendency toward higher degrees 
in the PPI network. Discrepancy between this finding and the work in lung cancer described 
above [23] could be due to the fact that the first study investigated disease in general instead of 
focussing solely on cancer. Despite this discrepancy, it should be noted that the overall 
conclusion of these works is that genes related with a particular function or cellular phenotype, 
including disease pathogenesis, are not randomly distributed in the network; they tend to 
cluster and to be positioned centrally in the network. 

Scanning topological properties can be useful when it comes to narrowing down the list of 
disease related genes when no prior knowledge is available. In cases where certain causative 
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genes have been identified in genetically heterogeneous diseases, another network analysis 
based strategy for disease related genes discovery can be used. Oti and coworkers developed a 
strategy centred around finding disease-causative genes when only some of the causative 
genes are known and for other genetic factors only locus information is available [25]. They 
showed that predictions based on connectivity between known causative genes and candidates 
were better than random selection of genes at the same locus (10-fold).  

Based on the same principles, 2006 saw Franke and coworkers publish an algorithm to rank a 
set of candidate disease-causing genes in multiple susceptibility loci for further sequence or 
association analysis [27]. They constructed a network of computationally predicted relations as 
well as known (from literature) molecular interactions. The network was used to score 
candidate genes based on their interactions, assuming that for a given disease causative genes 
will be involved in only a few distinct biological pathways. This assumption implies the 
clustering of genes from different susceptibility loci, resulting in shorter network distances 
between disease genes than expected by chance (random selection of genes in the network). 

Information pertaining to related diseases can also be exploited in the search for disease-
causing genes. Along similar lines, and published in 2007, Lage and coworkers developed a 
strategy [26] consisting of ranking each candidate gene according to what they called the 
phenotype similarity score of diseases associated with the gene and its neighbours in a PPI 
network. Simply put, if a gene and/or its neighbours in the network are associated with a 
disease responsible for a specific phenotypic outcome, it is likely to be involved in other 
diseases with similar or identical phenotypic outcome. 

In general, the concept that genes or proteins close to one another in a network are likely to 
cause similar diseases is becoming increasingly important when it comes to the detection of 
disease-related or –causing genes. Current approaches are based on mapping a set of 
candidates on a physical or functional network. Approaches with no reliance on prior 
knowledge of disease genes have yet to be developed.  

Study of disease related subnetworks and their properties 

The identification of individual disease genes or proteins in a global network makes it possible 
to define disease-related subnetworks and to study their properties. Much more than just a list 
of disease related genes or proteins, such disease subnetworks provide a hypothesis as to the 
molecular complexes, signaling pathways and other regulatory mechanisms (for instance, stable 
motifs or molecular switches) involved in the disease pathogenesis. 

In order to gain an insight into Huntington’s disease, Goehler and coworkers [33] constructed a 
PPI subnetwork around HTT, given that mutations in this gene produce the protein aggregation 
which causes Huntington’s disease. Each direct interaction with HTT in the network was tested 
for its potential capability to enhance HTT aggregation. Indeed, it by this means that GIT1 was 
identified, with additional tests subsequently verifying its role in disease progression. 

With the aim of exploring endotoxin inflammatory response in human leukocytes, Calvano and 
coworkers [34] reconstructed a network integrating information from literature and expression 
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data. The study of this response network allowed for the identification of new endotoxin-
responsive modules and changes in the transcriptional program suppressing mitochondrial 
energy production and protein synthesis machinery. 

Lim and coworkers [35] used Y2H to reconstruct a PPI to uncover ataxia-causing genes and 
genetic modifiers in humans. An original network of around 23 proteins involved in inherited 
ataxias was expanded, using information from literature, to ~3500 proteins and ~7000 
interactions. Following network analysis, the authors found that the mean distance between 
ataxia-causing proteins was much lower than in a network constructed around 30 disease 
proteins independent of phenotypes. This demonstrated the utility of such analysis to detect 
newly involved genes. 

Ghazalpour and coworkers [36] reconstructed a gene co-expression network integrating 
expression data from the livers of a panel of mice and genetic marker data from the same 
individuals for 22 different physiological traits. They found several co-expression modules 
enriched in genes with loci which had strong associations with a specific physiological trait, 
yielding a matrix of module/trait associations. 

Indeed, one common trait seen across all of these works is the integration of previously known 
disease related genes with physical or functional interactions coming either from literature or 
experiments (or both). Analysis of these networks offers a mechanistic hypothesis about 
disease pathogenesis in terms of affected signaling cascades, metabolic pathways and/or 
molecular complexes. Such analysis can also aid in the description and explanation of the 
interplay between genetic and environmental factors influencing disease process packaging 
across a global network in a reduced number of functional modules. 

Network-based classification of disease  

A major challenge in the study of diseases has been to identify subsets of biomarkers with the 
highest predictive ability [37]. One strategy used to address this problem consists of applying 
network-based approaches, and focussing the search of disease biomarkers on specific network 
regions (for instance network modules or pathways). Network-based approaches can be 
applied both to separate “cases” from “controls” in case-control studies, to classify samples in 
disease states and to distinguish between very similar diseases. These approaches can also 
provide an improved prediction accuracy as has been shown in several works. Something which 
all of these works have in common is that they are based on the notion that informative genes 
fall under the same network neighbourhoods. 

Following this principle, Ma and coworkers [38] developed a method to identify genes which 
are predictive of Alzheimer disease. Their method combined gene expression and protein 
association data to score the relationship of genes with a given disease class based not only on 
the association between the gene’s expression level and this class but also on the association of 
its network neighbours. The authors reported a better performance than when only expression 
data was used. 
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Network-based disease classifiers can also be used for disease prognosis. In order to predict 
metastasis in breast cancer, Chuang and coworkers [39] developed a method based on the 
expression levels of genes belonging to subnetworks (constructed according to network 
topology properties) of a human protein-protein interaction network. They found that 
subnetwork markers were more reproducible and showed higher accuracy when it came to 
predicting metastasis than individual marker genes selected without network information. 

In a very similar approach to the previous one, Efroni and coworkers [40] developed a method 
designed to classify cancer samples into phenotypic disease states. The main difference from 
that described above [39] was that instead of subnetworks extracted from a protein-protein 
interaction network, they used curated pathways extracted from databases. After applying this 
method, authors found a small collection of pathways which distinguish the phenotypes with 
high accuracy. 

In addition to protein-protein interaction networks, gene regulatory networks have also been 
used to classify disease states. Taking one example, Tuck and coworkers [41]  developed a 
method based not only on the expression of a gene but also on its corresponding transcription 
factor, meaning that for a given sample a transcriptional interaction feature is considered 
“active” if the gene and the transcription factor are co-expressed. The authors showed in this 
work that the network based classification compared favourably with gene-expression-based 
classification. 

Simple- and multi-target drug design 

When considering a complex disease as a robust system but with certain fragility at specific 
points, network analysis based approaches to drug design provide an interesting alternative 
when it comes to looking for a suitable drug target. Indeed, these approaches maximise the 
desire effect and minimise secondary effects based on network topology or dynamical 
properties [42]. 

The development of a multi-target drug strategy based on network analysis rests on the 
assumption that, given the natural robustness and redundancy in pathways of biological 
networks, the perturbation of the network at multiple points should yield much better results 
than the traditional single-target strategy. Identifying alternatives ways in which to achieve the 
desired network perturbation allows us to avoid as many essential genes as possible, thus 
increasing the synergistic performance and decreasing side effects [43,44,45]. 

Cellular reprogramming 

Cellular reprogramming may be applied both to the study (by means of creating cellular disease 
models) and to the treatment (within the context of cell therapy and regenerative medicine) of 
disease. The latter refers to the regeneration of damaged tissues and organs in the body by 
replacing damaged tissue and/or by inducing the body’s own repair mechanisms even in the 
case of tissues without this natural capability. Conceptually speaking, regenerative medicine 
based on cellular reprogramming can be used in conjunction with gene therapy in the sense 
that reprogrammed cells introduced into the organism, and coming either from the patient 
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(autologous transplantation) or from another donor (allogeneic), can possibly be genetically 
modified. 

Interaction between different diseases 

Network analysis has been used to study interactions between different diseases resulting in, 
for example, comorbidity effects, instead of focusing on the study of a single disease.  Goh and 
co-workers [21] reconstructed two networks: in the first, diseases as nodes were linked by 
mean of common implicated genes, whilst in the second, disease related genes were linked 
through diseases. These two networks provide a theoretic framework which facilitates the 
unveiling of some of the common genetic origins of diseases. The authors discovered the 
existence of disease-specific functional modules, and also found that the majority of human 
disease-related genes are not-essential and do not encode hub proteins. A selection based 
model was proposed to explain differences between essential and disease genes. Park and 
coworkers explored the impact of cellular networks on disease comorbidity through the 
integration of information on cellular interactions, the disease-genes relationship and 
population-level Medicare date. They found correlations between disease comorbidity and the 
structure of cellular networks [22]. 

Transcriptional regulation and transcriptional regulation modeling 

Despite the fact that both physiological and pathological processes can be described and 
analysed at different levels (transcriptomics, proteomics, metabolomics, etc.) in a separated or 
integrated manner, the collection of works included in this dissertation is focussed on the 
transcriptional level. As a result of this we decided to include a brief summary to remind the 
reader of the main transcriptional regulatory mechanisms. 

Transcription, or the process of creating a complementary RNA copy of a sequence of DNA, is a 
process regulated in eukaryotes through combinatorial interactions between several 
transcription factors, thus allowing for a sophisticated response to multiple environmental 
conditions. This regulation results in different transcription patterns which can be used to 
characterise physiological and pathological conditions at a cellular or tissue level. Assuming that 
the transcriptional machinery is always ready, these transcription patterns finally rest on the 
access to general and specific transcription factors genes in the DNA chain, as well as on the 
availability of the necessary molecules to be able to assemble the pre-initiation complex. 
Indeed, this anchors the DNA polymerase to the promotor region. More specifically, the 
assembly of the pre-initiation complex is determined by chromatin packing as well as by several 
regulatory elements.  

The chromatin packing is affected by different types of histone modifications, namely 
methylation, phosphorylation, acetylation (and other acylations), glycosylation and 
ubiquitylation. Some of these histone modifications (like acetylation or phosphorylation) 
destabilise the union DNA-histone, thus creating repulsions between them, whereas others 
(methylation and combinations of methylation and acetylation) are used to tag specific DNA 
regions for protein recognition (by mean of the so called histones code). In addition to the local 
level of chromatin packing and nucleosome positioning, both of which have been proposed as 

http://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
http://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA
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transcription regulatory elements, the nuclear organisation of chromatin in a three-dimensional 
space has also been proposed. This would involve a number of nuclear caves with high 
transcriptional activity involving DNA sequences from different regions of the genome (even 
different chromosomes) and other compact nuclear locations with low transcriptional activity 
[46]. 

Regulatory elements can be classified into two main categories: cis-regulatory elements and 
trans-regulatory elements. Cis-regulatory elements are DNA specific sequences, including 
enhancers, silencers and the TATA box. Trans-regulatory elements are elements which bind cis-
regulatory elements or other trans-regulatory elements, namely transcription factors (TF), 
activators (bind enhancers), repressors (bind silencers), co-activators and basal factors (see 
Figure 2).  

The binding of trans-regulatory elements can also be conditioned by different sorts of 
molecular modifications, affecting both cis- and trans-regulatory elements, namely DNA 
methylation (which prevent the binding of the polymerase machinery) and different types of 
protein modifications. 

 
Figure 2 | Transcriptional regulation Cis- and Trans- regulatory elements. Cis-regulatory 
elements like enhancers, silencers or TATA box are DNA regions, whereas Trans-regulatory 
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elements are molecules that bind Cis-regulatory elements (activators, repressors and TATA-
binding proteins) or other Trans-regulatory elements (coactivators and basal factors). 
 

Apart from the regulatory elements described above, we must also take into account the 
regulatory effect of non-coding RNAs, including miRNAS and lncRNAS. miRNAs bind enzymes, 
thus resulting in the formation of effector complexes which can cleave mRNA, block mRNA 
from being translated or accelerate its degradation. Indeed, these non-coding RNAs essentially 
down-regulate specific genes [47]. lncRNAS have been proposed as guidance or scaffold for 
many proteins responsible for DNA and histone modifications, indirectly conditioning the access 
to target genes [48]. 

Modeling transcriptional regulation: gene regulatory networks 

When modelling the transcriptional regulation of specific genes, two types of theoretical 
elementary system can be defined, depending on how they respond to regulatory signals (see 
Figure 3): 

● Inducible systems - An inducible system is off (not expressed) unless a certain molecule 
is present (called an inducer) which allows for gene expression. The molecule is said to 
"induce expression". The manner in which this happens is dependent on the control 
mechanisms and can involve several of the regulatory elements described above. 

●  Repressible systems - A repressible system is on except in the presence of a certain 
molecule (called a repressor) which suppresses gene expression. The molecule is said to 
"repress expression".  

The manner in which the system responds is dependent on the control mechanisms and can 
involve one or several of the regulatory elements described above. Whilst the simplest systems 
only include one inducer or repressor, more than one can exist and they can have synergistic 
effects or compete for the same regulatory mechanism. 
When modeling the global cellular transcriptional regulation using a systems approach, all of 
these aforementioned systems can be integrated into a single GRN. Depending on the events 
we are trying to describe, nodes and edges can represent different things. Nodes can represent 
the concentration of different molecular species, including genes, RNAs (mRNA, miRNA and 
lncRNA) and proteins. In addition to this, they can also represent composed forms of 
information, such as for example  “level of activity”, as well as integrating information about 
the concentration of a specific protein and its state of activity (which can depend on different 
molecular events like the protein folding or the phosphorylation level). Edges can represent 
different types of interactions, which can in turn be broadly classified based on directionality in 
directed and undirected, and based on knowledge regarding the nature of the effect in signed 
and unsigned. 
Undirected networks do not provide a representation of cause-effect relationships, but only an 
association which usually describes a physical interaction. The latter is the case for the example 
of protein-protein interaction networks, where nodes represent proteins and edges physical 
contacts. On the other hand, directed networks describe cause-effect relationships, thus 
meaning that an observer can determine the regulator and the regulated for each edge in the 
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network. If the nature of the action of the regulators is known these networks are referred to 
as signed, and each interaction in the network is either positive or negative. For instance, a 
positive/negative interaction in a GRN, where nodes represent concentrations of mRNA, means 
that an increase in the concentration of the regulator will result in an increase/decrease in the 
level of the regulated gene. 
It is worth mentioning that, depending on the process we want to describe, both nodes and 
edges can be merged into super-nodes and super-edges respectively, thus representing a 
higher order of information. For example, one single super-node could represent a regulatory 
complex with activators, co-activators, basal factors and TATA binding protein, or a given super-
edge could represent an entire signaling pathway. Similarly, one single node could be split into 
two nodes, representing, for instance, the active and inactive state of a protein. 
All GRNs included in this dissertation are directed and signed; positive and negative interactions 
within these networks are termed “activations” and “inhibitions” respectively, whilst the 
corresponding regulators are termed “activators” and “inhibitors”. Within these GRNs, a given 
node can have more than one regulator, being the corresponding interactions either of the 
same or a different sign. When modelling the dynamics of GRNs, or the evolution of the 
network in time, decisions regarding how different interactions will influence the regulation of 
a specific node are made depending on the type of dynamical model. For instance, if the 
dynamical model assumed is a discrete model (for example, Boolean), then we must define a 
logic gate establishing the regulatory rules for each gene in the network. For instance, a system 
which is commonly assumed by default is the so called inhibitory dominant system. The rule 
assumed here is the following: for a given regulated gene to be considered as ‘active’, all the 
inhibitors should be ‘inactive’ and at least one of the activators should be ‘active’. If there are 
no activators but only inhibitors, the system is considered as a pure repressible system (see 
definition above) and is going to be ‘active’ unless any of the inhibitors (or more than one) is 
active. If the dynamical model assumed is continuous, the state of a given node is usually 
defined by a set of ordinary differential equations (ODEs) and a variable number of parameters 
(depending on the complexity of the model) must be taken into account. In essence, these 
parameters are going to define the strength of a specific interaction, whilst the resulting 
regulatory effect of a combination of different interactions with eventually different strengths 
is due to competition between the effect of activators and inhibitors. On certain occasions, the 
strength of the edges is displayed in the graph and such networks are called weighted. In 
contrast, when there are no weights for interactions, the network is called un-weighted.  
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Figure 3 | Logic models to describe the regulation of three different systems. Truth tables 
include a Boolean representation of the state of the nodes, with “0” and “1” representing 
inactive and active states respectively. The logic operator AND establishes a condition which is 
true (true equates to active) when both elements involved are active. The logic operator OR 
establishes a condition which is true when at least one of the elements involved is active. 
Otherwise the condition is falso (inactive). 

1.2. Motivation and outline of this dissertation.  
Over the past fifteen years, molecular cell biology has transitioned from a descriptive science 
into a quantitative science which systematically measures cellular dynamics on different levels 
of genome, transcriptome, proteome and metabolome. Along with this transition emerges 
systems biology, which aims to unravel the complexity principles of living systems through the 
integration of experimental data into qualitative or quantitative models and computer 
simulations. Using a more holistic perspective instead of the traditional reductionism, systems 
biology approaches have been applied not only to the study of normal biology but also to 
biomedical research focused on the study of disease. Within the context of systems biology, a 
network can be defined as any interconnected group of elements (system) which shares 
information. Network analysis has been applied to identify new disease related genes and 
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pathways, as well as to detect and classify diseases. We also find network analysis approaches 
to simple- and multi-target drug design for disease treatment. 

However, disease study based on network analysis approaches relies on the network 
reconstruction itself, as well as the detection of malfunctioning parts of the network associated 
with a specific disorder. Indeed, these disease-related subnetworks are strongly context 
dependent. There are several works which have aimed to identify subnetworks related to 
specific biological functions based on modules, motifs (overrepresented patterns of 
connectivity) or stability elements detection. However, none of these pioneering works have 
provided a mechanistic detailed explanation regarding how these disease-related network 
elements operate in order to produce disease pathogenesis. This lack of detail when it comes to 
the description of the mechanisms involved is precisely due to the limitations of different 
sources of information. On the one hand, experiments, for example gene expression data, 
provide information which is strongly contextualised to the experimental conditions, although a 
huge amount of data is usually required in order to statistically validate cause-effect relations 
(represented as directed and signed network interactions); purely experimental information 
based approaches explore an extremely large space but ignore a wealth of data pertaining to 
interactions previously described in the literature. On the other hand, literature based 
networks are too disconnected from experimental data to be able to describe input-output 
relationships and usually merge interactions described in different biological contexts (cell 
types, tissues and even species). Whilst there are a few published methods which have 
integrated experimental and literature information to elucidate signaling pathways [49] or to 
assess reconstructed GRN [50], none have addressed the context of disease study or disease 
treatment.  

The precise underlying motivation for this dissertation is to establish how to integrate different 
information resources (literature, databases and experiments) to improve the current 
computational methods for network reconstruction and analysis within the context of disease 
study in order to be able to perform more accurate descriptions and reliable predictions. The 
contribution of this dissertation to the study of disease using network analysis can be split into 
two main categories: a) disease description: study of disease related sub-networks and their 
properties; b) disease treatment: designing strategies for cellular reprogramming.  

 

Disease description: study of disease related sub-networks and their properties in three 
different diseases.  

Disease description constitutes the second chapter of this dissertation, with three sections, 2.1, 
2.2 and 2.3, corresponding to the study of three different diseases using network analysis. 

Within this thematic block three different biological systems related to disease states were 
analysed using systems approaches/network analysis, namely prion disease, metabolic 
syndrome and the epithelial to mesenchymal transition in the context of breast cancer 
progression. A common characteristic of these three analyses is that they are focussed on the 
transcriptional level. Moreover, they are primarily concerned with changing elements at the 
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transcriptional level when comparing health and disease states. Another common characteristic 
of these three analyses is the central role of network stability and how this stability can be 
exploited to describe disease. Such disease description, including transitions between stable 
states, could be potentially applied to make reliable predictions about disease progression and 
its mechanisms, as well as to design therapeutic strategies. 

In the three biological examples the identification of the regulatory core implies the integration 
of information about gene interactions coming from literature with experimental expression 
data. The main similarity of the three approaches used rests on the fact that networks are 
constituted by differentially expressed genes. In addition, the source of interactions has been 
previously published in works available in the literature. However, this is with the exception of 
the EMT case study, which provides a new miRNA interaction to enrich a regulatory core 
previously known from the literature. It is precisely the strategy used to determine the 
regulatory core which makes the difference between these three approaches. In the case of the 
metabolic syndrome we exploited the evolutionary conservation of specific overrepresented 
patterns of connectivity known as motifs, with special stability properties for an assumed 
dynamical model (multistable) so as to identify a regulatory core. In the case of the prion 
disease we exploited the local consistency of the experimental expression data with the 
expected values of the network stable states assuming a given dynamical model. Finally, we 
worked on the enrichment of a regulatory core for EMT previously known from the literature. 
The predictions performed computationally on this regulatory core support the idea of a 
missing interaction between a well-known driver gene for EMT (SNAI1) and a specific miRNA 
(miRNA-203) which had not been previously reported. This prediction was experimentally 
validated providing a more complete knowledge about the mechanism involved in this cellular 
transition. 

Disease treatment: designing strategies for cellular reprogramming  

The disease treatment part constitutes Chapter 3 of this dissertation. There are three sections 
in this chapter. The first section corresponds to the development of a computational method 
with which to contextualise GRNs to a specific biological context, with the integration of 
knowledge from literature and experiments. This contextualisation is a necessary condition to 
be able to model and predict the network response to perturbations in a given biological 
context. The remaining two sections of Chapter 3 refer to the development of a computational 
method to design recipes for cellular reprogramming. The second section of the chapter (3.2) 
proposes certain special stability elements of the network (the so called differentially expressed 
positive circuits or DEPCs) as the elements which should be perturbed to induce specific cellular 
transitions. Within this section we showed five biological examples to illustrate the general 
applicability of our methodology to different cellular transitioning systems harvested from 
literature with known effective reprogramming recipes. Finally, we showed the experimental 
validation of a reprogramming recipe predicted by our method to dedifferentiate astrocytes to 
neural progenitor cells (NPCs): 

The third section of Chapter 3 (3.3) provides a strategy through which to minimise the number 
of genes and maximise the chance of effectiveness when it comes to a combinations of genes 
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predicted to be capable of inducing a desired cellular transition based on an expansion of the 
method described in Section 3.2. However, the concept of retroactivity is introduced as criteria 
with which to rank alternative combinations of reprogramming determinants based on the 
predicted stochastic behaviour of potentially relevant stability elements.  

Finally, this dissertation ends with a general conclusions section which summarizes the main 
findings presented in this work as well as a discussion of the limitations of the developed 
methodology which could constitute a natural continuation in the future.  

Chapter 2. Disease description and characterisation using network analysis and 
computational models 

2.1 Detecting the disease regulatory core by identification of multistable network motifs: 
metabolic syndrome case study 
This section refers to the work published in Cell Death & Disease in 2011 entitled “PPARγ 
population shift produces disease-related changes in molecular networks associated with 
metabolic syndrome”[51]. This publication was the result of a collaboration between the 
Computational Biology (W Jurkowski, K Roomp, I Crespo and A del Sol), contributing with the 
analysis, and the Medical Translational Research groups (Jochen Schneider), contributing with 
the biological interpretation of the results, both belonging to Luxembourg Centre for Systems 
Biomedicine (LCSB).  

2.1.1 Introduction 
 
The metabolic syndrome describes a cluster of metabolic abnormalities encompassing elevated 
fasting glucose concentrations, increased waist circumference, increased triglycerides, low HDL 
cholesterol levels and high blood pressure. In humans, this occurs with a prevalence of 20–25% 
worldwide according to the IDF (International Diabetes federation) and is on the rise, 
particularly in the elderly population, and even more alarming, even in children and 
adolescents. Total and cardiovascular mortality is increased in the metabolic syndrome, and the 
risk of developing overt type II diabetes is increased fivefold. From a pathophysiological point of 
view, the metabolic syndrome is widely held to be caused by central adiposity which can lead to 
insulin resistance under given genetic and environmental circumstances. 
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte 
differentiation and has an important role in metabolic syndrome. Phosphorylation of the 
receptor’s ligand-binding domain at serine 273 has been shown to change the expression of a 
large number of genes implicated in obesity. The difference in gene expression seen when 
comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have 
important consequences for the cellular molecular network, the state of which can be shifted 
from a healthy to a stable diseased state.  

2.1.2 Results 
Identification of the disease regulatory core 
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In order to study the effects of modified PPARγ gene regulation, we reconstructed an 
interaction network (see methods for details) consisting of 235 DEGs, of which 152 were up-
regulated in the phosphorylated state (wild type) whilst 48 were up-regulated in the mutated 
state (S273A mutant). We call this network the ‘global’ network. We subsequently searched a 
sub-network which makes an important contribution to the stability of the global network (the 
regulatory core).  
It is worth mentioning that interactions included in this ‘global’ network were obtained from 
literature from different biological contexts, including different cells, tissues and organisms. The 
reason for this proceeding is that otherwise the lack of genome-wide context-specific 
information makes it impossible to reconstruct a gene regulatory network; the assumption 
made here is that it is worth gaining information through such a strategy despite the noise 
which can be introduced. As a result of this, interactions between DEGs are not as 
contextualised to the specific experimental conditions as the expression data is. In other words, 
some of the interactions could not be active in the specific conditions under study.  
To address the problem of the lack of network specificity we looked for evolutionary conserved 
patterns of connectivity or network motifs. These motifs are statistically overrepresented 
patterns of connectivity, thus meaning it is unlikely that their constitutive interactions are there 
by chance. Network motifs and their properties have been studied since they were defined in 
2002 [52]. At least they may reflect a framework in which particular functions are achieved 
efficiently. One remarkable characteristic of these motifs is that they tend to aggregate in motif 
clusters largely overlapping with known biological functions [53]. We decided to look for motifs 
with a very specific property: the capacity to exist in at least two stable states. These stable 
states should match with experimental expression data. This proceeding sought to integrate 
information from evolutionary conservation and experiments. 
We first searched for motifs with multi-stable modes before selecting the top 10 statistically 
significant motif types consisting of 2, 3, 4 or 5 nodes using a z value-based ranking, all with a P-
value of 0.01 (only 10 of 1000 randomly generated networks contained motifs at a higher 
frequency). 
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Figure 4 | Multi-stable motifs with matching gene expression values: n is the number of 
motifs of a given type found in the core network. A1 is attractor state 1, and A2 is attractor 
state 2. 
 
We examined the expression profile of the genes in each motif to ensure that the expression 
profile was consistent in all members of the identified motif: among the top ranked 2-, 3-, 4- or 
5-node motifs which exhibited multi-stable behaviour, we identified a number of 3- and 4-node 
motifs which were consistent with expression values (Figure 4). We thus identified 39 genes 
involved in 55 switches, forming a single cluster, which we call the ‘core’ network (Figure 5). 
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Figure 5 | The core network. (a) This network consists of 39 nodes and 55 bi-stable motifs. (b) 
Example of bi-stable switch motif, existing in ON/ON/ON or OFF/OFF/OFF states. 
 
Analysis of the regulatory core 
Although we forced all constitutive motifs in the regulatory core to be multi-stable and 
consistent with expression data, this does not guarantee that all together they still remain 
multi-stable and consistent with information from experiments. In light of this, we proceeded 
to analyse the core network stability. 
Computation of the stability of the core network cluster reveals two attractors, in which all 
genes are either in an ON (up-regulated) or an OFF (down-regulated) state, which exactly match 
the expression pattern. The two most commonly found motifs are positive forward loop motifs 
with OFF/OFF/OFF changed to the ON/ON/ON states during the course of the disease. 
Consistent with this, the in silico perturbation of some of the core cluster’s nodes triggers a 
transition from the OFF to the ON attractor, although the opposite transition (from ON to OFF) 
is not triggered by the perturbation of any node in the core. In all, 34 nodes in the cluster are 
capable of triggering the transition from OFF to ON when they are perturbed. In contrast, five 
nodes (COL1A1 (collagen type I-a1), COL1A2 (collagen type I-a2), kruppel-like factor 5 (KLF5), 
perforin-1 and runt-related transcription factor 1) constitute a set of genes which could 
potentially be in the ON state, taking part in different processes without the consequent 
activation of the cluster. We can see in Figure 6 that perturbation of KLF5, involved in a motif 
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with early growth response 1 (EGR1), does not trigger the transition of the cluster from OFF to 
ON. 

 
 
Figure 6| Two examples of core genes perturbations, with and without an effect on the core 
network. a) Perturbation of EGR1: all genes in the cluster change from the OFF to the ON state 
and remain there. b) Perturbation of KLF5: only the gene in question changes its state 
temporarily from OFF to ON before quickly returning to the original state. Both EGR1 and KLF5 
occur within the same motif. 
 
The main conclusion of this analysis is that, according to the assumed model, the regulatory 
core is easily put in a disease state but hardly reversed to the original healthy state. 
Additionally, simulations showed that certain genes in the core can be up-regulated without 
inducing the system to the disease state, although other genes work as disease inductors when 
they become active, namely COL1A1, COL1A2, KLF5, PRF1 and RUNX1.  
Furthermore, we compared properties of genes in the core network with remaining genes in 
the global network ([51] Supplementary Table 1). Specificity of inter-gene interactions may be 
reflected in the network modularity. Using the Newman–Girvan algorithm, we identified 11 
clusters, of which clusters 1 and 2 are mainly occupied by core genes. In order to identify 
intercluster connectors, we calculated the participation coefficient which was, on average, 
significantly different when comparing nodes in the core and global networks. The median 
participation in the core and global networks was 0.45 and 0, respectively; the distributions in 
the two groups differed significantly (Mann–Whitney–Wilcoxon W=2272, n1=44, n2=191, P-
value=1.66e-07). 
The betweenness centrality of a gene is a centrality measure which is proportional to the 
number of shortest paths between genes in the which that go through the gene in question. 
High betweenness centrality corresponds to a high level of inter-node communication, and is 
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therefore an appropriate measure for highlighting which genes link different molecular 
processes and pathways. Median betweenness centrality in the core and global networks were 
243 and 0, respectively; the distributions in the two groups differed significantly (Mann–
Whitney–Wilcoxon W=1430, n1=44, n2=191, P-value=3.65e-14). We identified a group of 
genes, which act as potential hubs and exist in the core network (with a betweenness centrality 
score ≥0.10 in the core network, as well as ≥2900 in the global network, making them the top 
four ranking genes in both cases), namely HIF1A, EGR1, STAT1 and CXCL12.  
 

2.1.3 Discussion 
We found that a group of differentially expressed genes are involved in bi-stable switches and 
form a network cluster of motifs considered as a regulatory core in the metabolic syndrome; 
the state of which changes with disease progression. These findings support the idea that bi-
stable switches may represent a mechanism through which the core gene network can be 
locked into a diseased state and perturbations can be efficiently propagated to more distant 
regions of the network.  
Analysis of the betweenness centrality showed that genes with the highest betweenness 
centrality were HIF1A (hypoxia-inducible factor 1a-subunit), EGR1, STAT1 (signal transducers 
and activators of transcription 1) and CXCL12 (chemokine (C–X–C motif) ligand 12) and that 
they are all overexpressed in the case of phosphorylated PPARγ (the putative disease state).  
We examined these genes in more detail with regard to their association with adipogenesis, for 
which PPARγ is the master regulator under any condition. Through this we sought to confirm 
that our core network is consistent with experimental studies. We found that this was indeed 
the case: the role of the transcription factor HIF1A in adipocyte differentiation has been 
described previously [54]. EGR1 functions as a transcriptional regulator; the expression of which 
is rapidly induced during the differentiation of murine 3T3-L1 adipocytes [55]. STAT1 also acts 
as a transcription activator, which is rapidly activated in the 3T3-L1 adipocyte cell culture model 
[56] and CXCL12 is a chemokine, which demonstrates a significant increase in expression in 
differentiating 3T3-L1 pre-adipocytes. 
It is worth mentioning that, although the network represents a cluster of events which have 
resulted from a PPARγ population shift, the connection between the shift and the changes 
produced downstream still remains unclear and it is not represented in our network. We hope 
that future research will clarify whether or not PPARγ is integrated into the regulatory core we 
detected or if this core is an independent module directly regulated by PPARγ or by means of 
indirect pathways. 
 
 

2.1.4 Methods 
Network reconstruction 
We extracted DEGs from the results of gene expression analysis experiments by Choi et al., [57] 
in which PPARγ-null mouse embryonic fibroblasts were transfected with wild-type PPARγ 
(phosphorylated) or the S273A PPARγ mutant (not phosphorylated). The cutoffs for selecting 
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the DEGs were uncorrected P-values ≤0.008 and corrected false discovery rate P-values ≤0.15. 
This resulted in 577 DEGs, which we used in our subsequent analysis. 
Subsequently, the ResNet mammalian database from Ariadne Genomics 
(http://www.ariadnegenomics.com/) was used to construct an interaction network of 235 DEGs 
with directed and signed interactions (the ‘global’ network). This database includes biological 
relationships and associations, which have been extracted from the biomedical literature using 
Ariadne’s MedScan technology. MedScan processes sentences from PubMed abstracts and 
produces a set of regularised logical structures representing the meaning of each sentence. The 
ResNet mammalian database stores information harvested from the entire PubMed, including 
more than 715 000 relations for 106 139 proteins, 1220 small molecules, 2175 cellular 
processes and 3930 diseases. The focus of this database is solely humans, mice and rats. 
Motif detection 
Motif detection was performed using the FANMOD algorithm [58] for the global network and 
limited to motifs consisting of 2, 3, 4 or 5 nodes each. Each resultant topology was analysed in 
comparison with 1000 separately randomised versions of the initial network. Using both the 
original and the randomised versions, z-scores and P-values could be calculated for all motifs 
discovered in the original network. 
The z-score of a motif is the original frequency minus the random frequency divided by S.D. The 
P-value of a motif is the number of random networks in which it occurred more often than in 
the original network, divided by the total number of random networks. Of the bi-stable switch 
motifs we identified, we also examined the expression profile of the genes in each motif to 
ensure that the expression profile was consistent in all motif members. We constructed a 
network (the ‘core’ network) consisting of 39 DEGs which occur in bi-stable motifs, which are 
significantly overrepresented in the global network, and whose genes are in a stable state, 
matching the experimental expression values. 
Stability analysis 
To compute the attractors of the core network, we used the program SQUAD (www.enfin.org) 
[59]. The program converts the network into a continuous dynamical system based on ordinary 
differential equations. In the absence of detailed kinetic parameters, the program interpolates 
a sigmoid curve between the states completely ON and completely OFF for each node. SQUAD 
first calculates the steady states found in a discrete dynamical system (Boolean model with 
asynchronous updating scheme) and then uses these states as a guide to localise the steady 
states in the continuous model. 
Perturbations were also simulated using SQUAD. Each perturbation is a single pulse which 
changes the state of the node from 0 to 1 in the OFF attractor, or from 1 to 0 in the ON 
attractor as initial states of the system. 
Modularisation and betweennes centrality analysis 
The DEGs of the core and global networks were divided into groups by means of topological 
modularisation using the Newman–Girvan algorithm. The participation (P) of a node in intra-
modular communication is calculated as follows: 
 

http://www.enfin.org/
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where NM=number of modules, Ks=number of connections with module s, ki=total degree of 
module k. Analysis of betweenness centrality was calculated with igraph library in R comparing 
the core and global networks. The participation coefficient and betweenness centrality results 
for the core and global network groups were compared with the Mann–Whitney–Wilcoxon test 
in order to verify the statistical significance of the differences. 
 

2.2 Detecting the disease regulatory core by identification of strongly connected components in 
a gene regulatory sub-network of locally consistent elements according to the connectivity 
pattern and experimental expression data in both health and disease states: prion disease case 
study 
 
This section refers to a work published in BMC Systems Biology in 2012 entitled “Gene 
regulatory network analysis supports inflammation as a key neurodegeneration process in prion 
disease” [60]. 

2.2.1 Introduction 
 
Prions are unique among transmissible, disease-causing agents in that they replicate through 
the conformational conversion of physiological forms of prion protein (PrPC) to disease-specific 
PrPSc isoforms. They result in transmissible neurodegenerative diseases with common 
neuropathological features in mammals, including prion aggregation and accumulation, 
synaptic degeneration, microglia and astrocytes activation and neurons death. The activation of 
immune cells in the brain is believed to be one of the earliest events in prion disease 
development, where misfolded PrionSc protein aggregates are thought to act as irritants 
leading to a series of events which culminate in neuronal cell dysfunction and death. However, 
the role of these events in prion disease remains a matter of debate. Several hypotheses have 
been put forward to explain prion disease pathogenesis, such as PrPC loss-of-function, PrPSc 
gain-of-toxic function, endoplasmatic reticulum stress, activation of autophagy and/or 
apoptotic death pathways, and chronic brain inflammation induced by misfolded protein and 
neuronal injury [61]. However, as yet there are no studies which have addressed the main 
initiator and/or propagator of the disease [62].  
We have used a computational network analysis based on known gene expression data to 
address this complex question. In order to elucidate the mechanisms leading from abnormal 
protein deposition to neuronal injury, we have reconstructed a gene regulatory network and 
performed a detailed network analysis of genes differentially expressed in several mouse prion 
models.  
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2.2.2 Results 
Identification of the disease regulatory core  

We built a gene regulatory network based on the differentially expressed genes reported by 
Hwang et al. [63]. The functional relationships, based on gene expression and found in the 
literature, include interactions described in different biological contexts as different cells, 
tissues and organisms. As in the metabolic syndrome case example explained above, the 
resulting network is not contextualised to the specific experimental conditions under study, and 
thus we pruned the network based on the local inconsistency of expression data. If the 
expression data of a couple of regulator and regulated genes was inconsistent given the sign of 
the interaction connecting them, then this interaction was removed. After this pruning we 
obtained a resulting network which we called the global network, consisting of 106 genes which 
are differentially expressed during prion infection (all up-regulated), connected with 169 
functional relations (all activations). Following this, we proceeded to identify the regulatory 
core of the global network responsible for the network stability. Network dynamics are 
regulated by the structure of the network through the flow of information by way of feed-
forward and feed-back loops. When we looked for network structures with an exchange of 
information, we found a unique strongly connected component (SCC) consisting of 16 genes. 
The hallmark of such a structure is that, thanks to specific connectivity, the information can 
flow from one gene to any other in the structure following at least one path. This mutual 
influence between any pair of genes belonging to the SCC makes this structure relevant in 
terms of information exchange, and therefore potentially determinant of the network’s 
stability. The SCC is mainly regulatory in nature with only 6 incoming functional relations. This 
SCC constitutes the regulatory core (see figure 7), and its regulatory impact extends up to 74 
genes, meaning that the states of these 74 genes depend on the state of the SCC. This design 
resembles the “Medusa model” described by Kauffman [64], in which a set of genes represents 
a regulatory head, whilst the remaining genes represent arms controlled by the head.  
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Figure 7 | Regulatory core composed of a single strongly connected component with sixteen 
nodes and twenty-eight regulatory interactions. There always exists a path (following the 
direction of the arrows) from any gene to any other gene within the regulatory core. Such 
reachability means that changes in the state of any gene can potentially affect the rest of the 
regulatory core. 
 
Analysis of the disease regulatory core  
 
We then carried out stability analysis of the regulatory core using a Boolean dynamical model 
with a synchronous updating scheme to compute network stable states. Two stable states were 
found for the regulatory core; one with all nodes “off” and one with all nodes “on” 
corresponding to health and disease states respectively. An in silico perturbation analysis 
demonstrated that core genes are individually capable of triggering the transition and that the 
network remains locked once the diseased state is reached. In contrast with this, no single gene 
repression is capable of reversing the disease state to the original health state, meaning that, 
due to this particular network topology, once the disease state is reached there is a strong 
resilience to leave it.  
In order to assess the connectivity importance of genes belonging to the regulatory core we 
applied three different measures: network fragmentation, betweenness centrality and 
participation coefficient. This helped with the identification of genes which play the role of so 
called communication hubs (mediators of interactions between other, more peripheral genes). 
Fragmentation is a measure used to assess overall network connectivity and may be helpful in 
determining the impact of a sub-network on global topology. The fragmentation analysis of the 
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global network produced the following results. The mean of the giant component size for 1000 
randomized removals of 16 nodes was 81.02 nodes (standard deviation 8.29), while it was only 
38.00 nodes in the case of SCC node removal. The difference between these values is 5.18 
times the standard deviation of the random removal values. This indicates that the size of the 
biggest set of connected nodes was reduced dramatically when we removed the nodes of the 
SCC instead of a random selection of 16 nodes. These results underlined the relevant role of the 
SCC as a connectivity element of the global network. 
The betweenness centrality analysis of the global network showed that it is scarcely 
interconnected. There was a small group of central genes (mostly belonging to SCC) which had 
a much larger number of peripheral genes in the network connected to them. Six genes could 
be considered highly central (normalised betweenness > 1): TGFB1, CSF1, TLR2, CEBPA, LGALS3 
and STAT3. In total, 25 genes were not peripheral (i.e. they mediated at least one gene 
connection). There was a significant difference when comparing the betweenness centrality of 
genes participating in the SCC and the genes in the rest of the network. Median betweenness 
centrality in the SCC and global networks were 123 and 0, respectively; the distributions in the 
two groups differed significantly (Mann–Whitney Wilcoxon W= 163, n1 = 16, n2 = 90, p-value = 
1.406e-10) supporting the central role of the regulatory core in the global network. It should be 
noted that the betweenness centrality was more sensitive than other topological features such 
as degree or clustering coefficient to data incompleteness (missing genes or interactions). This 
is because it depends on the global network structure [65,66]. 
Having identified the hubs, we asked the question of whether the strong connectivity occurs 
between genes involved in common or distinct biological processes. Modules (clusters of genes 
sharing functional or topological properties) in the network were distinguished by assigning the 
pathological prion disease processes (derived from gene ontology annotations, described by 
Hwang et al.) to genes constituting the network core. Four modules were considered: disease-
causing prion protein (PrPSc) replication and accumulation, immune response, neuronal cell 
death and other functions (genes which could not be assigned to any of the previous groups). 
Inter-modular participation is a measure used for the identification of genes which link different 
biological processes and this measure was calculated for all module members. Three groups can 
be distinguished according to node role (see materials and methods): (1) one connector hub 
with high inter-modular participation (P > 0.60) and significant within-module connectivity (z 
>2.5) at the same time highly central (normalized centrality >1): TGFB1; (2) satellite connectors, 
(genes with weak connectivity to other nodes of same function but with high ratio of 
connections to other modules) which share high centrality (normalized centrality >1): CSF1, 
TLR2, LGALS3 and STAT3; (3) less high central satellite connectors (positive normalized 
centrality): CEBPD, STAT1 and B2M; (4) other non-central but inter-module participative genes 
which are regulated by the SCC and are associated with a different functional category than the 
regulated gene or are regulating genes of other functions: CASP1, CLU, TGFBR2, P2RX7, 
NFATC1, CXCL10, CCND1, CYBB, AIF1 and GFAP. As expected, most of the selected hubs and 
connectors are parts of SCC supporting its assumed role as transition-driver. An example of this 
simulated transition is shown in Figure 8 where the perturbation (activation) of TLR2 induces 
the transition from healthy to disease state. 
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Figure 8 | Perturbation analysis of genes in the SCC. Perturbation of the TLR2 gene (black 
diamond), and its effect on the other genes of the SCC. The Y-axis represents the “level of 
activity”; Y-axis:0 indicates the “off” state, 1 indicates the “on” state. TLR2 is capable of 
triggering the transition from the “off” (healthy) to the “on” (disease) stable state for all genes 
in the SCC. The simulations were performed assuming a continuous dynamical system where 
the initial states are the attractors previously computed in a discrete model (Boolean). The X-
axis represents “time” in arbitrary units.  
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Functional analysis 
 
We have categorised the genes of the core network with regard to the four pathological 
features described by Hwang et al. [63] (Figure 9, Table 1). While no genes from the 
pathological feature category synaptic degeneration were found in the core network, it should 
be noted that only one of the 333 DEGs in the original mouse study was a member of this 
category. A potential sequence of reactive changes has been proposed by Hwang et al. and we 
have been able to identify genes in our SCC and core network at each stage in this proposed 
sequence. Transcriptome analysis suggested that one of the first changes was the activation of 
the complement pathways: the complement factor C3 is located in the core network. In 
addition, pattern recognition receptors (PRRs) and other receptors may potentially recognize 
PrPSc: ITGB2 and TLR2 in the SCC; CD14, CD68, FCGR2B, TREM2 in the core network. 
Subsequently, the complement complexes and PRRs may be responsible for stimulating the 
production of cytokines (CSF1 in the SCC and CXCL10 in the core network) and growth factors 
(TGFB1 in the SCC). They may also activate astrocytes, indicated by the increased expression of 
the glial marker GFAP in the core network. Cytokines released by microglia and astrocytes then 
lead to the activation of endothelial cells, which would stimulate the migration of leukocytes 
from the blood, followed by their differentiation into microglia (leukocyte extravasation), 
involving ITGB2, NCF1, TGFBR1, TGFB1 in the SCC and TGFBR2, ITGAX, CYBB in the core. The up-
regulation of CSF1 (in the SCC) suggests that mononuclear leukocytes (blood monocytes) may 
be converted into microglia upon entering the brain. 



36 
 

 
 
Figure 9 | Functional analysis of core network with pathological features. 
Genes associated with PrPSc replication and accumulation are in green, with nerve cell death in 
blue, and immune response (including, microglia/astrocyte activation, leukocyte extravasation, 
general immune response) in pink. Other genes are indicated in grey. SCC genes are indicated 
as octagons. 
 

2.2.3 Discussion  
As result of this analysis we found a master regulatory core of 16 genes related to immune 
response controlling other genes involved in prion protein replication and accumulation, and 
neuronal cell death. This regulatory core determines the existence of two stable states which 
are consistent with the transcriptome analysis which compared prion infected with uninfected 
mouse brains. 

In conclusion, we hypothesise that this locking may be the cause of the sustained immune 
response observed in prion disease. Our analysis supports the hypothesis that sustained brain 
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inflammation is the main pathogenic process leading to neuronal dysfunction and loss, which in 
turn leads to clinical symptoms in prion disease. 

Inflammation response could be an overrepresented functional category in a great number of 
diseases. In the particular case of neurodegenerative diseases belonging to the class of protein 
misfolding diseases, it is well established that neuroinflammation plays a role. What we 
consider remarkable, and what constitutes our main finding, is the key role played by 
neuroinflammation in the specific case of prion disease, connecting different functional 
modules and constituting a switch which allows the network  to reach a self-maintained disease 
state, once triggering factors (protein deposition and the formation of amyloid plaques) initiate 
the process. According to our simulations, the special topology which connects 
neuroinflammation elements (a cluster of positive feed-back loops or SCC) makes the 
regulatory core sensitive, under perturbation, to easy transition from inactive (healthy) to 
active (diseased) states, although it becomes very stable once the active state is reached. 

In order to experimentally test the role of the genes of the identified master regulatory core in 
prion disease, we envisage inoculating PrionSc into unconscious mice which are lacking one of 
the 16 SCC genes. Subsequently, the mice would be analysed pathologically with regard to 
neuronal function and death, as well as for DEGs for which the network analysis would be 
repeated. This analysis would be particularly interesting for factors whose explicit role has 
never been demonstrated in prion pathogenesis (TLR2, NCF1, PTPN6).  

It is worth mentioning that we assumed by default an inhibitory dominant system to define the 
regulatory rules in the assumed Boolean model. Whilst this simplified scheme can still capture 
certain regulatory behaviours which do not follow the inhibitory dominant system, it fails to 
capture others. This depends on the connectivity between regulators and regulated genes, but 
also on the state of the genes. The network pruning based on local inconsistency of expression 
data in network stable states partially overcomes this failure. With this said however, it is very 
important to stress the fact that this restricts conclusions regarding the network topology to 
stable states, thus meaning that predictions pertaining to dynamics in transient states should 
be avoided. In Figure 10 we can see examples of two different regulatory logic gates compatible 
with network topology and gene states (Figure 10 a) as well as those compatible only after the 
removal of a specific network interaction (Figure 10 b). In addition, this network pruning based 
on the local inconsistency of expression data relies on the assumption that expression data is 
essentially correct, and does not consider the possibility of noisy data. In order to address this 
issue we developed a computational method to contextualise gene regulatory networks based 
not on local consistency but on global consistency using an evolutionary algorithm which allows 
for the consideration of certain expression levels as wrong lectures if the global consistency is 
increased. This is very convenient when it comes to dealing with noisy information. The latter 
computational method is fully explained in Chapter 3. 
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Figure 10| Example to illustrate two different regulatory logics compatible for some specific 
cases but not for another’s. a) Real regulatory logic gate says that C is up-regulated if B is up-
regulated or A is down-regulated, whereas the regulatory logic assumed by default in this work 
says that C is up-regulated if B is up-regulated and B is down-regulated. The network topology 
and gene states are compatible with both logics. b) In this case the assumed regulatory logic 
gate is not consistent with network topology and gene states; during the network pruning 
process the inhibition of A over C is going to be removed in order to make it consistent. The 
main problem with this is that we eventually lose real interactions. Nodes in grey and white 
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represent genes up-regulated or “ON” and down-regulated or “OFF” respectively. “T” and 
normal arrows represent inhibitions and activation respectively. A red cross represents the 
interaction removal during the pruning process. 

 

2.2.4 Methods 
Network reconstruction 
The procedure for the network reconstruction consists of the following steps: a) Obtaining a list 
of differentially expressed genes. b) Connecting these genes using expression regulatory 
interactions from literature. c) Pruning the network based on local consistency in expression 
data of connected genes. 
 
a) Obtaining a list of differentially expressed genes. A list of 333 DEGs was extracted from the 
results of gene expression analysis experiments performed by Hwang et al. [63]. These DEGs 
were found in all five prion-wild type mouse combinations in the study. They constitute the 
subset of genes which were differentially expressed in the five cases.  
 
b) Connecting differentially expressed genes using gene regulatory interactions described in 
literature. The ResNet mammalian database from Ariadne Genomics 
http://www.ariadnegenomics.com/) was used to construct a gene regulatory network. The 
ResNet database includes biological relationships and associations, which have been extracted 
from the biomedical literature using Ariadne's MedScan technology [67,68]. MedScan 
processes sentences from PubMed abstracts Crespo et al. BMC Systems Biology 2012, 6:132 
Page 9 of 12 http://www.biomedcentral.com/1752-0509/6/132 and produces a set of 
regularized logical structures representing the meaning of each sentence. The ResNet 
mammalian database stores information harvested from the entire PubMed, including over 
715,000 relations for 106,139 proteins, 1220 small molecules, 2175 cellular processes and 3930 
diseases. The focus of this database is solely on humans, mice and rats.  
We used the list of differentially expressed genes to build a gene regulatory network without 
including any additional genes not found in microarray experiments resulting in a raw 
connected graph of 125 nodes and 255 interactions of known effect (positive or negative). In 
order to build the network we included only literature evidence of gene expression regulation 
(directed and signed interactions), thus meaning it is smaller and sparser than it would have 
been if all possible known interactions had been included (i.e. undirected protein-protein 
interactions, indirect interactions). 
  
c) Pruning the network base on local consistency in expression data of connected genes. The 
expression patterns of the DEGs were checked in the Prion Database 
(http://prion.systemsbiology.net) to compare with topology and associations’ logic leading to 
the removal of 15 inconsistent nodes and 81 edges. Additionally, the discovery of few errors in 
the text mining process led us to further validate the network. To avoid false associations we 
took all sentences used by Pathway Studio (Ariadne Genomics) to determine gene associations 
and searched for co-occurrence of specific words: modifiers of sentence meaning, indicating 

http://www.biomedcentral.com/1752-0509/6/132
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increased risk of false interpretation. During the next phase we conducted a manual verification 
of highly uncertain sentences and found two clearly incorrect associations: CD86 –+ > TGFB1 
and CEBPA –+ > CASP8. In summary, we obtained a final graph of 106 nodes and 169 edges 
which we used for fragmentation analysis in this paper.  
 
Determining the core regulatory network 
 
Given that only genes with incoming interactions are relevant to the stability analysis, we had 
to identify genes involved in regulatory feed-back loops, or circuits, as well as genes regulated 
by them. For the first task we looked for strongly connected components (SCCs) in the raw 
network using Binom plugin [69] in Cytoscape [70].  An SCC is a network of nodes, where each 
node can be accessed directly or indirectly from every other node within the network. Simply 
put, there exists a path from each node in the network to every other node. Due to the specific 
connectivity in a SCC, the information can flow from one node to any other in the structure 
following at least one path. Such a path must respect the sense of the interactions (otherwise 
the component is weakly rather than strongly connected). Therefore, the state of any node in 
the SCC can directly or indirectly affect the state of any other node. This mutual influence 
between any pair of nodes within the SCC indicates that the SCC may be a relevant stability-
related structure. We obtained a single SCC with 16 nodes.  
Following this, we expanded these cores iteratively by adding first neighbours regulated by the 
SCC until no further neighbours could be added. This yielded a network consisting of the SCC 
and genes which are directly or indirectly regulated by genes in the SCC. The core network, 
including 74 nodes and 125 interactions (all nodes with incoming interactions) was used for the 
centrality analysis.  
 
Stability analysis 
 
For the stability analysis we used the SQUAD software package [50], creating a discrete 
dynamical system which allowed us to identify all the stable states of the system with an 
asynchronous updating scheme [51] using a binary decision diagram based algorithm [52]. 
Subsequently, a continuous dynamical system was created to identify the stable states in this 
continuous model which are located near to the stable states of the discrete system. Indeed, 
this is in accordance with the method described by Mendoza et al., 2006 [53], where the stable 
states of a Boolean model are taken as initial conditions in the continuous model. 
Gene perturbations were simulated in the continuous model whilst the expression values of 
specific genes were changed, putting them in “1” and “0” when they were in the opposite value 
originally, i.e., “0” and “1” respectively.  
 
Network properties 
 
Fragmentation, betweenness centrality and inter-modular participation measurements were 
employed in order to compare the properties of SCC genes with other genes in the network, 
and to determine key genes which might be potential candidates for experimental validation. 
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In order to test the importance of the SCC in the network’s connectivity, we examined the 
fragmentation effect of removing the 16 nodes belonging to the SCC in comparison with the 
fragmentation effect of 1000 different randomised removals of 16 nodes in the global network 
of 106 nodes. The giant component was the largest connected sub-graph found in the network 
for the given fragmentation and thus is a good measure with which to evaluate such 
fragmentation [53,71]. 

Betweenness centrality was computed for all genes in the network. The higher the value, the 
more central the gene is in the network of reference, i.e. other genes are more likely to be 
connected along the pathway involving these genes [71]. 
 
Modules in the global network were defined by functional and pathological process annotation 
of genes. The participation coefficient P is a measure quantifying intermodular connections of 
genes. For any gene in question, if P is greater than 0 and if the odds of inter-modular degree to 
total degree of the gene are less than 1, then it has to have at least one connection within its 
own and neighbouring modules. Together with measure of within module connectivity, 
participation allows us to define a node’s role in the network ranging from most influential 
global hub to peripheral node (global hub, connector hub, provincial hub, kinless node, satellite 
connector, peripheral node and ultra-peripheral node). Such genes connect various functional 
pathways and may therefore be considered key regulators of cellular processes [56]. 
 
Functional analysis 
 
Hwang et al. described four pathological features, which were derived from GO attributes: (1) 
PrPSc replication and accumulation, (2) microglia/astrocyte activation (which we refer to as 
immune response), (3) synaptic degeneration and (4) neuronal cell death. We mapped these 
pathological features onto the nodes in our core network and examined how the genes in our 
network may relate to disease progression. 
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Table 1 | Summary of the genes and their functional categories. 

 

2.3 Expanding the disease regulatory core through the identification of missing regulatory 
elements:  Epithelial to Mesenchymal Transition case study 
 
This section refers to the work published in PLoS one in 2012 entitled “A Novel Network 
Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal 
Transition” [72]. This publication was the result of a collaborative effort between the 
Cytoskeleton and Cell Plasticity lab, Life Sciences Research Unit-FSCT, University of Luxembourg 
(M Moes, ALe Béchec, C Laurini, A Halavatyi, G Vetter and E Friederich), contributing with the 
experimental part, and the Computational Biology group, Luxembourg Centre for Systems 
Biomedicine (LCSB), University of Luxembourg (I Crespo and A del Sol), contributing with the 
Computational modeling and analysis. 
 

2.3.1 Introduction 
The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is 
initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to 
as epithelial to mesenchymal transition (EMT), cells change their transcriptional program, 
leading to phenotypic and functional alterations. The challenge of understanding this dynamic 
process resides in unraveling regulatory networks involving master transcription factors (e.g. 
SNAI1/2, ZEB1/2 and TWIST1) and microRNAs.  

Biological function Genes

PrPSc replication and 

accumulation

A2M, ABCA1, ADAMTS1, APOD, PTGS1, 

SERPING1 

Immune response

Complement activation: 

complement system

C3

Complement activation: 

coagulation & kallikrein system

PDPN, PROS1 

Pattern recognition and other 

receptors

CD14, CD68, ITGB2, FCGR2B, TREM2, TLR2

Microglia/astrocyte activation 

related

GFAP, PTPN6, STAT1, STAT3, THBS2, 

TNFRSF1A, VIM

Cytokine, chemokine and 

growth factor related

CSF1, CSF1R, CXCL10, CX3CR1 

Leukocyte extravasation CYBB, ITGAX, NCF1, TGFB1, TGFBR1, TGFBR2

Other immune response AIF1, B2M, CD83, CD86, CEBPA, Ctla2a,  HLA-E, 

IFI27, IFIT3, NFATC1, SBNO2

Cell death CASP1, CCND1, CLU, HSPB1, HSPB8, ID3, 

MCL1, RBP1, SOCS3, TGM2

Other ALOX5AP, CD9, CEBPD, FLI1, GUSB, HPGD, 

IL13RA1, INPP5D, ITGB5, LCN2, LGALS3, LXN, 

OSMR, P2RX7, S100A4, SOX9, SYNPO, TF 
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The importance of miRNAS as regulators in EMT has been recently pointed out by several 
works, and particularly the two clusters of the miR-200 epithelial marker family: miR-
200b/200a/429 (miR-200b) and miR-200c/141 (miR-200c) [73,74]. The miR-200s regulate EMT 
through a double negative feedback loop with the ZEB factors, which, depending on the relative 
levels of miR-200 and ZEB, can induce the transition from epithelial- to mesenchymal-like states 
and back [75,76].  
In addition, the transcription factor SNAI1, which plays a key role during the early stages of 
EMT, activates the expression of ZEB factors in a context-dependent manner [77,78].  
However, the way in which these transcription factors and miRNAs interact is still a matter of 
debate. Indeed, there remains no integrated view describing how these transcription factors 
and miRNAs contribute together to conform molecular switches which rule the transition 
between epithelial and mesenchymal states. The dynamic properties of such networks are 
notably affected through feedback loops, eventually involving miRNAs and transcription factors, 
which act as toggle switches [79]. Previous versions of models of the regulatory core involving 
SNAI1, ZEB factors and miRNA-200 seemed to be incomplete, given that the dynamical 
behaviour was not consistent with two stable states observed in living cells, one for the 
epithelial and one for the mesenchymal phenotypes. 
In this work we investigated the participation of other microRNAs in this regulatory core, and 
particularly those potentially associated with SNAI1 given that the up-regulation of this factor is 
capable of inducing the transition from epithelial to mesenchymal states. 
 

2.3.2 Results 
Expanding the disease regulatory core 
Looking for miRNA candidates to enrich the regulatory core 
In order to identify miRNAs participating in the regulatory mechanisms involving SNAI1, we 
analysed our time-resolved miRNA microarray data (GEO accession: GSE35074) of EMT induced 
by the perturbation (up-regulation) of SNAI1 in a breast carcinoma cell line.  
 
At an established EMT state, 61 miRNAs were differentially expressed ([72] Table S1). Among 
those, 29 miRNAs were repressed and potentially regulated by the transcriptional repressor 
SNAI1. We combined these experimental results with miRNA expression signature analyses of 
four published datasets of epithelial and mesenchymal NCI60 cancer cell lines (Figure 1A and 
[72] Table S2, [80,81,82,83]). We then calculated expression correlations with the miR-200 
epithelial marker family ([72] Table S3). 
Interestingly, these analyses highlighted miR-203, whose expression was down-regulated in our 
EMT model and mesenchymal cancer cell lines, as being highly correlated to the expression of 
the miR-200s. 



44 
 

 
 
Figure 11 | Large-scale analysis of miRNA expression signatures, and miR-203 expression 
during SNAI1 induction in MCF7-SNAI1 cells. A) List of miRNAs found to be down-regulated, in 
at least three studies, in the large-scale analysis. B) qRT-PCR analyses of miR-203 expression 
levels normalised to U44 expression and expression levels in non-induced cells. C) Relative 
luciferase activity of miR-203 and miR-200b promoter constructs in non-induced (NI) and 
SNAI1-induced cells. Data are normalised to ‘‘NI’’ (*, p,0.05; **, p,0.01). 
 
Interestingly, integrating a hypothetical feedback loop miR203/SNAI1 and the well-
characterized miR200/ZEB feedback loops into a SNAI1-orchestrated EMT core network 
resulted in a model with a dynamical behaviour consistent with what was expected. Dynamic 
simulation revealed the existence of two stable states for this network and showed that the 
miR203/SNAI1 loop plays a crucial role in the switch from an epithelial to a mesenchymal state 
as well as in the stabilisation of the core network in these two states. These findings support 
previous studies [8,84] which showed the key role of feedback loops in network stability and 
determination of cell fate and plasticity.  
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In light of this, we decided to explore, in the wet lab, the regulation of miR-203 and miR-200 
family members through SNAI1, as well as their integration into regulatory networks governing 
epithelial cell plasticity. 
Experimental validation of new interactions 
Regulation of SNAI1 on miR-203 
In order to evaluate the effect of SNAI1 on miR-203 expression during SNAI1 induction we 
performed qRT-PCR analyses. MiR-203 was continuously repressed upon SNAI1 induction, 
similar to the miR-200b cluster. In addition, the relative luciferase activity of both miR-200b and 
miR203 promotor constructs when comparing non-induced and SNAI1-induced cells showed a 
significant decrease in promotor activity upon 12 h. These findings are consistent with the 
reduced promotor activity of miR-203 and miR-200c cluster by SNAI1 induction reported in 
other cell lines, namely HEK293T [85]and HCT116 [85,86]. Altogether these data suggest that 
SNAI1 regulates the expression of both miR-203 and miR-200. 
 
Regulation of miR-203 on SNAI1 
Following this, we investigated the role of miR-203 in relation with SNAI1 expression in breast 
carcinoma cells. Given that in MCF7-SNAI1 cells SNAI1 lacks its natural 3’ UTR [87], these cells 
are not suitable to study the possible effect of miR-203 regulating the expression level of SNAI1. 
The mesenchymal breast cancer cell line HTB129 presents high levels of endogenous SNAI1 and 
low levels of miR-203 when compared to epithelial MCF7 cells [81,88]. HTB129 cells stably 
transfected with miR-203 (HTB129-miR203) exhibited a significant decrease in SNAI1 mRNA. 
HTB129-miR203 cells lost their typical fibroblastic, dispersed phenotype and acquired a more 
compact and cohesive appearance, more according to an epithelial. HTB129-miR203 cells 
further lost approximately 25% of their migratory and 15% of their invasive capacity. By 
performing MTT proliferation and Annexin V apoptosis assays we excluded the possibility that 
observed inhibitions were due to decreased cell proliferation and/or programmed cell death. 
These results showed that miR-203 significantly reduces SNAI1 expression and promotes 
epithelial-like features such as a more cohesive phenotype and reduced motility. The next 
question was whether miR-203 directly or indirectly regulates SNAI1. 
In silico analysis predicted two binding sites for miR-203, although none for miR-200 family 
members, within the 39’ UTR of the SNAI1 mRNA (microRNA.org, August 2010 Release) [89]. 
The ability of miR-203 to directly target SNAI1 was evaluated by luciferase reporter assays in 
MDA231 cells, using SNAI1-39UTR reporter constructs - wild type or those lacking the predicted 
miR-203 target sites. Overexpression of miR-203 in MDA231 cells reduced the activity of the 
wild type SNAI1-39UTR, but not the mutant construct. Further, in agreement with in silico 
predictions, miR-200a and miR-200c (miR-200a/c), representing both seed sequences found 
within the miR-200 family, did not repress wild type SNAI1-39UTR reporter activity. These 
results indicate that miR-203, but not the miR-200s, directly regulates SNAI1 expression, thus 
linking miR-203 and SNAI1 in a double negative feedback loop and suggesting convergent yet 
non identical roles for these miRNAs in the regulation of SNAI1-orchestrated processes. 
 
Integration of miR-2003/SNAI1 in an EMT regulatory core network 
The mutual inhibition between miR-203 and SNAI1 forming a regulatory positive feed-back loop 
was integrated into the SNAI1 centered regulatory core with 15 interactions (2 activations and 



46 
 

13 inhibitions), 4 genes and 2 miRNAs (see figure12). This regulatory core includes interactions 
previously described in literature as the miR200/ZEB feedback loops [75], the activation of 
ZEB1/2 by SNAI1 [90,91,92], the inhibition of miR-203 by ZEB1/2 [85] and the repression of 
ZEB2 by miR-203[93]. In addition E-cadherin (CDH1), which is directly repressed by the SNAI1 
and ZEB factors [77], was added to the regulatory core as an epithelial target gene. 
Dynamic simulation of our core network revealed two stable states corresponding to the 
epithelial and mesenchymal phenotypes (“E” and ‘‘M’’ respectively) as described in literature 
([72] Data S1) [1]. Transition probability between these two stable states further attributed a 
high robustness to both states ([72] Data S1), implicating that the regulatory core network is 
unlikely to spontaneously switch between these states without external stimulus. Importantly, 
the simulation of an up-regulation of SNAI1 triggered the transition from state ‘‘E’’ to ‘‘M’’ (Fig. 
3A, B). Following this, and in order to show the importance of the miR203/SNAI1 feedback loop 
on the network dynamics, we performed an ‘edgetic’ (edge-specific genetic) perturbation, by 
removing the ‘‘miR-203 on SNAI1’’ interaction [94]. Interestingly, the dynamic simulation of the 
edge-altered regulatory core network revealed a single stable state ‘‘Eea’’ (edge-altered state 
‘‘E’’) ([72] Data S1). Thus, the feedback regulation ‘‘miR-203 on SNAI1’’ is crucial for switching 
from an epithelial to a mesenchymal state and in stabilising the core network in both states. 
 

 
Figure 12 | EMT core network integrating the miR203/SNAI1 and miR200/ZEB double 
negative feedback loops. A) The top panel corresponds to the core network integrating 
described interactions between miR-203, miR-200s (miR-200), SNAI1, ZEB1, ZEB2 and E-
cadherin (CDH1). The bottom panels show the stable states ‘‘E’’ and ‘‘M’’ obtained after 
dynamic analyses. B) In silico up-regulation of SNAI1 in a continuous dynamic system of the 
EMT core network. The state of SNAI1 is changed from ‘‘0’’ to ‘‘1’’ at time point 2 (arbitrary 
units of time), during two units of time. 
Diamonds represent miRNAs, squares transcription factors, and circles coding-genes other than 
transcription factors. Red and green colours stand for up-regulated and down-regulated 
expression levels, respectively. Edges represent an interaction between two actors, either 
activation (arrow) or inhibition (blunt arrow). The ‘‘lightning’’ indicates a SNAI1 up-regulation 
triggering the transition from state ‘‘E’’ to ‘‘M’’ (red arrow). 
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The analysis of the dynamics of the resulting expanded regulatory core network indicated that 
it could function as a robust switch controlling early steps of EMT and epithelial homeostasis, 
further emphasising the importance of bistable feedback loops in determining cell plasticity 
[8,84].  
 

 
Figure 13 | EMT core network integrating the miR203/SNAI1 and miR200/ZEB double 
negative feedback loops. A) The top panel corresponds to the core network integrating 
described interactions between miR-203, miR-200s (miR-200), SNAI1, ZEB1, ZEB2 and E-
cadherin (CDH1). The bottom panels show the stable states ‘‘E’’ and ‘‘M’’ obtained after 
dynamic analyses. B) In silico up-regulation of SNAI1 in a continuous dynamic system of the 
EMT core network. The state of SNAI1 is changed from ‘‘0’’ to ‘‘1’’ at time point 2 (arbitrary 
units of time), during two units of time. Diamonds represent miRNAs, square transcription 
factors, and circles coding-genes other than transcription factors. Red and green colours stand 
for up-regulated and down-regulated expression levels, respectively. Edges represent an 
interaction between two actors, either activation (arrow) or inhibition (blunt arrow). The 
‘‘lightning’’ indicates an SNAI1 up-regulation triggering the transition from state ‘‘E’’ to ‘‘M’’ 
(red arrow). 
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The dynamical behaviour observed in simulation was consistent with experimental expression 
data, in contrast with previous versions of this SNAI1 centered regulatory core without the 
participation of miR-203. Obviously, the present regulatory core network is embedded into a 
larger network with multiple molecular actors such as SNAI2 and TWIST, the expression of 
which is interconnected in a context-dependent manner and regulated by various pathways 
[77,95,96].  Despite this connectivity and given the consistency between the stable states of the 
regulatory core and the expression profile of both epithelial and mesenchymal cellular 
phenotypes, the present version of the regulatory core can still be considered and analysed as a 
stability element which contributes to the general stability of the entire gene regulatory 
element. This core network will provide a good starting point from which to further study key 
regulatory circuits underlying EMT, such as TGF-b signaling which plays an important role in 
transient cancer cell invasion. 

2.3.3 Methods 
 
Stability and perturbation analysis 
In order to simulate the dynamical behaviour of the system, we assumed a continuous model 
using the SQUAD program [59]. SQUAD assigns the same kinetic parameters for all regulations 
by default when this information is not available, as is the case in the present work. In addition, 
SQUAD limits the search for attractors using as initial states only the attractors found in a 
previous step in a discrete (Boolean) model with an asynchronous updating scheme [97]. Once 
these stable states from the discrete model are introduced as initial conditions in the 
continuous model the system is updated to its own stable states (usually slightly different than 
those found with the Boolean model). The probability of transition between the stable states 
was calculated in the discrete model after modelling the stochastic behaviour of the system 
using GenYsis, [97], whilst the resulting transition matrix showed that the probability of the 
system to spontaneously switch between the stable states after introducing noise according to 
this model is very low. In other words, the robustness of the system under stochasticity is very 
high; a common feature in biological networks and one which is consistent with what is known 
about epithelial and mesenchymal cellular phenotypes. To simulate perturbations in the 
continuous system the state of the specific nodes we wanted to perturb were changed from the 
current to the desired state for a given number of arbitrary units of time (defined by the user). 
The values of these states ranged from 0 to 1; they should be considered normalized. For 
instance, when the system is in epithelial phenotype the value of SNAI1 is close to 0. If we 
proceed to change this state to 1 for three arbitrary units of time we induce the transition to 
the mesenchymal phenotype, so once the perturbation finishes the system converges in a 
stable state with the state of SNAI1 close to 1. 

Epithelial/mesenchymal miRNA expression signature study 
 
The NCI60 panel was analysed using t-test analysis and the same classification as described in 
Park et al. [81]. miRNAS with a p-value lower or equal to 0.01 were considered differentially 
expressed.  Expression levels (up- or down-regulated) correspond to the sign of the difference 
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between the averages of log-intensity values of mesenchymal cells and the average of log-
intensity values of epithelial cells: sign(log(IM)-log(IE)). 
 
miRNA microarray analysis 
 
miRNA microarray design, protocols and data are available at NCBI’s Gene Expression through 
GEO Series accession number GSE35074. The established state of EMT is considered to have 
been reached after 72 h to 96 h of SNAI1 induction. This state refers to the ‘‘late EMT stage’ 
previously defined by the analysis of transcriptional events as well as phenotypic changes 
occurring upon SNAI1 induction in the MCF7-SNAI1 EMT model [87]. Averaged expression 
values for each time point (72 h and 96 h) were calculated, taking into account only replicates 
which have moduli of log-ratios ≥ 0.5 and t-test p-values ≤ 0.01 (according to LCSciences data 
processing). 
 
Vector constructs 
 
For exogenous miR-203 expression, the hsa-miR-203 stem-loop sequence (MI0000283) 
2200/+192 relative to the first and last nucleotide of the stem-loop, was synthesised and cloned 
into BglII/HindIII sites of the pSUPER.retro.puro vector (pSUPERmiR-203) (OligoEngine) 
(DNA2.0). The Hsa-miR-203 promoter region [85] was synthesised and cloned into a pGL3-basic 
reporter using KpnI/HindIII sites (DNA2.0). Wild type human GAPDH- and SNAI1-3’ UTR, as well 
as mutant SNAI1-39UTR lacking the predicted miR-203 binding sites, were synthesized and 
cloned into the psiCHECKTM-2 (Promega) vector at XhoI/NotI sites (DNA2.0). 
Mir-200b promoter construct, pGL3miR200b/200a/429 (2321/+120) has been previously 
described [98]. 
 
Cell lines  
 
‘‘Tet-Off’’ MCF7-SNAI1 cells expressing human SNAI1 upon removal of tetracycline from the 
culture medium have also been previously described [87,99]. The human breast cancer cell lines 
HTB129 and MDA231 (also known as MDA-MB-231 or HTB-26), purchased from the ATCC, were 
maintained in RPMI1640 and Leibovitz culture media (Lonza), respectively, supplemented with 
10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin. 
HTB129 cells stably expressing miR-203 were generated by pSUPER-miR203 vector transfection 
and puromycin selection. Cells stably transfected with the empty pSUPER.retro.puro vector 
served as a control. 
 
Epifluorescence staining of cells 
 
In order to reveal and illustrate the cell phenotype, DNA and F-actin were stained with DAPI 
(MPBiochemicals) and Phallo504 (Invitrogen), respectively. Cells were analysed by 
epifluorescence microscopy (Leica DMRX microscope). Images were acquired with a linear CCD 
camera (Micromax) and analysed with Metaview software (Universal Imaging Corporation Ltd). 
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RNA extraction and real-time quantitative PCR (qRT-PCR) 
 
Total RNA was extracted using Trizol as recommended by the manufacturer (Invitrogen). RNA 
quality and concentration were evaluated spectroscopically using a NanoDrop 2000c 
instrument (ThermoScientific). Reverse transcription and qRT-PCR quantification of miRNA and 
mRNA were carried out as previously described [87,100], whilst U44 and GAPDH served as 
internal references, respectively. Oligonucleotides used in this study are listed in [72] Table S4. 
 
Luciferase reporter assays 
 
Indicated cell lines were plated in 6-well plates and transfection was carried out using 
Lipofectamine 2000 (Invitrogen). For promoter reporter assays, cells were cotransfected with a 
pGL3-promoter construct (600 ng) and a pRL-TK reference plasmid (5 ng) (Promega). For 39UTR 
reporter assays, cotransfection was realised with 90 ng 39UTR-psiCHECKTM-2 constructs and a 
total of 75 pmol Pre-mirTM miRNA Precursor Molecules (Ambion). After 24 h of incubation cells 
were lysed, and firefly and Renilla luciferase activities were measured with a FluoStar Optima 
instrument (BMG LABTECH) using the Dual-Luciferase Reporter Assay System (Promega). All 
reporter assays are shown as relative luciferase activities, normalised to controls. 
 
Cell migration assay 
 
Cell migration was evaluated using Ibidi culture inserts according to the manufacturer’s 
protocol (Ibidi). Cells were seeded into the Culture-Inserts and grown overnight to confluency. 
After removal of the insert a 500 mm cell-free gap was created. Phase contrast images of the 
same gap fields were captured at 0 h and 24 h of incubation using an inverted light microscope 
(Leica DMIL) with camera (Leica DFC360 FX). Gap closure was quantified using ImageJ software 
(NIH).  
 
Cell invasion assay 
 
56104 cells were seeded in 2% FBS medium before being placed onto Transwell plates coated 
with 50 mg of extracellular matrix proteins (ECM gel E1270, Sigma). 10% FBS medium was 
added to the lower chamber as chemoattractant. After 24 h, cell invasion was quantified using 
the MTT assay (Sigma). 
 
Statistical analysis 
 
Assays were performed in technical triplicates and repeated in at least three biological 
replicates. Presented data are mean 6 SEM of three biological replicates. The paired t-test was 
used to estimate p-values. For the 39UTR reporter assays the one-tailed paired t-test was used 
to check for a potential decrease in relative luciferase activity. P < 0.05 was considered to be 
statistically significant. For qRTPCR assays, Log2-transformed mean fold changes (averaged over 
three biological replicates) are presented. Error bars are the SEM recalculated using the 
standard method for error propagation. 
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Chapter 3. Disease treatment and cellular reprogramming 
Introduction 

A wealth of exciting opportunities arises from the process known as “cellular reprogramming”. 
Through this process cells can be induced to change from one phenotype to another, including 
the possibility of modelling complex diseases (Alzheimer, Parkinson, schizophrenia, autism or 
blood disorders) using stem cells coming from more available cells of patients and applications 
in regenerative medicine. Regenerative medicine refers to the regeneration of damaged tissues 
and organs in the body by replacing damaged tissue and/or by inducing the body’s own repair 
mechanisms even in the case of tissues without this natural capability. The ability to control 
cellular programs opens new avenues in the field of regenerative medicine, allowing both to 
culture specific cell types in vitro for a posterior implantation in the patient or to induce cellular 
reprogramming in local cells from abundant and self-renewal sources (for example fibroblasts) 
to a missing or desired cell type (for example, missing dopaminergic neurons in Parkinson’s 
disease or lost cardiomyocytes after a heart attack). The development of technology for 
regenerative medicine has resulted in increasingly novel approaches to more deeply investigate 
the fundamental bases of cell identity and to better understand the natural differentiation 
process, including the identification of genes and regulatory elements which rule these 
processes. 

Indeed, certain pioneers have attempted to detect genes responsible for cell fate and 
differentiation without previous knowledge regarding the underlying gene regulatory network 
[101]. However, the detection of molecular switches able to trigger transitions between 
different cellular phenotypes relies on the completeness and accuracy of knowledge pertaining 
to the underlying gene regulatory network. Network reconstruction methods can be broadly 
divided into two main categories: literature based and experimental based methods. Networks 
inferred purely from experimental data and those assembled from the literature have different 
limitations. In the first case, a wealth of data regarding interactions previously described in 
literature is ignored. On the other hand, literature-based networks are too disconnected from 
experimental conditions to be able to describe input-output relationships, such as cellular 
responses under specific biological stimuli or mechanisms which determine specific stable (long 
term) expression patterns. This is due to the fact that certain interactions are strongly 
dependent on the biological context; a context defined by both the intracellular and 
extracellular environment. Moreover, literature based networks usually merge interactions 
described in a different well defined biological context, such as cell types, tissues or even 
organisms, with the hope that the trade-off between the enrichment in information and noise 
addition is worth it. This assumption can be true for some network analysis which is based on 
network topology and which is very robust against noise. However, the resulting networks 
usually cannot describe molecular switches where one ‘false’ interaction can make a big 
difference. Neither purely literature based nor purely experimental data based methods 
provide the level of detail and accuracy needed for reliable predictions regarding how to induce 
cellular transitions with efficiency and fidelity.  

In order to address the task of cellular reprogramming and particularly within the context of 
disease treatment, we developed a computational method to combine information from 
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literature with experimental expression data in order to reconstruct gene regulatory networks 
contextualized to the specific biological conditions under which the experiments were 
performed. This method exploits a general network property (the network stability) to guide an 
iterative network topology optimisation, and is fully described in the following section. 

3.1 Contextualizing gene regulatory networks to specific biological conditions guided by the 
consistency between computed network stable states and experimental expression data 
This section refers to part of the work published in Nucleic Acid Research in 2012 entitled 
“Predicting missing expression values in gene regulatory networks using a discrete logic 
modeling optimisation guided by network stable state”[102]. This paper provides a rigorous 
description of a novel algorithm with which to predict missing expression values in gene 
regulatory networks. As an intermediate step, the algorithm performs an iterative network 
pruning on a raw literature based gene regulatory network in order to make the topology as 
consistent as possible with the experimental expression data. It is precisely this network 
contextualisation which constitutes the main focus of the present section.  

3.1.1 Introduction 
The wealth of experimental data from high-throughput technologies in different areas of 
biology, and especially at a transcriptomics level, allows us to incorporate such data as 
networks of interactions. These networks can be reconstructed based on knowledge resources 
such as literature or specific databases (e.g. KEGG, Reactome, Transfac) or purely from 
experimental data by inferring interactions between genes from their co-expression patterns 
[103] or mutual information [104]. Literature-based networks are usually reconstructed by 
merging interactions from a different biological context (like different cell types, tissues or even 
organism) in an attempt to include all the information relevant to capturing the essential events 
and describing a particular biological system. The resulting network is usually noisy, with false 
interactions that are not active in the specific biological context under study.  Network analyses 
focussed on topological features are robust against these ‘false’ interactions and these 
networks find their utility. However, detecting the molecular mechanisms involved in complex 
processes like cellular reprogramming is something which requires more accurate networks, 
given that a single incorrect interaction can make a big difference in both global and local 
network dynamics, thus hindering the identification of molecular switches and a proper 
strategy with which to perturb them and induce desired cellular transitions. 

In this section we present a computational method which uses network stability to guide an 
iterative network pruning of literature-based network interactions. These interactions are 
apparently not active in the biological context under study according to expression data. This 
pruning is driven by the compatibility between predicted and experimentally verified stable 
gene expression patterns. Hence, it is reasonable to assume that interactions removed by 
pruning are not present in these steady states, given that they are inconsistent with expression 
data. Once these interactions have been removed, the resulting contextualized network can be 
analysed to detect molecular switches stabilizing transcriptional programs. This can in turn 
facilitate the prediction of missing expression values or the validation of specific expression 
values from noisy experimental data (see Figure 14). In addition, depending on how well the 
experimental expression data is explained by the network, predictions performed on this 
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network are more or less reliable, meaning that the matching between experimental expression 
data and computed attractors can be considered an indicator of network completeness and the 
goodness of the assumed regulatory logic rules, i.e., interactions between regulators. For 
validation purposes, and given that our method relies on network stability analysis of different 
cellular conditions, we selected four examples of transitions between different cellular 
phenotypes. In these cases we assumed that cellular phenotypes correspond to stable steady 
states of GRNs describing these processes. The analysed examples include: i) HL60-neutrophil 
differentiation (HL60), ii) epithelial to mesenchymal transition (EMT) and iii) mesodermal 
progenitor cells differentiation to osteoblasts (MPC). The method performance was tested in 
these examples, showing its predictability power.  

 
Figure 14 |Network contextualisation to predict missing expression values in order to expand 
and original gene regulatory network.  (A) Gene regulatory network with three genes and two 
inhibitions. Two Booleanised phenotypes are generated from a microarray experiment. Nodes 
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in blue and red represent genes down and up-regulated, respectively, according to microarray 
experiments. Nodes in grey and white represent genes ON (1) and OFF (0), respectively, in the 
Booleanized phenotypes. The attractor computation of this network in a dynamical Boolean 
system with a synchronous updating scheme which provides only one steady state 
corresponding to the phenotype 2. (B) Gene regulatory network with four genes, two 
inhibitions and two activations. Only the expression values of genes a, b and c are known, while 
the expression value of gene d (in pale grey) is missing. Nodes in blue and red represent genes 
down and up-regulated, respectively, according to microarray experiments. Nodes in dark grey 
and white represent genes ON (1) and OFF (0), respectively, in steady states (attractors) 
computed according to a Boolean dynamical model. Gene d is predicted as down-regulated (in 
pale blue). 
 

Comparing previous approaches for inference of regulatory and signaling networks 

An important characteristic of our method is that it explores a reduced search space due to the 
fact that only interactions previously reported in literature can be included in the network. 
Methods purely based on experimental data [104,105,106] rely on a large amount of data in 
order to statistically validate network interactions and explore larger search spaces since 
interactions are not constrained by literature information. In some cases, literature-based 
methods can also deal with large search spaces, especially when additional interactions can be 
added and/or regulatory logic rules are flexible [49] [50].  

A clear advantage of the method which we present here is that only a single experiment is 
required: a microarray experiment comparing two stable states of a biological system. Whilst 
other approaches combine literature information with experimental data, these require a 
significant number of perturbation experiments, i.e. different combinations of inputs and 
outputs [50] [49]. In order to be able to train the model, these methods require perturbation 
experiments targeting different starting points in the network including combinations of 
perturbations to solve the cross-talking between different pathways in the graph until the 
entire network is covered (see Figure 15). The main difference between our method and that 
developed by Irit Gat-Viks and co-workers [50] lies with the fact that although the approach 
was conceived to be able to analyse directed and signed networks with regulatory feed-backs, 
the algorithm updates the state of the network transforming the original graph in an acyclic 
graph. The algorithm then computes the local consistency between the state of a given node 
and its regulators, starting from a perturbed node and following a topological ordering on the 
graph’s nodes (which exists, since the graph is acyclic). Starting from different parts of the 
network and constructing the corresponding acyclic graphs, the algorithm finally covers the 
entire network. In order to be able to train the model using this strategy perturbation 
experiments are essential, and specifically experiments targeting different starting points in the 
network including combinations of perturbations to solve the cross-talking between different 
pathways in the graph (see Figure 15). As a result of this, several perturbation experiments are 
required.  In the particular case of the work published by Saez-Rodriguez et al. [49] the same 
explanation can be applied; given that they modelled the response of certain elements of a 
signalling network under perturbation, or in other words the cross-talking between different 
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paths in a signalling pathway. Indeed, several combinations of input perturbations up-stream 
have to be experimentally tested in order to gauge the output response down-stream.  

 

 
Figure 15 | Small example to illustrate the methodology applied by Irit Gat-Viks et al. The 
removal of specific edges means that the graph can be transformed into an acyclic graph. 
Node states are updated starting from different parts of the network (nodes ‘a’ and ‘e’) and 
following the topological ordering on the graph’s nodes. Whilst the separated perturbation 
of ‘a’ and ‘e’ is required, so to is the combined perturbation so as to infer the regulatory 
mechanism of the node ‘d’, which constitutes a cross-talking between two pathways. 
 

Thus, in the specific case of the work published by Irit Gat-Viks et al. [2] the strategy was tested 
on the lysine byosynthesis pathway on yeast, with the data set of perturbations comprising five 
groups of high-throughput experiments: a) expression profiles in nitrogen depletion medium 
after ten different periods of incubation [3]. b) Expression profiles in amino acid starvation after 
5 different periods of time [3]. c) Expression profiles of His and Leu starvation and various GCN4 
perturbations [4]. d) Protein and mRNA profiles of wild type strain YPD and minimal media [5]. 
e) 80 growth sensitivity phenotypes measured for each of a collection of ten gene-deletion 
mutant strains in eight conditions: Lys, Trp and Thr starvation, three minimal media and YPG 
conditions [6]. 
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In the particular case of Saez-Rodriguez et al. [49], the biological system selected to validate 
their approach was hepatocellular carcinoma cells exposed to one of seven cytokines in the 
presence or absence of seven small-molecule kinase inhibitors. They measured the states of 16 
intracellular signaling proteins both before and 30 minutes after they had been exposed to 
ligands. In addition, they also performed the experiments with combinations of two ligands in 
the presence and absence of small-molecule inhibitors for different protein kinases.  

Another remarkable difference between the work published by Irit Gat-Viks et al. [50] and the 
approach we present pertains to the complete confidence which this previous method has in 
the experimental data. The assumption is that this information is always correct, with an 
adjustment of the regulation functions which define the state of a specific node based on the 
states of its parents in an acyclic graph. If after this process certain discrepancies or local 
inconsistencies still remain, the model is refined by the addition of a novel regulatory 
hypothesis (with interactions not described in the literature) using a learning algorithm. With 
the method we propose, a local inconsistency could be accepted if the global consistency of the 
computed network state and experimental expression data is increased; a strategy which is 
suitable for dealing with noisy expression data. We omit interactions which have not previously 
been described in the literature to refine the model, and only work on the contextualisation of 
networks with sufficient connectivity to explain missing expression values; the completeness of 
the network and the suitability of the logic assumed regulatory rules can be estimated with the 
percentage of matching gene expression between computed attractors and experimental data. 

Another important feature of the method presented here is that it provides a strategy through 
which to increase the match with expression data using an evolutionary algorithm that 
considers the probability distribution of positive circuits and individual edges in an iterative 
process. Indeed, this means that it is not necessary to exhaustively explore the entire search 
space as in previously published works such as Layek et al. [107], who also exploited the 
attractors of the system. In this work the authors proposed a method with which to infer 
regulatory networks using a priori information regarding biological pathways and the 
concordance between network attractors and experimental data. In their method, they 
integrated information from pathways described in the literature to create a family of possible 
networks. They then verified whether or not the experimentally observed stable states agreed 
with computed attractors of the family of possible networks. Following this they selected the 
top networks (different alternative networks could fit expression data). If the match was not 
good they could question the validity of the pathway information. This means that the stable 
states distribution data can be used to assess the accuracy of the pathway information, 
although there is no method to improve this match. Here, we distinguish our method by 
providing a systematic technique to improve the match between experimental and computed 
steady states. 

Finally, it is worth noting that our method exploits global network information, i.e. network 
stability, whereas several other methods have relied on local network information, such as 
pairwise gene expression covariation [104,105], or response to perturbations of specific genes 
[108]. Hence, our method represents a good compromise between robustness in predictions 
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(provided by the utilisation of a general property which takes into account all the information 
contained in the network) and the amount of required experimental information. 

3.1.2 Results 
 
Principle of the approach 
The method proposed here enables us to generate optimized pruned networks from literature 
based on the knowledge of experimental stable gene expression. This approach involves 
searching for the optimal populations of solutions of pruned networks using an estimation of 
distribution algorithm (EDA). Indeed, in this way the method overcomes the limitations of 
classic optimisation techniques, which try to improve a single solution by exploring a limited 
portion of the solution space. This allows for the detection of alternative pruned network 
solutions caused by the multiplicity in network connectivity, thus in turn increasing the 
probability of achieving a global optimum which best fits the theoretical gene expression values 
to the experimental ones. It is worth noting that the full agreement between experimental and 
predicted gene expression values is limited by a lack of information pertaining to network 
connectivity.    

Our method is designed to infer the gene regulatory network which determines stable cellular 
phenotypes with known expressions values. Assuming that cellular phenotypes correspond with 
stable states as proposed by several authors [8,109,110], these cellular phenotypes should 
correspond with steady states of the underlying gene regulatory network. The list of 
differentially expressed genes provided by the expression data analysis is transformed to 
generate two Booleanized phenotypes. Following this, our method generates alternative 
configurations of the original network in order to select those with attractors, computed with a 
Boolean model, with the best fit to Booleanized phenotypes. This population of alternative 
configurations of the original raw network is improved by iteratively sampling the probability 
distribution of positive circuits. This is a necessary condition for multi-stability [111] and 
individual interactions by means of an EDA, a sort of evolutionary algorithm which is described 
in the next section. 
Estimation of distribution algorithm 

EDAs are evolutionary search algorithms which can be applied to high-dimensional optimisation 
problems and have been applied to several bioinformatic problems [112]. EDAs use a set of 
selected solutions to create a probabilistic model which guides the search/optimisation 
process. Compared to other evolutionary algorithms, they avoid premature convergence of 
solutions, due to the modeling of the probability distribution over many iterations. Within the 
population of solutions, different patterns of connectivity between genes may be represented 
as probabilities. This knowledge in terms of probability is used to sample new solutions. 

Depending on the complexity of the probabilistic models used to capture the 
interdependencies between the variables, EDAs can be divided into univariate and multivariate 
approaches. Univariate EDAs assume that all variables are independent and factorize the joint 
probability of the selected solutions as the product of univariate marginal probabilities. 
Multivariate EDAs factorize the joint probability distribution using statistics, and observing 
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more than one variable at a time. More specifically, it is the possibility of defining the 
interdependencies between variables which constitutes the main advantage of EDAs when 
compared with genetic algorithms. 

Here we propose an EDA to perform and iteratively prune a literature based-network using 
populations of alternative pruned networks which are scored and selected using expression 
data. These selected highest scored pruned networks are used to generate the next population 
of alternative pruned networks successively until the fulfillment of the stop criteria. For each 
iteration of the algorithm, the new population of pruned networks is generated by sampling the 
probability distribution of positive circuits and individual interactions found in the best pruned 
networks of the previous population. Each pruned network is scored by comparing their 
predicted steady states with a Booleanized representation of the experimental expression data. 
Given that the scoring of the pruned networks is based on stability, a property which rests on 
the global topology of the network makes it impossible for us to assess each interaction 
separately. In our method, the dependencies between variables (interactions) are captured 
using information relating to the network topology. Specifically, we treat all of the interactions 
belonging to positive circuits as a unique entity, considering that this entity is present if and 
only if all of its interactions are also present or, in other words, if the circuit is complete.  

In the expanded gene regulatory network (Figure 14), the contribution of each interaction to 
generate two steady states cannot be assessed separately due to the fact that all of these 
interactions are necessary to close the loop and produce a bi-stable behaviour. These 
interactions are not independent from the stability point of view. 

Algorithm steps 

In order to search for a set of alternative optimised pruned networks to explain the 
experimental expression data, the following algorithm was implemented in four steps (Figure 
16): 

1. Generation of an initial population of pruned networks. During this step the first 
population of pruned networks is generated through the random removal of 
interactions from the original literature-based network. The only constraint we 
introduce is that all networks are forced to include at least one positive circuit (a 
necessary condition for multi-stability). This positive circuit is randomly selected from 
the pool of all positive circuits in the original literature based network. The population 
size is defined by the user; a larger population size increases the likelihood of achieving 
global optimum, although it also increases computational expense and, in general, 
requires more iteration to converge with one or multiple solutions. 

2. Selection of best-scored pruned networks. Each pruned network is scored using the 
objective function (described below) whilst a defined number of best-scored pruned 
networks are also selected. The user can define this selection number. In the examples 
included in this dissertation, and in order to illustrate the method, we used a selection 
number which represented 50 % of the population size. 
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3. Termination criteria. The algorithm verifies the fulfillment of the stop criteria (defined 
by the user): either the maximum number of iterations is reached, or all the scores in 
the population of pruned networks are higher than a defined value (e.g. 80%). If these 
criteria are not fulfilled the algorithm proceeds by generating the next population of 
pruned networks. 

4. Generation of next pruned network population. The next population of pruned 
networks is created by sampling the probability distributions of each positive circuit and 
individual interaction; both of which are calculated from the best-scored pruned 
network selection. This makes it possible to decide whether or not circuits and 
individual interactions are included in the new pruned networks. In other words, taking 
into consideration the top scoring pruned networks, we assess the number of times that 
one specific positive circuit appears, creating a background for random generation of 
the next population. For example, assume that a hypothetical set of ten pruned 
networks has been selected due to their high scores, and that one specific circuit is 
present in seven of these ten pruned networks. In this case, the probability of the circuit 
is 0.7 and when we generate the next population of pruned networks, on average 70% 
of the new networks will have this circuit.  Once the circuits are sampled we follow the 
same sampling on individual interactions in order to model interactions which are not 
present in selected circuits.  Additionally, in order to retain the best scoring networks 
we implement elitism - pruned networks with the best scores within the subset of 
selected pruned networks are directly transferred to the next generation. The algorithm 
also introduces a certain amount of noise during the optimisation process by sampling 
the truncated probability of both circuits and interactions. These probability distribution 
values are truncated to 0.2, in the case of frequencies lower than 0.2, and to 0.8 in the 
case of frequencies higher than 0.8. This strategy avoids convergence (all pruned 
networks with or without a specific circuit or interaction) by chance, and enables 
efficient optimisation for smaller population sizes. 
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Figure 16 | Iterative network pruning using an estimation of distributions algorithm. 
 

The objective function 

The objective function assesses the match between predicted steady states and a Booleanized 
representation of the experimental expression data, assigning a score to each sampled pruned 
network (n). This score S uses the normalized Hamming distance (h) to compare N Boolean 
gene expression values (σ) between all the calculated steady states (α) of a pruned network and 
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the two known phenotypes (φ1 and φ2) defined by the expression data. In this way it is 
possible to identify the two best-matching phenotype/steady state couples (φα1 and φα2). 
Finally, the pruned network score (from 0 to 1) is defined as: 

   (  
(         )
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A possible extension of the current method could consider not only the existence of steady 
states, but also cyclic stable states, which would in turn require the existence of negative 
circuits. Such an extended method could be applied to gene regulatory network inference in 
biological systems with oscillatory behaviour, such as cell cycles. 

Validation of the method 
Resulting optimized GRNs can be assessed based on their capacity to explain experimental 
expression data which is known a priori and to predict unknown expression values. 
In order to validate the method we selected three illustrative examples, namely HL60-
neutrophils differentiation, EMT and MPC-osteoblast differentiation. We applied the algorithm 
to these examples using different training sets (different in size and composition) and 
compared the distribution of network scores generated by the algorithm with the distribution 
of scores corresponding to a population of randomly generated expression patterns. The 
underlying idea of this cross-correlation study was to demonstrate that our strategy, which 
aims to predict missing expression values (for different training and predicted sets) actually 
performs better than random predictions. Results demonstrated that the P-values for the 
similarity of the two distributions were very low for the three examples, thus stressing the 
statistical significance of predictions obtained by our algorithm. Figure 17 shows the cumulative 
frequency distributions of the scores for each example, thus illustrating that pruned networks 
tends to have steady states which efficiently describe cellular phenotypes. 
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Figure 17 | The cumulative frequency distribution of the scores, which indicate similarity to 
the experimental phenotypes, applying the algorithm for the HL60 (top), EMT (middle) and 
MPC (bottom) networks. The above plot shows that for example, 10% of the highest scoring 
expression patterns are above 0.47, 0.39, and 0.42 for HL60, EMT and MPC networks, 
respectively. The corresponding scores using the optimized networks increased to 0.94, 0.59 
and 0.52. Evidently, for less complex networks such as HL60, the prediction performance 
increases. The corresponding P-values for the Welch’s t-test of the hypothesis that both 
distributions have the same true mean are 2.2e_16, 2.812e_9 and 2.2e_16. 
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More specifically, 10% of the highest scoring random expression patterns had scores above 
0.47, 0.39 and 0.42 for HL60, EMT and MPC networks, respectively. The corresponding scores 
using the optimised networks increased to 0.94, 0.59 and 0.52, whilst the corresponding P-
values using the Welch’s t-test were 2.2e-16, 2.812e-9 and 2.2e-16. Results demonstrated that the 
p-values pertaining to the similarity of the two distributions were very low for the three 
examples, thus stressing the statistical significance of predictions obtained by our algorithm. 

3.1.3 Discussion 
Here we propose a method which enables us to contextualize literature based GRNs to specific 
biological conditions by exploiting experimental expression data corresponding to stable expression 
patterns. This approach, which searches for optimal populations of solutions of pruned networks, 
overcomes the limitations of classic optimisation techniques which try to improve a single solution by 
exploring a limited portion of the solution space. This allows for the detection of alternative pruned 
network solutions caused by the multiplicity in network connectivity. This multiplicity in turn increases 
the probability of achieving a global optimum which best fits theoretical gene expression values to the 
experimental ones. It is worth noting that the full agreement between experimental and predicted gene 
expression values is limited by a lack of information regarding network connectivity.    

In order to validate our method, we used optimized networks to predict missing expression values in a 
cross-correlation study using different sets of expression values to train the model and to be predicted 
in three selected examples (HL60-neutrophil differentiation, Epithelial-Mesenchymal transition, 
Mesodermal progenitor-Osteoblast differentiation). Results showed a consistency between predicted 
and experimentally validated gene expression values higher than expected by chance.  

In summary, the presented method constitutes a useful tool for the literature based contextualisation of 
GRNs. The resulting contextualized network can be used to curate experimental gene expression data, 
data analysis, modelling and prediction. A possible extension of the current method could consider not 
only the existence of stable steady states (fixed points), but also cyclic stable states, which would 
require the existence of negative circuits. Such an extended method could be applied to GRN inference 
in biological systems with oscillatory behaviour, such as cell cycles. 

3.1.4 Methods 
Computation of attractors 

In order to compute the attractors, we model the network as a dynamical system using a 
deterministic rule-based approach or, more specifically, a Boolean dynamical model. Other 
possible dynamic models include continuous models, which have the benefit of being easily 
compared to quantitative experimental data [113], and discrete models with more than two 
possible values [114]. However, since the continuous models would have to be studied 
numerically as opposed to analytically, the computation of attractors becomes computationally 
expensive. Furthermore, biological regulatory processes are such that the graph of rate of 
expression between a regulated gene as a function of its regulator, commonly exhibits a sharp 
sigmoid curve, which can be approximated to a Boolean switch-like behaviour [115].  

Within this Boolean dynamical model the network is created as a graph, which is directed and 
signed, in order to represent positive or negative regulation. Nodes represent genes whilst 
edges denote regulation. Each node has an associated value of “1” or “0”, encoding the 



64 
 

activation/presence or inactivation/absence respectively. The logic functions which encode the 
regulation for each specific node are represented using the disjunctive normal form 
representation, which uses only AND, OR and NOT operators [116]. Given the regulators 
(activators and inhibitors) for each node, the Boolean function is evaluated using rules 
proposed by [117]: if none of its inhibitors and at least one of its activators are active, then a 
gene becomes active; otherwise, the gene is inactive. Finally, we use a synchronous updating 
scheme  [118], whereby all genes in the network update their expression levels simultaneously 
in each time step. We use the synchronous updating scheme as it facilitates computation due 
to the smaller state space, and yet preserves the generic qualitative properties of the network 
[119]. An alternative updating scheme, which we did not investigate, would be the 
asynchronous scheme. This has a much larger state space, leading to a higher complexity of 
computing attractors [118]. With this synchronous updating scheme all of the genes are 
updated from one step to the next at the same time. 

Using the set of Boolean functions for each node and synchronous updating, we then computed 
the attractors of the network, i.e. the set of states towards which a dynamical system evolves 
over time. The attractors were computed using an efficient method to model the network 
dynamics using Reduced Order Binary Decision Diagrams (ROBDD or in short BDD). This was 
done due to their compact representation of Boolean functions and the ease of computing 
complex Boolean operations [117]. More details regarding attractor computation are included 
in the Supplementary information. 

Computation of circuits 

The Johnsons algorithm [120] was implemented as a perl program to detect all elementary 
feedback circuits in the network. A feedback circuit is a path in which the first and the last 
nodes are identical. A path is elementary if no node appears twice. A feedback circuit is 
elementary if no node other than the first and last appears twice. 

Cross-correlation study 

In our biological examples, and in order to statistically validate predicted expression values, we 
compared the distribution of network scores generated by our optimized pruned networks 
from multiple training sets, with the distribution of scores corresponding to a population of 
randomly generated expression patterns (Figure 6). This population of random expression 
patterns was generated by randomly assigning one of the following values for each gene in the 
network: up-regulated, down-regulated, invariant-up and invariant-down. These values 
correspond to genes that in a Booleanized model change from 0 to 1 and from 1 to 0 in the first 
two cases. These genes also remain invariant in 1 and 0 for the latter two cases, respectively. 
Once we had assigned values to all genes, expression patterns were scored using the 
Booleanized phenotypes from experimental data. This scoring scheme is identical to that used 
during the optimisation process, thus reflecting the match between the random expression 
pattern and the experimental Booleanized phenotypes. We repeated the process 10000 times, 
obtaining a population of random expression patterns with the respective scores. Following 
this, we compared the population with the population of optimised pruned networks (30 
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alternative pruned networks, which constitute the last population of optimized pruned 
networks after the last iteration of the algorithm) for 20 different and randomly selected 
training and predicted sets of genes. We used different training sets to perform this cross-
validation, since not all possible training sets are equally predictive due to the fact that not all 
genes are equally informative according to our method. For example, highly connected genes 
are, generally speaking, more informative than genes with few interactions. Preliminary tests 
showed that the optimal percentage of genes for which gene expression values can be 
predicted was 35%, based on the expression values of the remaining 65%. For instance, in the 
HL60 network, which includes 18 genes, 12 genes were used to predict the expression values of 
the remaining 6 genes for 20 different combinations of training and predicted genes. Following 
this, we scored the match between predictions and expression data using the same scoring 
process as in the pruning, although in this case all 18 genes were taken into consideration since 
some of the computed expression values of the training set genes could mismatch with 
experimental expression values. Therefore, we had a population of 600 pruned networks 
(30x20) with the corresponding scores. We then proceeded to compare this population with 
the randomly generated population of scored expression patterns. This comparison was made 
in order to show that gene expression predicted values were better than those predicted by 
chance.  

Further, we used the Welch’s t-test to estimate the similarity between the predicted and 
randomly generated populations of gene expression values scores. 

Examples: network reconstruction 

Cellular differentiation is a process central to our understanding of the nature of multicellular 
living systems, their stability in a changing environment, and how such systems fail in diseases. 
The relationship between attractors and cellular phenotypes has been proposed by several 
authors [109,110] [8]. Given that our method rests on the stability analysis of the system, we 
decided to work with cellular differentiation networks, adopting the assumption that cellular 
phenotypes correspond to steady states or attractors of gene regulatory networks which rule 
the differentiation process. 

We chose three cellular differentiation processes as examples to illustrate the method: (i) HL60-
neutrophil, (ii) mesodermal progenitor cells (MPCs) -osteoblast and (iii) the epithelial-
mesenchymal transition (EMT) gene regulatory network.  

The procedure for the network reconstruction was identical in the three examples and 
consisted of the following steps: a) obtaining a list of differentially expressed genes between 
two classes corresponding to long term expression patterns or cellular phenotypes. b) 
Connecting these genes using expression regulatory interactions from literature. c) Determining 
regulatory cores and the genes regulated by them. 

a) Obtaining a list of differentially expressed genes. 

HL60-neutrophils differentiation 
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The multipotent promyelocytic leukemia cell line HL60 was originally isolated by Dr. 
Steven Collins from an acute promyelocytic leukemia (APL) patient [121]. The HL60 
system was used by Huang et al. (2005) [8] to demonstrate the correspondence 
between cell fates and high-dimensional attractor states of the underlying network. In 
order to reconstruct the HL60-neutrophil differentiation gene regulatory network we 
used a set of genes composed of genes differentially expressed between HL60 cells 
(precursor or phenotype 1) and neutrophils (phenotype 2), differentiation induced by 
dimethyl sulfoxide (DMSO) in the experiment performed by F. Mollinedo and coworkers 
[122]. 

Epithelial-mesenchymal transition 

Epithelial cancer cells are capable of transiting from an epithelial to a mesenchymal 
state, a key step towards the formation of metastasis. The EMT master transcription 
regulator SNAI1 (human snail) triggers a transcriptional program leading the transition 
from epithelial to mesenchymal. In the experiment performed by [87] this transition was 
triggered by the induced expression of SNAI1. In the case of the EMT, we used a set of 
differentially expressed genes between epithelial and mesenchymal cells obtained from 
an experiment performed by Vetter et al. [87] whereby the transition was triggered by 
the induced expression of SNAI1.  

Mesodermal progenitor cells-osteoblast differentiation 

Single human bone marrow-derived mesodermal progenitor cells (MPCs) differentiate 
into osteoblasts, chondrocytes, adipocytes, myocytes and endothelial cells. In the 
experiment performed by Qi et al. [123], MPCs were induced to differentiate into 
osteoblasts, cells involved in bones formation, through the addition of dexamethasone, 
ascorbic acid and β-glycerophosphate to the cell cultures. 

A microarray analysis performed afterwards yielded a list of differentially expressed 
genes between osteoblasts and MPCs. 

b) Connecting differentially expressed genes using gene regulatory interactions described 
in literature. 

For this specific purpose we used the information contained in the ResNet mammalian 
database from Ariadne Genomics (http://www.ariadnegenomics.com/). The ResNet 
database includes biological relationships and associations, which have been extracted 
from the biomedical literature using Ariadne's MedScan technology [67,68]. MedScan 
processes sentences from PubMed abstracts and produces a set of regularized logical 
structures representing the meaning of each sentence. We selected only the 
interactions included in the ResNet mammalian database in the category of expression, 
thus indicating that the regulator changes the protein level of the target, by means of 
regulating its gene expression or protein stability. Following this step we obtained 3 raw 
networks which were reduced, removing irrelevant nodes for the stability analysis, i.e., 
nodes without incoming edges. 

http://www.ariadnegenomics.com/
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c) Determining regulatory cores and genes regulated by them.  

Given that only genes with incoming interactions are relevant to the stability analysis, 
we had to identify genes involved in regulatory feed-back loops, or circuits, as well as 
genes regulated by them. In order to accomplish the first task we looked for strongly 
connected components (SCCs) in the raw network using  Binom plugin [69] in Cytoscape 
[70]. Afterwards we obtained one regulatory core for each example consisting of the 
strongly connected components and the connections between them. These connections 
could simply just interactions between one SCC and another, or paths which involve 
interactions and genes. Figure 18 displays the regulatory core of the HL60-netrophils 
differentiation network. The activation of CR1 by IRF1 constitutes an example of a 
connection through a simple interaction. The path IL1B->S100A8->IL8 constitutes the 
other example, with a path connecting the two SCC.  Following this, we expanded these 
cores iteratively by initially adding neighbours regulated by the regulatory core until no 
further neighbors could be added. In the possible scenario of multiple disconnected 
regulatory cores, the network pruning and predictions were performed independently. 
After this step we obtained 3 gene regulatory networks (all nodes with incoming 
interactions). 

 

 

 

 
 
Figure 18 | Strongly connected components, regulatory core and the final HL60-neutrophils 
gene regulatory network. The regulatory core is composed of two different strongly connected 
components (with five and four genes each) and the connections between them. HL60-
neutrophils gene regulatory network is composed of this regulatory core and five more genes 
directly regulated by the regulatory core. 
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 HL60-neutrophils EMT MPC-osteoblast 

    
Number of nodes 18 46 67 
    
Number of edges 39 129 123 
Activations 37 92 72 
Inhibitions 2 37 51 

 

Table 2| Gene regulatory networks of three biological examples:  HL60-neutrophil differentiation 
network, Epithelial-mesenchymal transition network, MPC-osteoblast differentiation network. 
Information about number of nodes and edges in table XXX. 

HL60-neutrophil differentiation network  

We were able to reconstruct a gene regulatory network with 18 genes and 38 interactions 
representing positive or negative effect over gene expression (see Figure 2A and 
Supplementary file II). The regulatory core includes two SCC. 

Epithelial-mesenchymal transition network 

In this case we obtained a gene regulatory network with 46 genes and 129 interactions 
representing a positive or negative effect over gene expression (see Figure 2B and 
Supplementary file II). The regulatory core includes one single SCC. 

Mesodermal progenitor cells-osteoblast differentiation network 

The resulting network in this case includes 67 genes and 123 interactions representing positive 
or negative effects over gene expression (see Figure 2C and Supplementary file II). The 
regulatory core includes four SCC. 
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Figure 19 | Gene regulatory networks of three biological examples. 3A) HL60-neutrophil 
differentiation network, 3B) Epithelial-mesenchymal transition network, 3C) MPC-osteoblast 
differentiation network. 

 

 

3.2 Detecting Cellular Reprogramming Determinants by Differential Stability Analysis of Gene 
Regulatory Networks 
This section refers to the work published in BMC Systems Biology in 2013 entitled “Detecting 
Cellular Reprogramming Determinants by Differential Stability Analysis of Gene Regulatory 
Networks”. In addition, it also refers to the unpublished work on the astrocytes to neural 
progenitor cells (NPCs) dedifferentiation as experimental validation of the described 
methodology to design recipes for cellular reprogramming. The experimental validation 
constitutes a collaborative effort between three parts: Department of Neuroscience Institute of 
Psychiatry King’s College London (Dr. Angela Bithell, Jannis Kalkitsas and Prof. Dr. Noel J 
Buckley), contributing with the perturbation experiments performance and analysis, The 
Experimental Neurobiology group, Luxembourg Centre for Systems Biomedicine (LCSB), 
University of Luxembourg (Dr. Alessandro Michelucci), contributing with the microarray 
experiments, and the Computational Biology group, Luxembourg Centre for Systems 
Biomedicine (LCSB), University of Luxembourg, contributing with the computational modelling 
and analysis [20]. 

3.2.1 Introduction 
During classical cellular differentiation cells lose phenotypic plasticity until they become fully 
differentiated. Certain differentiated cells have the remarkable ability to be converted into 
different cell types via a process termed developmental redirection or cellular reprogramming. 
Both processes are carefully orchestrated by the activation and repression of specific sets of 
genes.  Knowledge relating to these activations and repressions can be integrated as networks 
of interactions, thus allowing us to describe biological processes in general and transitions 
between network states and cellular reprogramming in particular, as transitions between stable 
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steady states (termed as attractors) of these networks. The relationship between cellular 
phenotypes and attractors has been proposed by several authors [8,109,110], whilst the last 
few years have witnessed the experimental validation of a number of examples showing that 
only few genes can induce transitions between cellular phenotypes [124,125,126]. The main 
motivation of this work is the identification of combinations of key genes, termed 
reprogramming determinants (RDs), which are effective in such transitions when perturbed and 
therefore with practical applications for cellular reprogramming. Although there are a number 
of approaches in the literature which can help to predict effective cocktails of transcription 
factors for cellular reprogramming [127,128] they either require a list of candidate genes to 
narrow down the combinatorial problem or are based on computational brute force to simulate 
network response under perturbation of combinations of genes. Indeed, the latter strategy 
becomes prohibitive when increasing the number of genes in the network. 

Here we present a computational method with which to identify, without preliminary selection 
of candidate genes, reduced subsets of reprogramming determinant genes which can induce 
transitions between cellular phenotypes when perturbed. The method relies on the expression 
profiles of two stable cellular phenotypes and a topological analysis of differential stability 
elements of the gene regulatory network. It represents a useful framework which can assist 
researchers in the field of cellular reprogramming, particularly with regard to the design of 
experimental strategies. It has potential applications both in regenerative medicine, disease 
modelling and basic research. 

3.2.2 Results 
The method presented was conceived to design recipes for cellular reprogramming without the 
need for a prior list of candidates. This was achieved through the combination of expression 
profiles, network topology and stability analysis. The algorithm dramatically reduces the huge 
search space constituted by all possible combinations of genes by focussing on genes involved 
in the stability of the gene regulatory network (GRN). It rests on experimental expression 
profiles and the identification of differential stability elements for two given cellular 
phenotypes involved in a specific cellular transition. Such identification allows for 
destabilisation of the initial cell transcriptional program and stabilisation of the final one by 
perturbing molecular switches which define the epigenetic barrier between two given 
attractors. Stable cellular phenotypes are part of a large space of all available cellular states. At 
the transcriptional level, they represent stable expression patterns or transcriptional programs. 
The existence of multiple attractors in a GRN requires the presence of positive feedback loops 
or positive circuits (including an even number of inhibitions) [111]. However, not all positive 
circuits in the network are involved in network multistability; those whose constitutive genes 
cannot be in a coherent stable state according to the connectivity of the circuit (due to the 
connectivity of the circuit with the rest of the network) are not contributing to the stabilisation 
of the cellular program as they are not stabilized by it themselves. Moreover, there are some 
positive circuits which contribute to the stabilisation of one particular attractor but not 
another. Our method relies precisely on the identification of these differential stability 
elements between two given attractors and the design of perturbation protocols able to target 
all of them. We termed this subset of positive circuits differentially expressed positive circuits 
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(DEPCs), given that all of their constitutive genes change their expression values between two 
given attractors of the GRN. At the same time, these expression values should match with two 
attractors of the circuit when considered in isolation, i.e., the circuit is stable itself so it can 
stabilize other elements in the network. Indeed, experiments have shown that few driver genes 
are able to lead cellular systems from one stable phenotype to another [124,125,126]. This fact 
prompted us to add a final step to look for minimal combinations of reprogramming 
determinant genes capable of directly or indirectly targeting all DEPCs, given that our method 
also identified suboptimal (in number) protocols of perturbation. Analysis of a large number of 
randomly generated gene regulatory networks showed that these minimal sets of driver genes 
were always able to trigger transitions between all pairs of attractors. Further, we selected five 
different biological examples of cellular reprogramming in order to validate the applicability of 
our method. Moreover, we applied our method and experimentally validated a predicted recipe 
to dedifferentiate astrocytes to NPC. A Double inhibition of a combination of predicted 
reprogramming determinants was demonstrated as being capable of inducing a cellular 
transition from mature (non-proliferative) astrocytes to a NPC-like phenotype in morphology, 
expression of proliferation markers and epigenetic signature. This validated recipe has no 
previous references in the literature and constitutes a novel strategy used to induce this cellular 
transition. 

These examples provide an experimental validation of the identified sets of RD genes as 
effective inducers of transitions between cellular phenotypes. The first five biological examples 
essentially re-discover known recipes and illustrate that our methodology is generally 
applicable to different cellular systems.  The astrocytes dedifferentiation example constitutes 
the experimental validation of a novel predicted recipe and nicely illustrates that our strategy 
does not rest on previous knowledge regarding driver genes or reprogramming determinants 
but can find novel effective combinations when applied blindly to a given cellular system. 

Description of the approach 

Cellular phenotypes are characterized by stable expression programs at the transcriptional 
level. The underlying GRN can be conceptualised and described as a Waddington landscape 
[13,14,15], where cellular phenotypes corresponding to network attractors are represented as 
wells separated by barriers (see figure 20). These barriers are established by those network 
elements which stabilise GRNs in their attractors. 
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Figure 20| Waddington’s landscape versus network based representation. a) Cell 
transcriptional program landscape representing two attractors and the epigenetic barrier 
between them. This conceptual figure represents a cell stabilized in an initial cellular phenotype 
and how a hypothetical perturbation can destabilize the cellular program and make cells exceed 
the barrier and fall down in a final cellular phenotype. This cellular reprogramming is 
represented as a blue arrow from the initial to the final attractor. b) Cellular reprogramming as 
transitions between network states. Differentially expressed positive circuits (DEPCs) are 
perturbed to induce the transition from Attractor 1 to Attractor 2 passing by a transient state. 
This transient state can be considered as a “short” term changing expression pattern until the 
system reaches an attractor. Regular arrows represent activation and T-arrows represent 
inhibitions. Blue and red nodes represent inactive and active genes respectively in attractors. 
Violet nodes represent transient states.  

The method presented here takes a GRN and the expression profiles of the cellular phenotypes 
involved in the desired transition as input, and gives minimal combinations of RDs as an output. 
Therefore, the appropriate perturbation of these genes results in the cellular transition. Since 
stable cellular phenotypes can be considered as attractors of GRNs, cell fate and cellular 
reprogramming involve transitions between these attractors, and as such our method looks for 
combinations of genes able to destabilize a specific initial attractor and stabilize the final one in 
response to the appropriate perturbation. This strategy allows us to narrow down a huge 
combinatorial searching problem to a set of minimal combinations which constitutes 
alternative reprogramming protocols and the output of our method. The method can be 
described in three steps (see Figure 21: 1) computing GRN attractors 2) detecting DEPCs 3) 
obtaining minimal combinations of RD genes targeting the DEPCs which (de-)stabilizes the 
initial and final attractor states, respectively. 
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Figure 21 | Differential stability analysis: recipes for cellular reprogramming in three steps. a) 
Computing attractors. Network stability is analysed assuming a Boolean model and a 
synchronous updating scheme. Genes in “1” are active or “ON” and genes in “0” are inactive or 
“OFF” and are represented in grey and white respectively. b) Detecting DEPCs. A positive circuit 
is considered a DEPC if all of its constitutive genes change their expression values between two 
given attractors of the GRN. c) Obtaining minimal combinations of reprogramming 
determinants. Both Circuit 1 and Circuit 2 are DEPCs, although Circuit 2 is regulated by Circuit 1; 
any perturbation of Circuit 1 which is capable of moving it to a different attractor is also going 
to change the state of Circuit 2. Simulations showed that genes in Circuit 2 did not have to be 
perturbed to achieve transition from Attractor 2 to Attractor 3. Therefore, minimal 
combinations of reprogramming determinants are any individual gene of Circuit 1, i.e., genes 
“a”, “b” or “c”. Regular arrows represent activation and T-arrows represent inhibitions. 
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1) Computing attractors of the network: Attractors are calculated with a Boolean model of the 
GRN where values of “1” and “0” represent up and down regulated genes respectively, and 
assuming an inhibitory dominant rule (see methods for details). 

2) Detecting DEPCs: At first, all positive circuits are detected (see methods section for details). 
Indeed, information about their constitutive genes as well as the expression profiles of the 
attractors involved in the cellular transition (initial and final) are combined, yielding a list of 
DEPCs. For a positive circuit to be DEPC it hast to fulfill two requirements: a) all of their 
constitutive genes change between the two attractors (i.e., they are differentially expressed), 
and b) the states of the circuit in both the initial and final phenotypes should match attractors 
of the circuit when considered in isolation; (i.e., only circuits in a stable state are considered as 
differential stability elements). 

3) Obtaining minimal combinations of RD genes targeting all DEPCs. We looked for the minimal 
combination of genes which were able to directly or indirectly target all DEPCs. For this purpose 
the algorithm initially looked for combinations of genes with the requirement that there should 
be at least one gene for each DEPCs (see methods). This strategy leads to combinations with 
genes belonging to multiple DEPCs with the consequent reduction of the required number of 
genes. Following this, and as a final step, the algorithm determined which DEPCs did not have 
to be directly perturbed (see Figure 21c) by simulating the network response (according to the 
model assumed to compute attractors) under perturbation of the minimal combination of 
genes but the gene belonging to specific DEPCs one at a time. Through this we were able to 
reduce the final number of RDs removing genes targeting DEPCs which are regulated by others. 

Validation of the approach in 1000 randomly generated networks 

In order to validate this strategy, we applied our method to 1000 randomly generated and 
different sized networks, but with the same topological properties of a well-characterized gene 
regulatory network of E. coli. As a result of our analysis we obtained the following conclusions: 
a) Between any two given attractors we always obtained at least one DEPC; and b) perturbation 
of minimal combinations of genes which include DEPCs between pairs of attractors always 
succeeded triggering transitions between these states (see Figure 1 as example). Further, we 
calculated the percentage of RD genes which can trigger transitions between all calculated 
attractors. As is shown in Figure 3, interestingly, on average only 14% of the genes from the 
whole network was sufficient to bring about these transitions. In addition, on average, a 
maximum of 4 genes and a minimum of 1 gene was sufficient to bring about transitions from 
one attractor to another. 

Application of the approach to five biological examples with effective recipes for 
transdifferentiation known from literature 

We demonstrated the efficacy and the general applicability of the current protocol using five 
different biological examples of cellular reprogramming. These examples provided an 
experimental confirmation of the identified combinations of RD genes as effective inducers of 
transitions between stable cellular phenotypes. The T-helper and EMT examples were based on 
previously published GRNs [72,113]. In the latter case we expanded the original network with 
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the addition of a novel double-negative feed-back with miRNA34A, which has been recently 
published [129]. For the remaining examples (HL60, iHEP, iCM) we used text-mining techniques 
to construct gene regulatory networks by inferring gene-gene associations between genes 
found by previous studies to be differentially expressed [9,10,122]. Consequently, these 
networks were pruned in order to maximize matching between gene expression profiles and 
gene states found by our network dynamics simulation. This procedure allowed us to 
contextualize the networks to the biological conditions under which the experiments were 
performed [130]. More details about the network reconstruction and contextualisation 
processes are included in the methods section below. Detected driver genes and transitions 
between known phenotypes are shown in Table 1 for each example.  

T-helper 

T lymphocytes are classified as either T helper cells or T cytotoxic cells. T helper cells take part 
in cell- and antibody-mediated immune responses and are sub-divided into Th0 (precursor) and 
effector Th1, Th2, Th17 and Treg cells. A T-helper differentiation network determining the fate 
of the lineage has been proposed previously [Mendoza 2010]. Here we focussed on the 
transition between Th2 and Th1 phenotypes. We detected T-bet and GATA3 as independent 
RDs for Th2-Th1 (see Figure 5a) and Th1-Th2 respectively. These predictions are in full 
agreement with previously published experiments [131] [132,133]. 

 
Figure 22 | Simulated perturbations performed assuming a Boolean model succeeded in 
triggering the transition. These results are consistent with previously published experimental 
perturbations. Genes in “ON” and “OFF” are represented in grey and white respectively. 
Regular arrows represent activation and T-arrows represent inhibitions. Perturbed DEPCs are 
coloured in red. 
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EMT 

A transient phenomenon referred to as epithelial to mesenchymal transition (EMT) occurs 
during regular embryonic development and as a part of the metastatic cascade initiated by the 
breakdown of epithelial cell homeostasis in carcinomas. During the Epithelial to mesenchymal 
transition (EMT), cells change their genetic and transcriptomic program, thus leading to 
phenotypic and functional alterations. These alterations include the loss of epithelial features 
like cell-cell adhesions and cell polarity and the gain of cell motility and mesenchymal and stem-
like properties. EMT can be initiated by multiple pathways converging in the activation of EMT 
inducers. The EMT example shows that SNAI1 is a triggering gene for the transition from 
epithelial to mesenchymal (see Figure 5b), which has been validated by experimental 
perturbation of this gene [72].  

 
Figure 23 | Simulated perturbations performed assuming a Boolean model succeeded in 
triggering the transition. These results are consistent with previously published experimental 
perturbations. Genes in “ON” and “OFF” are represented in grey and white respectively. 
Regular arrows represent activation and T-arrows represent inhibitions. Perturbed DEPCs are 
coloured in red. 
 

HL60 

The multipotent promyelocytic leukemia cell line HL60 was originally isolated by Dr. Steven 
Collins from an acute promyelocytic leukemia (APL) patient [121]. The multipotent 
promyelocytic leukemia cell line HL60 can be stimulated, thus differentiating it into neutrophils 
using different chemical agents including granulocyte macrophage colony-stimulating factor 
(GM-CSF)[134], DMSO[135], all-trans-retinoic acid (ATRA) [136], 1,25-dihydroxyvitamin 
D3[137], and 12-O-tetradecanoylphorbol 13-acetate (TPA)[138]. Nevertheless, the way in which 
these chemical agents act at the gene regulatory level to induce the transition remains a 
relevant question when it comes to understanding the underlying mechanisms of 
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differentiation or reprogramming. Applying our method to the HL60 example allowed us to 
detect IRF1 as a triggering gene when it comes to inducing the differentiation from HL60 to 
neutrophil (see Figure 5c). This result is consistent with previous experimental findings [139].  

 
Figure 24 | Simulated perturbations performed assuming a Boolean model succeeded in 
triggering the transition. These results are consistent with previously published experimental 
perturbations. Genes in “ON” and “OFF” are represented in grey and white respectively. 
Regular arrows represent activation and T-arrows represent inhibitions. Perturbed DEPCs are 
coloured in red. 
 

iHEP 

Normally, hepatocytes differentiate from hepatic progenitor cells to form the liver during 
regular development. However, hepatic programs can also be activated in different cells under 
particular stimuli or fusion with hepatocytes. The transition from human fibroblasts to 
hepatocyte-like cells (iHEP) induced by the perturbation of specific combinations of 
transcription factors has been previously reported by Sekiya & Suzuki, 2011 [140]. In the iHEP 
example we found several minimal combinations capable of triggering the transition from 
fibroblast to hepatocyte. Among these minimal combinations, the combined perturbation 
(activation) of HNF4A and FOXA2 has been experimentally validated [140] (see Figure 5d).  
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Figure 25 | Simulated perturbations performed assuming a Boolean model succeeded in 
triggering the transition. These results are consistent with previously published experimental 
perturbations. Genes in “ON” and “OFF” are represented in grey and white respectively. 
Regular arrows represent activation and T-arrows represent inhibitions. Perturbed DEPCs are 
coloured in red. 
 

iCM 

In the postnatal heart during the regular development, a large pool of existing fibroblasts was 
directly reprogrammed to an alternative fate as cardiomyocytes. To date, no single master 
regulator of direct cardiac reprogramming has been identified, although the combined 
perturbation of three developmental transcription factors (GATA4, MEF2C and TBX5 ) has been 
proposed and validated experimentally as a rapid and efficient way in which to induce this 
transition [10]. Our method found that when GATA4 and MEF2C are perturbed separately or in 
combination (see Figure 5e) they are able to trigger the transition from fibroblast to induced 
cardiomyocyte (iCM), thus indicating the important role played by these genes in this cellular 
transition. This finding is partially consistent with the experiment performed in [10], where 
GATA4 and METF2C in combination with TBX5 were simultaneously perturbed to achieve this 
cellular transition. Thus, our results propose the hypothesis that either GATA4 or METF2C are 
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individually capable of triggering this transition. To our knowledge, this prediction has not been 
experimentally validated in fibroblast-cardiomyocyte transition, although it has been reported 
that GATA4 is capable of reprogramming mesenchymal stromal and P19 cells [141] into 
cardiomyocytes [142,143].  

 
Figure 26 |Simulated perturbations performed assuming a Boolean model succeeded in 
triggering the transition. These results are consistent with previously published experimental 
perturbations. Genes in “ON” and “OFF” are represented by grey and white respectively. 
Regular arrows represent activation and T-arrows represent inhibitions. Perturbed DEPCs are 
coloured in red. 
 
These examples nicely illustrate the experimental validation of our predicted driver genes, and 
therefore the utility of our method.  
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Example Transitions DEPFCs 
Minimal combinations of reprogramming 

determinant genes 

T-helper Th2-Th1 4 GATA3, T-bet 

EMT 
Epithelial-
Mesenchymal 

12 SNAI1, ZEB2, MIR203 

HL60 HL60-Neutrophil 1 IL1B, CASP1, IRF1 

iHEP Fibroblast-Hepatocyte 2 

FOXA2:PPARGC1A, NR5A2:UCP2, 
HNF1A:PPARGC1A, HNF4A:NR5A2, 
NR5A2:PPARGC1A, FOXA2:HNF4A, 
HNF1A:UCP2, AGT:NR5A2, AGT:FOXA2, 
FOXA2:UCP2, AGT:HNF1A, HNF1A:HNF4A 

iCM 
Fibroblast-
Cardiomyocyte 

2 GATA4, MEF2C 

 

 

Table 3| Minimal combinations of reprogramming determinant genes obtained after the 
application of our method in five different biological examples for specific transition between 
attractors corresponding to cellular phenotypes. Alternative combinations of reprogramming 
determinant genes are separated by commas. Combinations of reprogramming determinants 
genes perturbed in Figures 22,23, 24, 25 and 26 are in bold. 

 

Networks Genes miRNAs Interactions Activations Inhibitions Positive 
circuits 

Negative 
circuits 

T-helper 36 4 71 47 24 108 108 

EMT 4 3 17 2 15 12 0 

HL60 18 1 30 28 2 2 0 

iHEP 26 0 57 47 10 12 18 

iCM 29 0 37 31 6 2 0 
 

 

Table 4| Number of genes, miRNA interactions and circuits of the five biological examples are 
shown. 
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T-helper EMT HL60 iHEP iCM 

FOXP3 -> MIR-155 

IFN-G -> MIR-145 

MIR-145-| STAT1 

MIR-146A -| IRAK 

MIR-155 -| IFN-GR 

MIR-155 -| SOCS1 

MIR-23A -| IL-6R 

TGFB -> MIR-146A 

TGFB -> MIR-155 

TGFB -> MIR-23A 

 

MIR200 -| ZEB1 

MIR200 -| ZEB2 

MIR203 -| SNAI1 

MIR203 -| ZEB2 

MIR34 -| SNAI1 

SNAI1 -| MIR200 

SNAI1 -| MIR203 

SNAI1 -| MIR34 

ZEB1 -| MIR200 

ZEB1 -| MIR203 

ZEB2 -| MIR200 

ZEB2 -| MIR203 

MIR-146A -| CXCR4 

MIR-146A -| IL8 

None None 

 

Table 5| Interactions with miRNAs included in the examples. 

 
Experimental validation of a novel recipe to dedifferentiate astrocytes to neural stem cells. 

During central nervous system development neural stem cells (NSCs) differentiate to neural 
progenitor cells (NPCs), which in turn differentiate to neurons and glia (astrocytes and 
oligodendrocytes). However, in early postnatal periods, parenchymal astrocytes are able to re-
acquire the potential and characteristics of NPCs following injury. This raises the question of 
how this potential acquisition is regulated and whether mature astrocytes could represent a 
potential cell source to replace lost neurons.  

We studied reprogramming processes of a system composed of CTX12 NPCs and two different 
astrocyte populations differentiated from CTX12 using two different protocols. We called them 
FBS-astrocytes and BMP4-astrocytes. Indeed, they are morphologically and functionally 
different, with FBS-astrocytes being less mature (phenotype closer to NPCs) and sensitive to 
FGF2 and EGF, which induces the dedifferentiation to NPCs. In contrast, BMP4-astrocytes are 
more mature and cannot be dedifferentiated by adding FGF2 and EGF to the culture media. We 
performed microarray experiments comparing these three cell types and reconstructed a GRN 
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connecting DEGs by means of links representing interactions between expression values. These 
interactions can be different in nature, including promotor binding interactions (with positive or 
negative effect), miRNA effects and direct regulations (including protein modifications). 
Assuming a Boolean model, we optimised the match between computed and experimental 
attractors using the network contextualisation algorithm briefly described in the methods of 
this section and fully detailed in Section 3.1 of this dissertation. The resulting contextualized 
network has three attractors corresponding with the three cellular phenotypes. We then 
proceeded to detect the reprogramming determinants, applying our strategy to this 
contextualized network for all possible transitions, namely, differentiation from CTX12 to FBS-
astrocytes and to BMP4-astrocytes, the two corresponding dedifferentiation and the 
transdifferentiation from BMP4- to FBS- astrocytes and vice versa. Experimental testing was 
used for four combinations of predicted reprogramming determinants corresponding to four 
different cellular transitions, namely BMP4- and FBS- astrocytes’ dedifferentiation and BMP4- 
and FBS- astrocytes’ transdifferentiation in both senses (see Table 6). 

 

Transitions 
Minimal combinations of 
reprogramming determinants 

Action required 

CTX12 -> Astrocytes-BMP4 
HMOX1:VEGFA 
VEGFA:TP53 

Activation: Activation 
Activation: Inhibition 

CTX12 -> Astrocytes-FBS 
HMOX1 
TP53 

Activation 
Inhibition 

Astrocytes-BMP4 -> CTX12 
HMOX1:VEGFA 
VEGFA:TP53 

Inhibition: Inhibition 
Inhibition: Activation 

Astrocytes-FBS -> CTX12 
HMOX1 
TP53 

Inhibition 
Activation 

Astrocytes-BMP4 -> Astrocytes-FBS 
VGFA 
TIMP2 

Inhibition 
Activation 

Astrocytes-FBS -> Astrocytes-BMP4 
VGFA 
TIMP2 

Activation 
Inhibition 

 

 
Table 6| Predicted reprogramming determinant with the corresponding required action 
 

As a result of these experiments we found that the dual selective inhibition of HMOX1 and 
VEGFA using SnPP and SU5416 respectively together with a permissive media with FGF2 and 
EGF led to a robust dedifferentiation of ‘mature’ (non-proliferative) astrocytes. This was in 
parallel with underlying transcriptional and epigenetic changes appropriate for this transition 
(see Figure 27). This conclusion rests on the expression of specific pluripotency/NPC and 
astrocytes markers (see table 6) as well as on the evaluation of the proliferation rate (2-tailed 
student’s t-test, equal variance, p<0.05 n=8) of cells grown in permissive media with and 
without a reprogramming determinants inhibitor. This permissive media alone (without the 
inhibition of HMOX1 and VEGFA) showed in controls to be incapable of causing this 
differentiation by itself (unlike in the case of FBS-astrocytes). Finally, in order to asses 
epigenetic changes that reprogramming could confer to the resulting population of cells, a 
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ChIP-qPCR experiment was performed in order to analyse histone marks associated with 
activate chromatin (H3K4me3, H3K9ac) and repressive chromatin (H3K27me3) at promotor 
regions of two genes, CCNB1 and SOX2. Despite thorough analysis of the data, it corresponds 
only to a single biological replicate and more replication is required. Indeed, the results suggest 
a more open chromatin configuration when cells are grown in the presence of HMOX1 and 
VEGFA inhibitors (see Figure 27). 

 
Figure 27| Dedifferentiation of BMP4-astrocytes is accompanied by epigenetic changes. 
Graphs show enrichment of activating (H3K4me3, H3K9ac) and repressive (H3K27me3) histone 
marks relative to H3 with driver (Day 9:BMP4-astrocytes:Sn+SU:DD) conditions at D9. 
Abbreviations: SS, SnPP+SU5416;D, DMSO control. Data are the average from technical 
triplicates in a single biological replicate (n=1). Error bars show standard deviations. 
 

The other three experimental tests failed or showed large variability, possibly due to both the 
incompleteness of the GRN and/or the assumption of incorrect regulatory mechanisms for 
specific genes in the network. The model could be improved using, for instance, epigenetic 
information or time series to elucidate details about regulatory mechanisms or to infer missing 
interactions. 

Condition Ki67 Uhrf1 Thrsp Aqp4 Gfap 

Day 0: CTX12 1,00 1,00 1,00 1,00 1,00 

Day 3: BMP4-astrocytes 0,01 0,05 17,88 1501,98 2471,33 

Day 6: BMP4-astrocytes:DD* 0,20 0,34 9,11 1314,05 1227,60 
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Day 6: BMP4-astrocytes:DMSO 0,00 0,07 11,22 1020,57 605,93 

Day 6:BMP4_astrocytes:Sn+SU 0,00 0,06 11,24 667,39 396,68 

Day 9:BMP4-astrocytes:DMSO:DD 0,43 0,42 6,95 1504,72 992,59 

Day 9:BMP4-astrocytes:Sn+SU:DD 0,77 0,61 5,30 381,03 175,37 
 

 
Table 7| Changes in astrocytes and NPC-specific gene expression in BMP4 to NPC transitions. 
Samples were analysed for astrocyte specific markers (Thrsp, Aqp4 and Gfap) and 
NPC/proliferation specific markers (Uhrf and mKi67). Expression of Uhrf1 and Ki67 was 
significantly higher on Day 9: BMP4-astrocytes: SnPP+SU:DD compared to Day 3:BMP4 
astrocytes (p<0.05 n=3, equal variance student’s t-text). 
 

Thus, our results proposed the hypothesis that the double inhibition of HMOX1 and VEGFA 
should induce a change in the transcriptional program when perturbed, thus leading to a 
CTX12-like cellular phenotype. Indeed, the experimental validation supports this prediction, 
indicating a cellular transition toward the desired phenotype (NPC CTX12). Figure 28 shows a 
schematic representation of the dedifferentiation experiment from a population of astrocytes 
previously differentiated using BMP4. The addition of HMOX1 and VEGFA inhibitors to a 
permissive media with EGF and FGF2 induces a cellular transition to NPC-like cells. 
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Figure 28| Schematic representation of the experiment with the successful dedifferentiation 
from astrocytes to neural progenitor cells. GFAP, Ki67 and DAPI are markers for astrocytes, 
proliferation and nucleus respectively. The remaining cell (bottom-right) merges all markers 
together. 
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3.2.3 Discussion 
The method provides a strategy through which to induce transitions between cellular 
phenotypes. This makes it possible to explore the stability landscape, eventually with 
alternative combinations of perturbed genes with the subsequent differences in trajectories. 
This strategy directly addresses three major problems in cell reprogramming: a) Safety in the 
reprogramming process, avoiding undesired turnings which often lead to cancer; among the 
alternative solutions, some combinations of RD genes inducing risky transitions too close to a 
tumorigenic profile can be avoided and safe transitions selected [144]; b) Efficiency. The 
reduced set of alternative experimentally testable solutions makes it possible to find more 
efficient strategies through which to induce cellular transitions; c) The potentially incomplete 
reprogramming or the appearance of aberrant phenotypes (for instance, no effective 
equivalence between iPSC and ESC). Such alternative phenotypes could be detected as 
additional attractors in the stability landscape and be taken into account so as to obtain the 
desired transitions. 

DEPC detection relies on attractor computation assuming a Boolean model, which is relatively 
simple and does not require parameter selection for a given topology. However, although this 
model does not take into account detailed cellular information, such as the strength of 
regulatory interactions and continuous gene expression values, it does preserve the regulatory 
logic which rules the flow of information in gene regulatory networks. This in turn makes it 
possible to roughly describe stable cellular phenotypes and to detect combinations of genes 
triggering transitions between them. In cellular reprogramming, genes of interests are 
predominantly transcription differentially regulated transcription factors (TFs) (i.e., either they 
are up- or down- regulated). Moreover, while maintaining the differentiated stable phenotypes, 
the expression levels of these TFs are kept stable. Even though multiple genes show dynamic 
changes during these transitions, most of them are involved in metabolic regulations, cell 
cycles, circadian rhythms, and various cellular responses to environmental stimuli. As a result, 
the detailed expression levels of such genes will not affect the transitions and hence, do not 
need to be considered. In addition, including such detailed information prohibitively increases 
computational requirements. It can also dangerously generate large numbers of false-positives 
which are only coincidental to cellular states due to experimental timing and conditions. Given 
that we are not interested in a detailed description of the regulatory mechanism we consider a 
Boolean model suitable for our purposes, but not for the elucidation of transient states. As a 
limitation of our method we should mention that transitions involving cyclic stable states are 
not yet considered but are subject to possible extension of the method presented here.  
Modelling transitions between cyclic attractors could be applied to identify driver genes in 
biological systems with oscillatory behaviour. 

Regenerative medicine, where the goal is to replace or regenerate damaged or lost human 
cells, is a rapidly growing research area [145]. However, current therapies which focus on tissue 
regeneration are significantly impeded by our limited understanding of how to reprogram cells 
towards specific cellular populations. Hence, cellular reprogramming, including the conversion 
of one differentiated cell type to another (trans-differentiation) or to a more immature cell 
(dedifferentiation), has a high relevance for regenerative medicine and disease modelling [146].  
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Indeed, there is an increasing amount of experimental evidence to show that only a few key 
genes, known as reprogramming determinants (RDs), are required for the orchestration of the 
complex regulatory events which occur during reprogramming. Although substantial progress 
has been made in developing experimental reprogramming techniques, to date there is no 
protocol which is capable of systematically predicting combinations of RDs which can trigger 
transitions or of tackling the problem of low reprogramming efficiency and fidelity.  

Here we provide a framework which acts as a guide when it comes to designing protocols to 
induce transitions between cellular phenotypes, providing effective cellular reprogramming 
protocols (including protocols for differentiation, dedifferentiation, trans-differentiation and 
pluripotency recovery). This work thus represents a major potential advance in the way we 
uncover RDs and the pathways involved in cellular reprogramming, with enormous scope for 
regenerative medicine across diverse tissue- and cell-types. The general applicability of our 
method was demonstrated using five illustrative examples corresponding with different cellular 
systems. In addition, its capacity to predict novel reprogramming recipes was demonstrated by 
the experimental validation of predictions performed on astrocytes induced to dedifferentiate 
in an in vitro system. 

3.2.3 Methods 
Randomly generated networks 

One thousand sub-networks of size 20-40 genes were randomly extracted from the E. coli K12 
transcriptional network of RegulonDB (http://regulondb.ccg.unam.mx/) using GeneNetWeaver  
[147] using greedy neighbour selection and including self-regulations. These sub-networks, 
preserving the topological features of the original K12 transcriptional network, were used as 
synthetic networks for validation of the current hypothesis. 

Network reconstruction for the five examples with effective recipes for transdifferentiation 
known from literature and the BMP4-astrocytes dedifferentiation example GRN 

We selected five biological examples to illustrate the applicability and utility of the method. T-
helper and EMT examples are based on previously published networks. For the remaining three 
examples, i.e., HL60, iHEP and iCM, we reconstructed our own GRN. The main topological 
properties of the five final networks are shown in Table 2. References for the interactions of 
each case are included in the supplementary information. The procedure for the network 
reconstruction consisted of the following steps:  

1. Obtaining a list of differentially expressed networks. In order to reconstruct the HL60-
neutrophil differentiation gene regulatory network we used a set of genes composed of 
genes differentially expressed between HL60 cells and neutrophils, differentiation 
induced by dimethyl sulfoxide (DMSO) in the experiment performed by F. Mollinedo  et 
al. [122]. The fibroblast-hepatocyte and fibroblast-cardiomyocyte networks were 
constructed using genes found differentially expressed in the experiments performed by 
Huang et al. [9] and Ieda et al. [10] respectively. These sets of differentially expressed 
genes were obtained after the performance of a T-test and selection of genes with a p-
value < 0.05.   

http://regulondb.ccg.unam.mx/
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2. Connecting these genes using expression regulatory interactions from literature. For this 
specific purpose we used the information contained in the ResNet mammalian database 
from Ariadne Genomics (http://www.ariadnegenomics.com/). The ResNet database 
includes biological relationships and associations, which have been extracted from the 
biomedical literature using Ariadne's MedScan technology [67,68]. MedScan processes 
sentences from PubMed abstracts and produces a set of regularized logical structures 
which represent the meaning of each sentence. The ResNet mammalian database stores 
information harvested from the entire PubMed, including over 715,000 relations for 
106,139 proteins, 1220 small molecules, 2175 cellular processes and 3930 diseases. The 
focus of this database is solely on humans, mice and rats. We selected only the 
interactions included in the ResNet mammalian database in the categories of 
Expression, PromotorBinding and Regulation. In the Expression category interactions 
indicate that the regulator changes the protein level of the target, by means of 
regulating its gene expression or protein stability. In the PromotorBinding category 
interactions indicate that the regulator binds the promotor of the target. Finally, in the 
Regulation category interactions indicate that the regulator changes the activity of the 
target. Following this step we obtained 3 raw networks which were reduced, removing 
irrelevant nodes for the stability analysis, i.e., nodes without incoming edges.  

3. Network enrichment with experimentally validated miRNA interaction. GRNs were 
enriched when possible using miRNA interactions experimentally validated and publicly 
available in two different databases: TransmiR[148] and  miRTarBase[149]. Included was 
information about miRNA regulatory genes and miRNA regulated genes respectively. 
The only miRNA included were those forming closed loops with network genes, which 
means that they are able to affect the stability of the network (see Table 1). This was 
with the exception of those forming a negative circuit with gene target and regulator of 
this miRNA. The reasoning behind this is that the dynamics of such a regulatory motif 
are not well described in a Boolean representation and can introduce a confusing factor 
to the model; in a Boolean system these motifs generate oscillatory behaviour, although 
it is known that in reality these dynamics strongly depend on kinetic parameters and the 
consequent time response with very different effects [150,151,152]. We decided not to 
introduce noise into the model, with the assumption that some regulatory effects could 
be missing (for example, an increased time response of specific genes under 
perturbation with the consequent delay in reaching an attractor).  On the other hand, a 
Boolean representation is quite robust when it comes to describing stable steady states 
or fixed points (termed attractors in this paper) and is suitable for our purposes. We 
introduce only miRNA interactions capable of changing gene states in the existent 
attractors or generating new ones. Figure 29 presents examples of miRNAs finally not 
included in the HL60 model. 

4. Contextualizing the network by pruning based on an optimisation algorithm. 
This algorithm is fully described in Section 3.1, and as such is only briefly explained in 
the following paragraph so as to refresh the general concepts. In order to contextualize 
the network to the biological conditions under which the expression data was obtained 
we applied an algorithm [130] which exploits the consistency between predicted and 
known stable states from experimental data to guide an iterative network pruning. The 

http://www.ariadnegenomics.com/
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algorithm was conceived to predict missing expression values in gene regulatory 
networks, but could be applied to contextualize the network when all the expression 
values in two attractors are known. The method assumes a Boolean model to compute 
attractors of networks and an evolutionary algorithm is used to iteratively prune the 
networks. The evolutionary algorithm samples the probability distribution of positive 
circuits and individual interactions within the subpopulation of the best-pruned 
networks at each iteration. The resulting contextualize network is based not only on 
previous knowledge about local connectivity, but also on a global network property 
(stability). Given that this contextualisation is based on the stability of the network, no 
assessment can be performed on interactions not involved in this stability. As a result of 
this, and as an initial step before the contextualisation, genes without incoming edges 
were iteratively removed until only strongly connected components and genes 
regulated by them remained in the network. 

 

 

Figure 29 | HL60 gene regulatory network. miRNA interactions included and not included are 
represented in green and red respectively. MIR-146A has incoming and outgoing connections 
with DEPCs. Both MIR-155 and MIR-124 were removed due to their lack of outgoing and 
incoming interactions with DEPCS respectively. 

 

The T-helper and EMT examples are based on previously published gene regulatory networks 
[72,153]. With the latter we expanded the original network with the addition of a recently 
published novel double-negative feed-back with miRNA34A [129]. 
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Attractor computation 

Attractor computation was performed assuming a discrete dynamical model or, more 
specifically, a Boolean model, with the application of a synchronous updating scheme [118] 
which updates all gene states simultaneously at each step until the system reaches an attractor. 
For this purpose we used our own implementation [130] written in C++ of the algorithm 
described by Garg et al., 2007 [117]. The logic rule applied by default is the following: if none of 
its inhibitors and at least one of its activators is active, then a gene becomes active; otherwise 
the gene is inactive. If different regulatory rules are known for specific genes, this knowledge 
can be included in the model. Regulatory logic of Boolean models for the five biological 
examples is included in the supplementary information. 

Circuit detection 

We implemented the Johnsons algorithm [120] in order to detect  all elementary circuits in the 
network. A circuit is a path in which the first and the last nodes are identical. A path is 
elementary if no node appears twice. A circuit is elementary if no node but the first and the last 
appears twice. Once we had all of the elementary circuits, we selected positive feedback 
circuits, or circuits for which the difference between the number of activating edges and the 
number of inhibiting edges was even. Both elementary circuit detection and positive circuits 
sorting scripts were implemented in Perl. 

Description of the algorithm to find minimal combinations of RDs 

This algorithm can be described in three steps: 

1. Detection of the gene represented the most within DEPCs. This gene was added to the 
growing minimal combination of RDs. 

2. Marking DEPCs including this gene as targeted. 
3. Checking if there are untargeted DEPCs remaining. If this is the case, the algorithm goes 

back to the step 1. If there is no untargeted DEPC left, the algorithm finishes at this 
point, and the current list of genes constitutes a minimal combination of RDs. 

It is worth mentioning that eventually there are genes drawing in a number of targeted circuits. 
If this is the case the algorithm split the computation in different branches which provide 
different alternative minimal combinations or RDs. 

Experimental part 
Astrocytes differentiation 

CTX12s were plated at 0.5x105/Cm2 in a normal growth medium (NGM), which is a modification 
of Sato’s medium (see Table 8). The following day (D0) they are washed two times in 
DMEM:F12 treated for three days using BMP4- (Sato’s + 20 ng/ml BMP4, Preprotech) or FBS- 
(10 % FBS in Sato’s) differentiation medium for BMP4- and FBS-astrocytes respectively. Media 
were changed after 1 and 2 days. At D3 astrocytes populations were washed again two times in 
DMEM:F12 and were considered ready for perturbation experiments or microarray 
experiments. For transdifferentiation experiments the population of cells was exposed to 
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reprogramming determinants for 3 days (to D6). For dedifferentiation experiments, after D6 
cells were washed again two times with DMEM:F12 and maintained in dedifferentiation 
conditions (NGM) for three more days (to Day 9). 

Component Final Concentration Company 

DMEM:F12  Invitrogen 

Apotransferrin 5µg/ml SCIPAC 

Sodium selenite 130µl Sigma 

Progesterone 60ng/ml Sigma 

Putrescine 16µl/ml Sigma 

Insulin 5µg/ml Sigma 

BSA 100µl/ml Sigma 

Pen/Strep 1x Sigma 

L-Glutamine 2mM Sigma 

Glucose 5.6mg/ml Sigma 

T3 300ng/ml Sigma 

T4 400ng/ml Sigma 

Satos Medium+4-OHT+EGF+FGF   

EGF 20ng/ml Peprotech 

FGF2 10ng/ml Peprotech 

4-OHT 100nM Sigma 
 

 
Table 8| Sato’s medium with growth factors and 4-OHT. 
 

Microarray experiments 

Microarray analyses were performed on CTX12, BMP4- and FBS- astrocytes using Illumina Single 
Color array for mice with the reference 8V20R011278551A. Expression data was analysed 
comparing CTX12 vs. BMP4- and FBS- astrocytes and BMP4- vs. FBS- astrocytes. The selected 
test for this analysis was an unpaired t-test whilst the selected cut-off was 0.01 and 1 for p-
value and Fold change respectively (multiple testing correction used: Benjamini-Hochberg). 

Immunocytochemistry 

Coverslips from specific experimental time-points and conditions (D0, D3, D6, D9) were fixed 
and processed for immunocytochemistry. Coverslips were washed with 1x PBS before fixation 
in 4% paraformaldehyde for 10 min before being washed three times in 1xPBS. Cells were 
permeabilised with 0.1% TX-100 (TritonX-100, Sigma) in PBS for 5 min at room temperature 
(RT). Coverslips were then incubated in 30µl of primary antibodies in 10% normal goat serum 
(NGS) in PBS for 1 h at RT: anti-­-Ki-­-67 (rabbit IgG, 1:1000, Abcam) and anti-GFAP (mouse IgG1, 
1:500, Millipore). They were then washed and incubated in secondary antibodies in 10% NGS in 
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PBS for 30mins at RT as follows: goat anti-rabbit IgG AlexaFluor 594 and anti-mouse IgG1 
AlexaFluor 12 488 (both 1:1000, Molecular Probes). After washing, nuclei were DAPI-
counterstained and mounted on Prolong Gold Molecular Probes). 

Fluorescence cell counting and imaging, Ki-67 ratio statistics 

Coverslips were counted using a Zeiss AxioImager Z1 fluorescence microscope, 63x objective, 
AxioCam MRM3 camera and AxioVision v.4.8.1.0 software. Five or more separate random fields 
were chosen per coverslip, with 300-500 cells counted per coverslip. Specific immunopositive 
cells were counted as a percentage of total number of DAPI-positive cells. Some markers 
(including GFAP) were also used to assess morphology changes. A student’s t-test was applied 
when comparing Ki-67 positivity for each condition, assuming equal variance confirmed by F-
test for all conditions. 

Total RNA preparation and cDNA synthesis 

Total RNA was extracted using RNAsy kit (Quiagen) according to the manufacturer’s instructions 
and including an ‘on-column’ DNase step. RNA was eluted in 30 µl of RNase-free water whilst 
quality and concentration were analysed using a Nanodrop ND1000 spectrophotometer. The 
synthesis of cDNA was performed as follows: 1-2 µg of RNA was mixed with 1 µl of random 
primers and 1 µl Oligo dT primers (both Omega) in 17, 12 µl and incubated for 5 min at 70 °C. 
Samples were placed onto ice, and a 7.88 µl of the mix was added to each sample containing: 
5µl 5x RT Buffer, 1.25 µl dNTP mix (10mM each) 1 µl M‐MLV (200U) (Promega M3682), 0.63 µl 
RNasin (25U) (Promega). The 25 µl reactions were incubated for 1 hour at 37 °C, inactivated at 
95 °C for 5 min and put on ice before being diluted to 100 µl with RNAse-free water and stored 
at -20°C. 
 
Gene expression analysis by quantitative PCR 
Real-time PCR was performed to obtain gene expression data for six genes, three astrocyte 
specific markers (THRSP, AQP4 and GFAP) [154,155], two NPC/proliferation specific markers 
(UHRF and MKI67)[154] and a house-keeping gene (GPADH). Gene analysis was performed 
using the Pfaffl method [156] with GAPDH as a reference gene. Relative expression levels 
comparison to CTX12 was performed using a Student’s t-test, assuming equal variance. The 
solution for PCR consisted of 200-500nM forward and reverse primers (see Table 9) 10 µl (2x) iQ 
SYBR green mix (Biorad), 2 µl cDNA sample (water for controls) and HPLC-grade water to 20 µl. 
All conditions were run in triplicates in 96-well plates on Chrome4 real-time PCR thermocycler 
with MJ OpticonMonitor 3.1 software using the following program: 3 min at 94 °C, 45 cycles of 
95 °C 30s, 60 °C 30s and 72°C 30s.Gene 
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Genes Forward sequence Reverse sequence 

AQP4 GCTGTFATTCCAAACGAACTG ATGATAACTGCGGGTCCAAA 

GAPDH TGCGACTTCAACAGCACTC CTTGCTCAGTGTCCTTGCTG 

GFAP GAGAAAGGTTGAATCGCTGG CGCTGTGAGGTCTGGCTT 

KI67 TTCCTTCAGCAAGCCTGAG GTATTAGGAGGCAAGTT 

THRSP TGACAGGGCAGGTTCTGTAG CTCGGGGTCTTCATCAGTCT 

UHRF1 ATGTGTGTGGTGGGCGCGAG GAGTCAGTGCGGCAGCTGGG 
 

 
Table 9| Primers list. 
 

Chromatin Immunoprecipitation 

Following cells’ digestion and chromatin extraction, 10 µg  was immunoprecipitated (ChIP) in lo-
bind tubes with protease inhibitors (PI, Roche) and 1 µg antibody (H3, H3K4me3, H3K27me3, 
H3K9ac and rabbit IgG, all Abcam) in modified RIPA buffer in 500 µl volume for 1 hour at 4°C 
rotating before addition of 25 µl Protein G Dynabeads (Invitrogen) overnight. Beads were 
washed as follows (rotating every 2 min): 2x 800 µl wash buffer 1 (50mM NaCl, 2mM EDTA, 1% 
TX-100, 0.1% SDS), 1x 800 µ l wash buffer 2 (10mM Tris pH 8.1, 150mM NaCl, 1 mM EDTA, 1% 
NP40, 1% Na deoxycholate, 250 mM LiCl) and 2x 800 µ l TE. Chromatin was eluted and de-
crosslinked in 100 µl Elution Buffer with 1μl RNase A and 4μl 5M NaCl (10% input samples were 
treated similarly) for 4 hours at 65°C and treated with proteinase K.  Beads were removed and 
ChIP DNA was purified using a QIAquick PCR purification kit. Samples were run afterwards on a 
MyiQ Real-time PCR detection system (Biorad) with the same conditions described in the 
previous section. Each reaction had: 500 nM forward and reverse primers for SOX2 and CCNB1 
(see Table 10), 10 µl 2x iQ SYBR green mix (Biorad), 2 µl DNA (water for controls) and water to 
complete the mix up to 20 µl. Conditions were run in triplicates with a standard curve of known 
genomic DNA concentration. Bio-rad iQ5 software was used for this analysis. 

ChIP primers Forward sequence Reverse sequence 

CCNB1 TACGACGGAGGTTTTATGG GCAAGTTTCCACCCAAATCTT 

SOX2 TCAGGAGTTGTAAGCAGA CGGGCTCCAAACTTCTCTC 
 

 
Table 10| ChIP primers. 
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3.3 Cell Identity and network stability: generalizing the transcription factor cross-
antagonism concept and developing strategies for cellular reprogramming 
This section refers to the work published on Stem Cells in 2013 entitled “A general strategy for 
cellular reprogramming: the importance of transcription factor cross-repression”. 

3.3.1 Introduction 
The central role of transcription factor cross-antagonism in determining cell fate is one of the 
most important concepts to have emerged from years of lineage differentiation research 
[157,158,159,160]. In its simplest formulation, two regulators which negatively influence each 
other establish a bistable “toggle switch”, readily explaining the two mutual exclusive cell fate 
outcomes. More complicated schemes also include transcription factor auto-regulation and 
antagonistic cross-regulation of target genes (see Figure 30).  

 
Figure 30| Cross-antagonistic motifs. A) Mutual inhibition B) Mutual inhibition and 
autoactivation C) Mutual inhibition and autoactivation, with cross-regulation downstream. 
 

Several examples of these binary cell fate choice mechanisms have emerged in the last ten 
years [161,162,163,164,165,166,167,168,169,170]. Integration of this knowledge can be 
represented in a binary decision tree from embryonic stem cells (ES cells) to differentiated cells 
passing by different progenitors[ 157] (see Figure 31). This tree defines distinct paths between 
different cell types in a Waddington’s landscape[13,14,15], whereby different cell types can be 
interpreted as steady stable states of cellular gene regulatory networks termed attractors. 
Cross-antagonistic motifs not only determine binary decisions in the tree, but based on their 
bistable behaviour, characterized by mutually exclusive gene expression states, they also play a 
key role in the stability of binary cell fate choices or cell types derived from a common direct 
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ancestor. Furthermore, experimental evidence has demonstrated that perturbations of genes 
belonging to these motifs which swap their steady stable states are able to trigger transitions 
between these binary cell fate choices [131,171]. Indeed, although an attractor’s stability is 
determined by a regulatory core comprised of one or several interconnected positive circuits 
[111], these cross-antagonistic motifs have been shown to be localized on the top of the 
hierarchical organisation of the set of positive circuits, whose steady stable states change from 
one binary cell choice to the other. Hence, these motifs constitute master switches between 
binary cell fate choices (intralineage transdifferentiation). The strategy of perturbing top 
positive circuits in such hierarchical organisation can be extended to transitions between any 
given pairs of steady stable cellular phenotypes, even if they are not canonical cell fate choices. 
In particular, these transitions can include other types of cellular reprogramming, i.e. the 
transition of a differentiated cell to another cell type, either to a progenitor (dedifferentiation) 
or to another differentiated cell type coming from a different primary progenitor (interlineage 
transdifferentiation). In these cases, a more complex set of positive circuits with or without 
mutually exclusive gene expression stable states could determine these transitions. This 
strategy leads to the identification of a small number of genes (reprogramming determinants) 
triggering the transitions between different cellular phenotypes. Indeed, during the last decade 
several labs have experimentally demonstrated that despite cell type differences in the 
expression of thousands of genes, perturbation of few reprogramming determinants is usually 
able to trigger cellular transitions from one stable cellular phenotype to another [124,125,126] . 
Nevertheless, these experiments have relied on a brute force search of effective cocktails of 
transcription factors to achieve desired cellular transitions. As a result, and due to the 
combinatorial complexity of this problem, they constitute a time and resource consuming 
strategy. Hence, this fact, together with the increasing interest in cellular reprogramming 
indicates an urgent need to develop strategies for the systematic identification of optimal 
combinations of reprogramming determinants capable of inducing cellular transitions. Here we 
propose a cellular transition-dependent method which identifies candidates for reprogramming 
determinants by focussing on stability motifs in gene regulatory networks. Our method initially 
searches for differentially expressed positive circuits (DEPCs), for which the expression levels of 
their genes change between two different cellular phenotypes. Further, a hierarchical 
organisation of these circuits is analysed in order to identify master regulatory positive circuits, 
which directly or indirectly regulate the states of the other DEPCs.  

Finally, given the stochastic nature of molecular interactions and the abundance of gene 
regulatory networks affecting cellular reprogramming efficiency and fidelity, we used a 
previously introduced network topological characteristic termed retroactivity [172]. This 
positively correlates with expression noise [173], and was used in order to detect combinations 
of genes  in master regulatory DEPCs which were more affected by expression noise and need 
to be controlled in order to minimize information loss during signal transmission in gene 
regulatory networks. These gene combinations are, according to our model, the best 
candidates for reprogramming determinants.  

We selected three representative biological examples of cellular reprogramming with 
experimental information on reprogramming determinants inducing effective transitions 
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between cellular phenotypes in order to assess the applicability of our method. These examples 
are the transdifferentiation from T-helper lymphocyte Th2 to Th1 (intralineage 
transdifferentiation), from myeloid to erythroid cells (interlineage transdifferentiation), and 
from fibroblast to hepatocyte (distant interlineage transdifferentiation). In the Th2-Th1 
example, we identified GATA3 and T-bet as potential inducers of Th2 to Th1 T-helper 
transdifferentiation, which is in full agreement with previously reported experimental 
observations [132,133]. Our results showed that cells committed to becoming megakaryocytes 
or erythrocytes in the erythroid lineage can be reprogrammed to the myeloid lineage and 
become granulocytes or macrophages through the perturbation of a single reprogramming 
determinant, i.e. the activation of GATA1. This induced transition has been experimentally 
validated19. Finally, the application of our method to the example of fibroblast to hepatocyte 
reprogramming allowed us to detect combinations of reprogramming determinants which 
induce this cellular transition. Among these detected combinations, the combined activation of 
HNF4 and FOXA2 has been experimentally validated by the work of Sekiya and Suzuki, which 
was published in 2011 [140].  

In conclusion, here we propose, to our knowledge, the first method to systematically identify 
combinations of genes (reprogramming determinants), which are potentially capable of 
inducing transitions between specific pairs of cellular phenotypes, even without prior 
knowledge of possible candidates. Our method generalizes the principle of transcription factor 
cross-antagonisms in binary lineage decisions in the sense that it searches for master regulatory 
positive circuits (which can eventually be a cross-antagonistic motif). These circuits contribute 
to the stability of cellular gene regulatory networks, and have genes which are differentially 
expressed with respect to specific pairs of cellular phenotypes. Perturbations of combinations 
of genes belonging to these circuits which swap their steady stable states are expected to 
induce transitions between these phenotypes. We believe that considering the increasing 
interest of the research community in using cellular reprogramming for the establishment of 
cell disease models and regenerative medicine, our method constitutes a useful computational 
protocol which aims to assist researchers in the field of experimental strategy design. 
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Figure 31| Cell identity cascading landscape representing the cellular transcriptional program. 
Paths between pluripotent and differentiated cells, representing cellular differentiation 
processes pass through stable expression profiles corresponding to multipotent progenitors. 
Binary cell fate decisions at multipotent progenitor level are characterized by cross-repression 
motifs of competing transcription factors. Transdifferentiation between somatic cells is divided 
between those sharing a direct precursor cell (intra-lineage transdifferentiation), where cross-
repression motifs, which determine cell fate decision, play a key role in stabilizing binary cell 
decisions and transitions between them; in addition, those without a direct precursor (inter-
lineage transdifferentiation), are characterized by a more complex molecular mechanism 
underlying cellular transitions. Blue and red colors in cross-repression motifs and GRN stability 
core represent mutually excluding expression states for a given pair of cellular phenotypes, 
standing for down-regulation and up-regulation respectively. ‘->’ represents activation or 
positive regulation and ‘-|’ represents inhibition or negative regulation. 
 

3.3.2 Results 
A popular framework through which to conceptualise and describe cellular transitions is that of 
the landscapes proposed by Waddington [13,14,15], where cellular phenotypes may be seen as 
stable steady states (termed as attractors) of GRNs represented as wells separated by the so-
called epigenetic barriers. These barriers are established by those elements stabilizing GRNs in 
their attractors. Given that cellular reprogramming implies a transition between two cellular 
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stable transcriptional programs (two attractors of the GRN), it was necessary for the 
corresponding GRN to be at least bi-stable. The presence of positive circuits or positive feed-
back loops (the sign of a circuit is defined by the product of the signs of its edges, being 
activation positive and inhibition negative) in a GRN is a necessary condition for the existence 
of at least two attractors (multi-stability) [111]. Hence, some of the positive circuits constitute 
the stability elements of the GRN. In particular, there are positive circuits whose genes are 
differentially expressed between two given attractors. By swapping the states of these circuits 
it should be possible to induce transitions from one attractor to another, similar to how 
transitions between cell types derived from a common progenitor cell can be induced by 
swapping the states of cross-repression motifs. Given the stochastic nature of molecular 
interactions in GRNs, perturbations of different combinations of genes belonging to these 
positive circuits can trigger these transitions with different efficacy.  

Description of the method  

Here we propose a method to design reprogramming protocols based on the topological 
relationship between the elements involved in the stabilisation of specific attractors. The 
hierarchical organisation analysis of strongly connected components (SCCs) formed by one or 
more DEPCs allows us to identify combinations of genes belonging to master regulatory DEPCs 
which should be perturbed in order to directly or indirectly target all DEPCs and to 
consequently induce specific cellular transitions. Finally, we selected among these 
combinations of genes those with the highest interface out-degree. This refers to the number 
of genes which are directly regulated by them. The reason for this step was to minimize the 
retroactivity effect on master regulatory circuits [172,173], which considers the increased time 
response of these circuits after noise or external perturbations. This allowed us to minimize the 
expression noise due to retroactivity contextualized to the specific cellular transition under 
study. In other words, we selected combinations of genes participating in more transcriptional 
regulation events in order to minimise DEPCs time response and the stochastic behaviour of  
GRN under perturbation. Indeed, this allowed us to minimize information loss during signal 
transmission. This strategy also allowed us to narrow down a huge combinatorial searching 
problem to a set of minimal combinations which constitute alternative reprogramming 
protocols and the output of our method. 

The method can be described with the following seven steps: 

1. Detecting all positive circuits in the GRN. 

2. Computing network attractors. 

3. Detecting transition specific DEPCs. 

4. Reconstruction of transition specific GRN. 

5. Transformation of GRNs in a directed acyclic graph (DAG) and hierarchical analysis. 

6. Detection of DEPCs’ master regulators. 
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7. Identification of reprogramming determinants. 

In order to illustrate the different steps of the method we constructed a toy GRN including 16 
nodes and 23 interactions (see Figure 32). 

Detecting all positive circuits in the GRN 

In order to detect master regulatory SCCs or clusters of DEPCs which should be independently 
perturbed, it was necessary to detect and list all positive circuits or positive regulatory feed-
back loops. Seven positive circuits or positive feed-back loops (the sign of a circuit is defined by the 
product of the signs of its edges, being activation positive and inhibition negative) were detected with 
different sizes ranging from 1 (self-loop) to 4.  

 
 

Figure 32| Positive circuit’s detections. Seven positive circuits or positive feed-back loops (the 
sign of a circuit is defined by the product of the signs of its edges, being activation positive and 
inhibition negative) are present in this illustrative toy network. ‘->’ represents activation or 
positive regulation and ‘-|’ represents inhibition or negative regulation. 
 

Computing network attractors 
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For the computation of network attractors we assumed a Boolean dynamical model with a 
synchronous updating scheme. This model allowed us to test three different attractors; all of 
which are represented in Figure 33. 

 
 
Figure 33| Network attractors’ computation. We assumed a Boolean model to compute 
attractors with a synchronous updating scheme. In such a representation ‘0’ represents Down-
regulation and ‘1’ represents Up-regulation. 
 

Detecting transition specific DEPCs 

Once we had information about attractors and circuits we proceeded to determine, among the 
entire set of positive circuits, which were DEPCs for specific cellular transitions, meaning that 
the expression levels of their genes change between involved cellular phenotypes. Figure 34 
shows DEPCs between specific attractors. 
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Figure 34| Transition specific DEPCs detection. Differentially expressed positive circuits 
(DEPCs) are those for which the expression levels of their genes change between two different 
attractors corresponding to two different cellular phenotypes. White and grey colours stand for 
down-regulation and up-regulation respectively. ‘->’ represents activation or positive regulation 
and ‘-|’ represents inhibition or negative regulation. Transition between Attractor 1 and 2 
requires the change of all positive circuits in the network. Therefore, for this specific transition 
all positive circuits are DEPCs. Notice that not all genes in the network are changing; gene ‘n’ is 
‘inactive’ in Attractors 1 and 2. 
 

Reconstruction of transition specific GRN 

Detection of master regulatory DEPCs requires the reconstruction of a transition specific 
subnetwork (Attractor 1 to Attractor 2 is represented in Figure 35) including only DEPCs for this 
specific transition and connections between them. 
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Figure 35| Reconstruction of attractor 1 to attractor 2 transition specific subnetwork. This 
network includes all differentially expressed positive circuits and the connections between 
them. 
 

In step 5 those DEPCs of the previously obtained subnetwork which are forming SCCs are 
contracted in a single supernode. The hierarchical analysis of such a contracted subnetwork 
allows us to identify master regulatory SCCs (SCC 1 and SCC 2 in the figure). Within each master 
regulatory SCC, the DEPC with the highest interface out-degree (red numbers in the figure) is 
identified as master regulatory DEPCs (step 6); circuits 4 and 6 are the master regulatory DEPCs 
of this example. ‘->’ represents activation or positive regulation and ‘-|’ represents inhibition or 
negative regulation. 

GRN’s transformation in a DAG and hierarchical analysis 

 DEPCs can be clustered, and form SCCs. These SCCs (if there is more than one) can be 
interconnected. In order to detect which SCCs should be independently perturbed to guarantee 
that all DEPCs are reached by the perturbation signal, we analysed the hierarchical analysis of 
the DAG resulting from collapsing SCCs in single super-nodes. It is worth stressing that this 
hierarchical organisation is cellular transition dependent since it is based on positive circuits 
which change between initial and final attractors (corresponding to cellular phenotypes).  
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Figure 36 | Transformation of the transition specific network in a direct acyclic graph (DAG) 
and hierarchical analysis. In step 5 those DEPCs of the previously obtained sub-network which 
are forming SCCs are contracted in a single super-node. The hierarchical analysis of such 
contracted sub-network allows us to identify master regulatory SCCs labeled as SCC 1 and SCC 2 
in the figure. 
 

Determining the master regulatory DEPCs for each master regulatory SCC 

DEPCs with higher degree interfaces were considered the master regulatory circuit of each 
specific SCC. The degree interface of a circuit is the count of genes directly regulated by genes 
belonging to the circuit. These DEPCs master regulators should be independently perturbed in 
order to induce the desired cellular transition, and minimal combinations of genes able to 
target all master regulatory DEPCs equal to the number of such DEPCs. In other words, the 
perturbation of one gene per master regulatory DEPC is required. Since different minimal 
combinations (equal in number) can arise from this procedure, we aim to select the best 
combinations according to retroactivity contribution criteria. Figure 38 shows the retroactivity 
values for each gene within the two master regulatory SCCs. 
 



105 
 

 
 
Figure 37| Detection of master regulatory differentially expressed positive circuits (DEPCs) 
based on the retroactivity criteria. 
 
Detecting reprogramming determinant genes 
The identification of genes belonging to DEPCs master regulators with maximum gene degree 
interface, means that they are the most regulatory genes, and therefore are mainly responsible 
for DEPCs’ retroactivity. This set of genes constitutes the reprogramming determinants. If more 
than one combination of reprogramming determinant candidates is equal in number of genes 
and interface out-degree, all of them are considered reprogramming determinants according to 
our model, and constitute alternative solutions. 
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Figure 38 | Identification of reprogramming determinants. Identification of genes belonging to 
DEPCs master regulators with maximum gene interface out-degree.  ‘->’ represents activation 
or positive regulation and ‘-|’ represents inhibition or negative regulation. 
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Application of the method to three illustrative biological examples  
We selected three different biological examples of cellular reprogramming in order to illustrate 
and validate the applicability of our method as a generalisation of the transcription factor cross-
repression concept in illustrative biological cases. These examples provide an experimental 
validation of the identified sets of reprogramming determinants as effective inducers of 
transitions between cellular phenotypes. The Th2-Th1 and Myeloid-Erythroid examples are 
based on GRNs previously published by Mendoza et al. [113], Krumsiek et al. and Dore et al. 
[174,175] respectively. These two networks were constructed to describe the differentiation 
process of the corresponding human cell types. We showed that the appropriate perturbations 
of these networks make it possible to induce transdifferentiation between cell types with the 
same cellular precursor. The mouse Fibroblast-hepatocyte reprogramming example illustrates 
the case of a cellular transition between two cell types which do not share the same direct 
cellular precursor. In this case we reconstructed a literature based GRN of differentially 
expressed genes between both cell types [9]. This network was contextualized by an iterative 
network pruning described in the methods section and previously published [102]. This 
contextualized network is specific to the cellular transition under study, and therefore suitable 
to describe input-output relationships or network response under specific perturbations for a 
given initial network stable state (stable expression pattern). 

The networks for the three examples were enriched, when possible, with information about 
miRNAs’ interactions from experimentally validated and publicly available information 
[148,149].  

Th2-Th1 

T lymphocytes are classified as either T helper cells or T cytotoxic cells. T helper cells take part 
in cell- and antibody-mediated immune responses and are sub-divided into Th0 (precursor) and 
effector Th1 and Th2 cells depending on the array of cytokines which they secrete [176]. A T-
helper differentiation network determines the fate of the T-Helper lineage [113], with three 
different attractors corresponding to the three different phenotypes (Th0, Th1 and Th2). We 
applied our method to a previously published GRN [113], which represents the regulatory 
mechanisms determining T-helper basic types. This network includes T-bet and GATA-3 forming 
a cross-repression motif responsible for the differentiation either to Th1 or to Th2 from a 
common precursor (Th0). We applied our method in order to detect reprogramming 
determinants for the Th2-Th1 transdifferentiation. The SCCs hierarchy analysis, followed by the 
maximum retroactivity criteria, allowed us to identify one master regulatory SCC with one 
master regulatory DEPC (named circuit 16 in Figure 3a and supplements) among five DEPCs of 
this specific cellular transition. Circuit 16 corresponds to the positive feed-back loop formed by 
GATA-3, T-bet, SOCS-1, IL-4R and STAT-6. The interface out-degree of this circuit is 11, resulting 
from the sum of interface out-degree of all genes belonging to it. Within this DEPC master 
regulator there are two genes with equal contribution to the circuit degree interface: GATA-3 
and T-bet have a degree interface of 4. According to the methodology presented here both 
GATA-3 and T-bet constitute independent reprogramming determinants, by inactivation and 
activation respectively. The predicted capability of T-bet to induce the transition from Th2 to 
Th1 is in full agreement with reported experimental results [131]. To our knowledge, there is no 
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experimental evidence of either the capability or incapability of GATA3 to induce the transition 
from Th2 to Th1 when inactivated. 

It is worth mentioning that the cross-repression motif responsible for the binary cell decision 
between Th1 and Th2 from the precursor Th0 is embedded in the master regulatory SCC. 
Moreover, the detected master regulatory DEPC, knwon as circuit 16, is composed of the two 
genes forming the cross-repression motif. This example illustrates how a motif responsible for 
cell fate decision can also participate in the derived cellular phenotypes stabilisation and how 
its proper perturbation can trigger transitions between them. 

 
 
Figure 39 | Th2-Th1 reprogramming. Activation of T-bet and, alternatively, inhibition of GATA-3 
are predicted as effective perturbations to induce this cellular transition. Blue and red colours 
in network nodes represent mutually excluding expression states for a given pair of cellular 
phenotypes, standing for down-regulation and up-regulation respectively.  ‘->’ represents 
activation or positive regulation and ‘-|’ represents inhibition or negative regulation. 
 

 

Myeloid-Erythroid 
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Within the hematopoiesis there are several binary decisions from multipotent stem cells to 
different types of blood cells. One of these decisions, namely that determining whether 
multipotent stems cells become erythroid  (later erythrocytes and megakaryocytes) or myeloid 
precursor cells  (later macrophages and granulocytes) requires the participation of the 
transcription factor cross-repression motif including GATA-1 and PU.1. As is shown in Figure 3a, 
our method was applied to a previously published GRN [174,175], containing this motif 
embedded and connected with other multi-stable motifs. This allowed us to identify GATA-1 as 
a reprogramming gene capable of inducing the transition from myeloid to erythroid precursor 
cells. This finding is in full agreement with the experimental results obtained by Heyworth et al. 
[171], where the authors reported that myeloid precursors infected with an inducible form of 
GATA-1 generated erythroid colonies when GATA-1 was induced. Figure 3 b shows that in this 
example we found a single master regulatory circuit, known as Circuit 12, with an interface out-
degree of 8, which is formed by the mutual inhibition between GATA-1 and PU.1. In this 
particular case we obtained two possibilities with an identical gene degree interface of 4: 
activation of GATA-1 and inhibition of PU.1. The activation of GATA-1 refers to the experiment 
performed by Heyworth et al. 19[171]. To our knowledge there is no experimental evidence to 
indicate that the inhibition of PU.1 is either able or unable to produce the same effect yet. As in 
the previous example, here we observe how a cross-repression motif not only participates in 
binary cell fate decision, but can also be exploited to re-specify the cellular commitment in cells 
sharing the same precursor. 



110 
 

 
 
Figure 40 | Cellular reprogramming from myeloid to erythroid cells. Both, activation of GATA-1 
or inhibition of PU.1 are predicted as independently able to induce this cellular transition. Blue 
and red colors in network nodes represent mutually excluding expression states for a given pair 
of cellular phenotypes, standing for down-regulation and up-regulation respectively.  ‘->’ 
represents activation or positive regulation and ‘-|’ represents inhibition or negative regulation. 
 

Fibroblast-Hepatocyte 

Hepatocytes normally differentiate from hepatic progenitor cells to form the liver during 
regular development. However, hepatic programs can also be activated in different cells under 
particular stimuli or fusion with hepatocytes. The transition from mouse fibroblasts to 
hepatocyte-like cells induced by the perturbation of specific combinations of transcription 
factors has been previously reported by several authors [9,140]. As is shown in the table 
included in Figure 3 c, in this case the SCCs hierarchical analysis allowed us to identify two 
master regulatory SCCs. The first comprised circuit 2 (including NR5A2 and FOXA2) whilst the 
second comprised circuits 0, 7 and 4 (including genes AGT, PPARGC1A, UCP2 and HNF4A). 
Within the latter SCC, the DEPC, termed circuit 0, is the one with the highest interface out-
degree of 20. Following this, we proceeded to identify reprogramming determinants by 
targeting both master regulatory circuits. Within circuit 2, the gene which made the most 
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significant contribution to the circuit retroactivity was FOXA2, with an interface out-degree of 5. 
Within the circuit 0, HNF4A was the one with the highest contribution to the circuit retroactivity 
with an interface out-degree of 9. Therefore, the final combination of reprogramming 
determinants was HNF4A and FOXA2. Both genes should be activated to trigger the transition 
from fibroblast to hepatocyte. This result is supported by the work of Sekiya and Suzuki 
published in 2011 [140]. These authors experimentally validated three different combinations 
of two transcription factors able to induce the transition from mouse fibroblast to hepatocyte, 
including HNF4A and FOXA2. This cellular transition constitutes a good example of 
reprogramming cells without a common direct precursor (interlineage transdifferentiation).  

 
 
Figure 41| Cellular reprogramming from fibroblast to hepatocyte. In this particular case no 
single gene was able to induce the cellular transdifferentiation according to our predictions. On 
the other hand, combined activation of HNF4A and FOXA2 was predicted as an effective 
combination of reprogramming determinants. Blue and red colors in network nodes represent 
mutually excluding expression states for a given pair of cellular phenotypes, standing for down-
regulation and up-regulation respectively.  ‘->’ represents activation or positive regulation and 
‘-|’ represents inhibition or negative regulation. 
 



112 
 

3.3.3 Discussion 
Cellular reprogramming, including the conversion of one differentiated cell type to another 
(trans-differentiation) or to a more immature cell (dedifferentiation), constitutes an invaluable 
tool for studying cellular changes during development and differentiation. It also has an 
enormous relevance for regenerative medicine and disease modelling. Although substantial 
progress has been made in developing experimental reprogramming techniques, to date the 
scientific community is still faced with challenges such as the identification of optimal sets of 
genes whose repression and/or activation are capable of reprogramming one cell type to 
another (reprogramming determinants), as well as the elucidation of molecular changes and 
relevant pathways involved in these transitions (9). Furthermore, there is currently no 
methodology which is capable of systematically predicting reprogramming determinants which 
could guide the design of cellular reprogramming experiments. The development of 
computational models of transcriptional regulation which underlies cellular transitions would 
help to predict these reprogramming determinants. Moreover, the analysis of gene regulatory 
network properties has allowed for the identification of functionally relevant motifs of 
interactions which could play a role in cellular transitions. In particular, transcription factor 
cross-antagonism has been described as a mechanism which plays a key role in cell fate 
decisions. A bistable toggle switch constitutes a molecular cross-repression motif which 
determines cellular commitment and provides stability to gene regulatory networks underlying 
transcriptional programs of binary decision cell choices. Experimental evidence indicated that 
flipping the stable states of these toggle switches produces interconversion between binary 
decision choices. Nevertheless, interlineage transdiferentiation and dedifferentiation could 
involve perturbation of combinations of cross-repression motifs together with other multistable 
motifs. Here we propose a method, which considers the connectivity of these different 
multistable motifs, in order to systematically identify sets of reprogramming determinants 
which are capable of inducing transitions from differentiated cells to other cell types, either to 
progenitor cells (dedifferentiation) or to other differentiated cell types (transdifferentiation). 
Our strategy rests on the identification of a subset of all network positive circuits (necessary 
condition for network multistability), whose genes are differentially expressed between the 
cellular states involved in these transitions. We termed this subset differentially expressed 
positive circuits (DEPC). Furthermore, a hierarchical organisation of these circuits allowed us to 
detect master regulatory positive circuits, which directly or indirectly regulate the states of the 
other DEPCs. By focussing on genes belonging to these master regulatory circuits, we 
dramatically reduced the number of possible combinations of reprogramming determinants.  

However, some of these gene combinations in master regulatory DEPCs were more influenced 
by expression noise, affecting signal transmission in gene regulatory networks, and 
consequently decreasing reprogramming efficiency and fidelity. This is due to the fact that they 
are participating in a larger number of regulations, and thus a limited concentration of the gene 
product must interact with several targets apart from that which closes the DEPC. In other 
words, the gene product has to distribute to different regulated targets, thus bringing about a 
higher probability that the DEPC signal feed-back is broken by chance (neglecting 
considerations about different molecular affinities which are assumed to be similar). Hence, in 
order to increase signal transmission our method proposes these gene combinations as 
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reprogramming determinants. It is worth mentioning that we have considered in our model 
some of the important events influencing reprogramming efficiency and fidelity, such as the 
role of noise in network dynamics and the regulatory interactions played by miRNAs. However, 
other factors, such as epigenetic modifications which block the activation of certain genes can 
affect the expected network behaviour after specific perturbations. Furthermore, it has been 
experimentally shown that epigenetic modifications can prevent cellular reprogramming 
reversibility in certain cases [177]. In addition, our model did not take into account different 
delays in time response of distinct regulatory interactions. Nevertheless, given that the purpose 
of our method was the identification of reprogramming determinants, rather than a detailed 
description of network dynamics, we feel that our model provides reasonable predictions. 
More accurate predictions would necessitate the addressing of these considerations in the 
future. 

Thus, our method constitutes the first strategy to systematically provide lists of combinations of 
reprogramming determinants for cellular reprogramming events involving two given cellular 
phenotypes without prior knowledge on potential candidates and pathways involved. As a 
result of this, the method is easily exportable to different biological systems, providing 
guidance even without the presence of expertise in a biological process. In particular, this 
method is suitable for cellular transdifferentiation, especially when transitions occur between 
different cellular lineages. Indeed, interlineage transdifferentiation involves significant changes 
in several molecular mechanisms, thus increasing the complexity of this type of reprogramming 
and therefore hindering the prediction of reprogramming determinants. Hence, given the 
increasing interest in various applications of cellular reprogramming in medicine and basic 
research, our method represents a useful computational methodology to assist researchers in 
the field of experimental strategy design, especially when very little is known about a specific 
biological system. 

 

3.3.3 Methods 
Networks reconstruction 

Among the selected biological examples, Th2-Th1 and Myeloid-Erythroid reprogramming 
illustrate the case of transdifferentiation between two cell types sharing a direct common 
precursor. We based our analysis on previously published GRNs describing the regular 
differentiation process of T-helper and cell fate decisions during hematopoiesi [113,174,175]. 
These two published networks were enriched with miRNA  interactions experimentally 
validated and publicly available in two different databases: TransmiR [148] and  miRTarBase 
[149], including information about miRNA regulatory genes and miRNA regulated genes 
respectively. Indeed, the only miRNA included were those forming closed loops with network 
genes as they are able to affect the stability of the network (see Table 1). 

The Fibroblast-Hepatocyte reprogramming example illustrates a distant (interlineage) cellular 
transdifferentiation. Therefore, no canonical previously published network can be exploited to 
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detect the reprogramming determinants. Such reprogramming requires the reconstruction of a 
GRN contextualized to this specific cellular transition. 

Given that the final goal was to induce the transition from one specific cell phenotype to 
another, the network was constructed based on changing elements between these two states, 
i.e., differentially expressed genes (DEG) between the two conditions or cell types obtained 
from microarray experiments. Genes of transcription factors belonging to cross-repression 
motifs were included among these DEGs (eventually, more than one motif). We proceeded to 
try to connect these DEGs genes using interactions obtained from literature harvested from the 
entire PubMed. For this specific purpose we used the information contained in the ResNet 
mammalian database from Ariadne Genomics (http://www.ariadnegenomics.com/). The 
ResNet database includes biological relationships and associations, which have been extracted 
from the biomedical literature using Ariadne's MedScan technology [67,68]. 

Once we had raw GRN from the literature, we proceeded to remove interactions which were 
inconsistent with expression data by an iterative network pruning. These removals represent 
interactions apparently not active in the biological context under study. It should be taken into 
account that interactions from the literature usually come from different biological contexts to 
those of cell types, tissues or even species. This network pruning allowed us to reduce the 
number of “false” interactions and to obtain a contextualised network. The algorithm applied 
for this network pruning (see Chapter 3 Section 3.1 [102]) was originally conceived to predict 
missing expression values in gene regulatory networks. However, it could also be applied to 
contextualize the network when all the expression values in two given cellular phenotypes or 
stable transcriptional programs are known. The resulting contextualized network is based not 
only on previous knowledge about local connectivity but also on a global network property 
(stability) providing robustness in predictions (the remaining set of interactions) against noisy 
sources of information and network incompleteness. Although we tried to enrich this network 
with miRNA interactions, as we did in the two previous examples, none of the miRNA involved 
in regulatory loops or circuits with differentially expressed genes were experimentally validated 
for mice. More details about the network reconstruction process for the Fibroblast-Hepatocyte 
reprogramming example are included in the supplementary information. 

Main properties of these three biological examples of GRN are shown in Table 11. 

  

http://www.ariadnegenomics.com/
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 miRNA Interaction 

Th2-Th1 mir-145  IFN-B -> mir-145 

 mir-145 -| STAT1 

Myeloid-Erythroid mir-34a 

 

mir-155 

 

 mir-34A -| PU.1 

 CEBPA -> mir-34A 

 mir-155 -| FLI1 

 PU.1 -> mir-155 

 mir-155 -| PU.1 

 

Table 11| miRNAs included in the biological examples.  ‘->’ represents activation and ‘-|’ represents 
inhibition. 

 

 Genes Interactions Activations Inhibitions miRNA 

Th2-Th1 24 38 28 10 1 

Myeloid-Erythroid 13 34 19 15 2 

Fibroblast-Hepatocyte 27 56 46 10 0 

 

Table 12| Main properties of the gene regulatory networks of the three biological examples 

 

Network transformation in a directed acyclic graph (DAG) 

The first step of the method, termed “Detecting master regulatory SCCs” in the results section, 
requires the hierarchical analysis of a subnetwork of the complete GRN including only DEPCs as 
well as all genes and interactions connecting them. This subnetwork contains positive feed-back 
loops, so it should be transformed in order to be able to analyse its hierarchy. The 
transformation of this subnetwork of connected DEPCs in a DAG was performed by contraction 
of strongly connected DEPCs, i e, SCCs of differentially expressed genes, in single supernodes. 
This network transformation allows for the hierarchical analysis of the network following the 
method described by Jothi et al. [178], resulting in the location of SCCs at different levels of 
hierarchy with the subsequent identification of master regulators SCCs on the top of the 
hierarchy pyramid. 
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Circuit’s detection 

The Johnson’s algorithm [120] was implemented to detect  all elementary feedback circuits in 
the network. A feedback circuit is a path in which the first and the last nodes are identical. A 
path is elementary if no node appears twice. A feedback circuit is elementary if no node but the 
first and the last appears twice. Once we had all of the elementary feedback circuits, we 
selected positive feedback circuits, or feedback circuits for which the difference between the 
number of activating edges and the number of inhibiting edges was even. Both elementary 
feedback circuit detection, positive feedback circuits sorting and DEPFCs detection were 
implemented in Perl. 

Attractor computation 

We assumed a Boolean model to compute attractors with a synchronous updating scheme 
[118] and used our own implementation [102] of the algorithm described by Garg et al., 2007 
[117]. The logic rule applied by default is the following: if none of its inhibitors and at least one 
of its activators is active, then a gene becomes active; otherwise the gene is inactive. If different 
regulatory rules are known for specific genes, this knowledge can be included in the model.  
Results from the attractor computation were consistent with the results obtained using 
previously published software to compute attractors in Boolean systems (Boolnet [179], 
GenYsis [117]).  

Chapter 4. Conclusions 
In this dissertation, we applied various systems biology approaches to investigate cellular 
activation dynamics and reprogramming in the context of disease description and treatment. 
Focussed on the transcriptional level, we explored different strategies through which to 
integrate information from experiments and literature and to reconstruct the gene regulatory 
network underlying disease pathogenesis. We also sought to detect regulatory cores 
responsible for the stable expression profiles characterizing cellular disease phenotypes. In 
addition, we developed two computational methods which constitute a pipeline to design 
perturbation recipes to induce gene regulatory networks to transit from one stable state to 
another or, in other words, to reprogram a cell from one initial stable expression pattern to 
another. These two computational methods find utility in the context of disease treatment with 
potential applications in drug target discovery and cellular reprogramming. 

More specifically, the second chapter focussed on the identification of the core of regulation of 
three different GRNs corresponding to three different diseases, namely metabolic syndrome 
(Section 3.1), prion disease (section 3.2) and EMT (Section 3.3) in the context of breast cancer. 
The main findings of these three case study systems are the strategies developed to identify 
cores of regulation within the respective GRNs, namely the search of network motifs 
(evolutionary conserved) with specific dynamical properties (multistability), exploiting local 
consistency of expression values to curate the network in an automated way and to detect 
afterwards stability cores (clusters of strongly connected components). Finally, there is the 
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simulation of perturbation experiments to identify missing interactions in incomplete models of 
transcriptional regulation.  

Secondly, the application of these approaches to specific systems and analysis of the resulting 
gene regulatory cores allowed us to detect relevant genes, processes, and to identify novel 
interactions. In the case of the metabolic syndrome HIF1A, EGR1, STAT1 and CXCL12 were 
identified as key genes within the detected regulatory core; findings which are supported by 
the previously reported association of these genes with adipocyte’s differentiation and 
activation. In the case of prion disease several genes involved in neuroinflammation were found 
to play a key role in the stabilisation of the disease state, thus stressing the key role of 
neuroinflammation in disease progression. Finally, the inconsistency between the simulated 
and the experimentally known behaviour of epithelial cells under perturbation of SNAI1 pointed 
out gaps in the current knowledge of regulatory mechanisms participating in the cellular 
transition to mesenchymal phenotypes (EMT). An miRNA-203/SNAI1 feedback loop was 
simulated in silico and experimentally validated. This finding has contributed to increased 
knowledge of the transcriptional regulation operating in EMT. 

The third chapter focussed on the identification of cellular reprogramming determinants 
capable of inducing changes in transcriptional programs from one initial cellular phenotype to 
another (which could be from healthy to diseased cellular phenotypes or from one abundant 
cellular phenotype to another without self-renewal). For this purpose two novel computational 
methods were developed and are described in this chapter. The first (Section 3.1) refers to an 
algorithm to contextualize literature based GRNs using experimental expression data. The 
algorithm allows for the pruning of noisy networks, thus making them more suitable to describe 
input-output relationships within the biological conditions under which the expression data was 
obtained. This is something which is compulsory when it comes to modelling cellular transitions 
and predicting driver genes or reprogramming determinants. The second computational 
method refers to an algorithm designed precisely to detect these reprogramming determinants 
or combinations of genes able to induce cellular transitions when perturbed. The complete 
development of the method was split into two separated works (Sections 3.2 and 3.3) 
published in BMC Systems Biology and Stem Cells respectively [180]. Within the first one the 
concept of differentially expressed positive circuits (DEPCs) was proposed as the stability 
element to be targeted in order to induce specific cellular transitions. Within the second one 
we expanded the methodology, developing a strategy to minimize the number of genes to 
perturb and to maximize the chance of successfully inducing the transition by means of 
considering and indirectly measuring noise, termed as retroactivity. This strategy allowed us to 
select for perturbation those genes and positive circuits which were more predisposed to 
failure when transferring the signal to the regulatory mechanisms which keep its expression 
level in the desired state, i.e., its feed-back loops, due to stochastic events. These two 
computational methods sequentially applied to a given gene expression data-set constitute our 
knowledge of the first pipeline which allows for the design of recipes for cellular 
reprogramming without a previous list of candidates both for the network reconstruction and 
predictions. This pipeline can be applied to guide experimental design and as a predictive tool 
for hypothesis generation. 
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While here we focussed on the expression data at transcriptional level, we want to emphasize 
that there are certain considerations which we have not been able to take into account. More 
specifically, epigenetic modifications capable of operating on both DNA and protein level might 
dramatically change the network topology, with consequent effects on the regulatory 
mechanisms. They are partially considered by the network contextualisation described in 
Section 3.1 for the cases of epigenetic modifications which do not change between the two 
conditions considered (for example, health and disease states). However, this contextualisation 
does not take into account epigenetic modification, which changes during the described 
process. The impact of such modifications has not been assessed and information regarding 
them has not been included or modelled in any of the illustrative examples described in this 
dissertation. As a result of this, the efficiency of the predicted reprogramming determinants is 
constrained by potential mechanisms to lock gene expression (for instance, DNA methylation) 
and probably limited to a cell subpopulation with incomplete locking (due to stochastic events) 
which should be sorted by our perturbations. More research on this direction should be carried 
out in order to elucidate the quantitative impact of this limiting factor, and to find the most 
reliable way in which to model this effect. Finally, this is the best strategy with which to 
overcome the limitations imposed by these mechanisms and to achieve cellular reprogramming 
with efficiency and fidelity. 

Although the methodology explained in this work was developed in the context of disease 
study, one may find these ideas applicable to other problems. For example, the strategy 
described in chapter three refers to cellular reprogramming in the context of transitions from 
disease to normal states or to transitions from an abundant source of cells with self-renewal to 
another cell without regeneration capability within the context of regenerative medicine. 
Despite this however, the same principle can be applied to perform control on biological living 
systems for basic research or industrial purposes, and could be potentially extended to higher 
level systems than the cellular level (tissue or cell population level). 
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