
Model order reduction for speeding up
computational homogenisation methods of

type FE2

Olivier Goury, Pierre Kerfriden, Stéphane Bordas
Cardiff University



Outline

Introduction
Heterogeneous materials
Computational Homogenisation

Model order reduction in Computational Homogenisation
Proper Orthogonal Decomposition (POD)
System approximation
Results

Conclusion



Heterogeneous materials

Many natural or engineered materials are heterogeneous

I Homogeneous at the macroscopic length scale
I Heterogeneous at the microscopic length scale



Heterogeneous materials

Need to model the macro-structure while taking the
micro-structures into account

=⇒ better understanding of material behaviour, design, etc..

Two choices:
I Direct numerical simulation: brute force!
I Multiscale methods: when modelling a non-linear materials

=⇒ Computational Homogenisation



Semi-concurrent Computational Homogenisation
(FE2, ...)

Effective strain 

tensor

Macrostructure

Effective strain 

tensor
Effective 

Stress

Effective 

Stress



Problem

I For non-linear materials: Have to solve a RVE boundary
value problem at each point of the macro-mesh where it is
needed. Still expensive!

I Need parallel programming



Strategy

I Use model order reduction to make the solving of the RVE
boundary value problems computationally achievable

I Linear displacement:

εM(t) =

(
εxx (t) εxy (t)
εxy (t) εyy (t)

)
u(t) = εM(t)(x− x̄) + ũ with ũ|Γ = 0

Fluctuation ũ approximated by: ũ ≈
∑

i φiαi



Projection-based model order reduction

The RVE problem can be written:

Fint(ũ(εM(t)), εM(t))︸ ︷︷ ︸
Non-linear

+ Fext(ε
M(t)) = 0 (1)

We are interested in the solution ũ(εM) for many different
values of εM(t ∈ [0,T ]) ≡ εxx , εxy , εyy .

Projection-based model order reduction assumption:

Solutions ũ(εM) for different parameters εM are contained in a
space of small dimension span((φi)i∈J1,nK)



RVE boundary value problem

Matrix

Inclusions



Proper Orthogonal Decomposition (POD)

How to choose the basis [φ1,φ2, . . .] = Φ ?

I “Offline“ Stage ≡ Learning stage : Solve the RVE problem
for a certain number of chosen values of εM

I We obtain a base of solutions (the snapshot):
(u1,u2, ...,unS ) = S

, , , ...
I That snapshot may be large and have linearly dependent

components⇒ Need to extract the core information from it
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I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y
I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y
I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y

I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y
I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y
I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

Js
〈.〉(Φ) =

∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I What is the quantity of interest here? Which scalar product
and norm should we choose?

I The canonic scalar product? ⇒ 〈x,y〉 = xT y
I Some kind of energy scalar product makes more sense:
〈x,y〉 = xT K{τ |τ<t} y

I Simplify to 〈x,y〉 = xT K0 y since we want a fixed basis with
time

I One can prove analytically that the solution is given by the
eigenvectors of K0 S ST K0



Next question: how many vectors should we pick?
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Reduced equations

I Reduced system after linearisation: min
α

‖KΦα + Fext‖

I In the Galerkin framework: ΦT KΦα + ΦT Fext = 0
I That’s it! In the online stage, this much smaller system will

be solved.
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Example

Snapshot selection:
simplify to monotonic loading in εxx , εxy , εyy . 100 snapshots .
First 2 modes:
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Is that good enough?

I Speed-up actually poor
I Equation “ΦT KΦα + ΦT Fext = 0“ quicker to solve but

ΦT KΦ still expensive to evaluate
I Need to do something more =⇒ system approximation



Idea

I Define a surrogate structure that retains only very few
elements of the original one

I Reconstruct the operators using a second POD basis
representing the internal forces
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“Gappy“ technique

Originally used to reconstruct altered signals

I Fint (Φα) approximated by Fint (Φα) ≈ Ψβ

I Fint (Φα) is evaluated exactly only on a few selected
nodes: ̂Fint (Φα)

I β found through: min
β

∥∥∥Ψ̂β − ̂Fint (Φα)
∥∥∥

2
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Conclusion

I Model order reduction can be used to solved the RVE
problem faster and with a reasonable accuracy

I Can be thought of as a bridge between analytical and
computational homogenisation:
the reduced bases are pseudo-analytical solutions of the
RVE problem that is still computationally solved at very
reduced cost



Thank you for your attention!
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