# Model order reduction for speeding up computational homogenisation methods of type $F E^{2}$ 

Olivier Goury, Pierre Kerfriden, Stéphane Bordas
Cardiff University


## Outline

Introduction
Heterogeneous materials
Computational Homogenisation

Model order reduction in Computational Homogenisation
Proper Orthogonal Decomposition (POD)
System approximation
Results

Conclusion

## Heterogeneous materials

Many natural or engineered materials are heterogeneous


- Homogeneous at the macroscopic length scale
- Heterogeneous at the microscopic length scale


## Heterogeneous materials

Need to model the macro-structure while taking the micro-structures into account
$\Longrightarrow$ better understanding of material behaviour, design, etc..

Two choices:

- Direct numerical simulation: brute force!
- Multiscale methods: when modelling a non-linear materials $\Longrightarrow$ Computational Homogenisation


## Semi-concurrent Computational Homogenisation

 ( $\mathrm{FE}^{2}, \ldots$ )

## Problem

- For non-linear materials: Have to solve a RVE boundary value problem at each point of the macro-mesh where it is needed. Still expensive!
- Need parallel programming


## Strategy

- Use model order reduction to make the solving of the RVE boundary value problems computationally achievable
- Linear displacement:

$$
\begin{gathered}
\boldsymbol{\epsilon}^{\mathrm{M}}(t)=\left(\begin{array}{ll}
\epsilon_{x x}(t) & \epsilon_{x y}(t) \\
\epsilon_{x y}(t) & \epsilon_{y y}(t)
\end{array}\right) \\
\mathbf{u}(t)=\epsilon^{\mathrm{M}}(t)(\mathbf{x}-\overline{\mathbf{x}})+\tilde{\mathbf{u}}
\end{gathered} \text { with } \quad \tilde{\mathbf{u}}_{\mid \Gamma}=\mathbf{0} .
$$

Fluctuation ũ approximated by: $\tilde{\mathbf{u}} \approx \sum_{i} \phi_{i} \alpha_{i}$

## Projection-based model order reduction

The RVE problem can be written:

$$
\begin{equation*}
\underbrace{\mathbf{F}_{\mathrm{int}}\left(\underline{\tilde{\mathbf{u}}}\left(\epsilon^{\mathrm{M}}(t)\right), \epsilon^{\mathrm{M}}(t)\right)}_{\text {Non-linear }}+\underline{\mathbf{F}}_{\mathrm{ext}}\left(\epsilon^{\mathrm{M}}(t)\right)=\underline{\mathbf{0}} \tag{1}
\end{equation*}
$$

We are interested in the solution $\underline{\tilde{u}}\left(\epsilon^{\mathrm{M}}\right)$ for many different values of $\epsilon^{\mathrm{M}}(t \in[0, T]) \equiv \epsilon_{x x}, \epsilon_{x y}, \epsilon_{y y}$.

Projection-based model order reduction assumption:
Solutions $\underline{\tilde{u}}\left(\epsilon^{\mathrm{M}}\right)$ for different parameters $\epsilon^{\mathrm{M}}$ are contained in a space of small dimension $\operatorname{span}\left(\left(\phi_{i}\right)_{i \in \llbracket 1, n \rrbracket}\right)$

## RVE boundary value problem



## Proper Orthogonal Decomposition (POD)

How to choose the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi} ?$

## Proper Orthogonal Decomposition (POD)

How to choose the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ ?

- "Offline" Stage $\equiv$ Learning stage : Solve the RVE problem for a certain number of chosen values of $\epsilon^{M}$


## Proper Orthogonal Decomposition (POD)

How to choose the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ ?

- "Offline" Stage $\equiv$ Learning stage : Solve the RVE problem for a certain number of chosen values of $\epsilon^{M}$
- We obtain a base of solutions (the snapshot):
$\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n_{S}}\right)=\mathbf{S}$



## Proper Orthogonal Decomposition (POD)

How to choose the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ ?

- "Offline" Stage $\equiv$ Learning stage : Solve the RVE problem for a certain number of chosen values of $\epsilon^{M}$
- We obtain a base of solutions (the snapshot):
$\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n_{S}}\right)=\mathbf{S}$

- That snapshot may be large and have linearly dependent components $\Rightarrow$ Need to extract the core information from it
- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\text {POD }}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\text {POD }}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- What is the quantity of interest here? Which scalar product and norm should we choose?
- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\mathrm{POD}}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}$
- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\text {POD }}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}$
- Some kind of energy scalar product makes more sense: $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{K}_{\{\tau \mid \tau<t\}} \mathbf{y}$
- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\text {POD }}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}$
- Some kind of energy scalar product makes more sense: $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{K}_{\{\tau \mid \tau<t\}} \mathbf{y}$
- Simplify to $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{K}_{0} \mathbf{y}$ since we want a fixed basis with time
- Find the basis $\left[\phi_{1}, \phi_{2}, \ldots\right]=\boldsymbol{\Phi}$ that minimises the cost function:

$$
\begin{equation*}
\boldsymbol{J}_{\langle.\rangle}^{\mathrm{s}}(\boldsymbol{\Phi})=\sum_{\mu \in \mathcal{P}^{\mathrm{s}}}\left\|\mathbf{u}_{i}-\sum_{k}^{n_{\text {POD }}} \phi_{\mathbf{k}} \cdot\left\langle\phi_{\mathbf{k}}, \mathbf{u}_{i}\right\rangle\right\|^{2} \tag{2}
\end{equation*}
$$

with the constraint $\left\langle\phi_{\mathbf{i}}, \phi_{\mathbf{j}}\right\rangle=\delta_{i j}$

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}$
- Some kind of energy scalar product makes more sense: $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{K}_{\{\tau \mid \tau<t\}} \mathbf{y}$
- Simplify to $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{K}_{0} \mathbf{y}$ since we want a fixed basis with time
- One can prove analytically that the solution is given by the eigenvectors of $\mathbf{K}_{0} \mathbf{S} \mathbf{S}^{T} \mathbf{K}_{0}$


## Next question: how many vectors should we pick?



## Reduced equations

- Reduced system after linearisation: $\min _{\underline{\alpha}}\left\|\mathbf{K \Phi} \boldsymbol{\alpha}+\mathbf{F}_{\text {ext }}\right\|$


## Reduced equations

- Reduced system after linearisation: $\min _{\underline{\alpha}}\left\|\mathbf{K \Phi} \boldsymbol{\alpha}+\mathbf{F}_{\text {ext }}\right\|$
- In the Galerkin framework: $\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi} \boldsymbol{\alpha}+\boldsymbol{\Phi}^{T} \mathrm{~F}_{\mathrm{ext}}=0$


## Reduced equations

- Reduced system after linearisation: $\min _{\alpha}\left\|\mathbf{K \Phi} \boldsymbol{\alpha}+\mathbf{F}_{\text {ext }}\right\|$
- In the Galerkin framework: $\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi} \boldsymbol{\alpha}+\boldsymbol{\Phi}^{T} \mathbf{F}_{\text {ext }}=0$
- That's it! In the online stage, this much smaller system will be solved.


## Example

## Snapshot selection:

 simplify to monotonic loading in $\epsilon_{x x}, \epsilon_{x y}, \epsilon_{y y}$. 100 snapshots . First 2 modes:

UNIVERSITY


## Is that good enough?

- Speed-up actually poor
- Equation " $\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi} \boldsymbol{\alpha}+\boldsymbol{\Phi}^{T} \mathbf{F}_{\text {ext }}=0$ " quicker to solve but $\boldsymbol{\Phi}^{\top} \mathbf{K} \boldsymbol{\Phi}$ still expensive to evaluate
- Need to do something more $\Longrightarrow$ system approximation


## Idea

- Define a surrogate structure that retains only very few elements of the original one



## Idea

- Define a surrogate structure that retains only very few elements of the original one

- Reconstruct the operators using a second POD basis representing the internal forces


## "Gappy" technique

## Originally used to reconstruct altered signals



- $\underline{F}_{\text {int }}(\boldsymbol{\Phi} \alpha)$ approximated by $\underline{F}_{\text {int }}(\boldsymbol{\Phi} \alpha) \approx \boldsymbol{\Psi} \beta$


## "Gappy" technique

Originally used to reconstruct altered signals


- $\mathrm{F}_{\mathrm{int}}(\Phi \alpha)$ approximated by $\mathrm{F}_{\mathrm{int}}(\Phi \alpha) \approx \boldsymbol{\Psi} \beta$
- $\underline{F}_{\text {int }}(\Phi \alpha)$ is evaluated exactly only on a few selected nodes: $\boldsymbol{F}_{\text {int }}(\Phi \alpha)$


## "Gappy" technique

Originally used to reconstruct altered signals


- $\mathrm{F}_{\mathrm{int}}(\Phi \alpha)$ approximated by $\mathrm{F}_{\mathrm{int}}(\Phi \alpha) \approx \boldsymbol{\Psi} \beta$
- $\underline{F}_{\text {int }}(\Phi \alpha)$ is evaluated exactly only on a few selected nodes: $\boldsymbol{F}_{\text {int }}(\Phi \alpha)$
- $\boldsymbol{\beta}$ found through: $\min _{\boldsymbol{\beta}}\left\|\widehat{\boldsymbol{\Psi}} \boldsymbol{\beta}-\underline{\mathbf{F}}_{\mathbf{i n t}} \widehat{(\boldsymbol{\Phi} \boldsymbol{\alpha})}\right\|_{2}$
 UNIVERSITY
prifysgol
CAERDYB


UNIVERSITY
PRIIFSGGL
CAERDY

## Conclusion

- Model order reduction can be used to solved the RVE problem faster and with a reasonable accuracy
- Can be thought of as a bridge between analytical and computational homogenisation: the reduced bases are pseudo-analytical solutions of the RVE problem that is still computationally solved at very reduced cost


## Thank you for your attention!

