Model order reduction for speeding up computational homogenisation methods of type FE²

Olivier Goury, Pierre Kerfriden, Stéphane Bordas Cardiff University

Outline

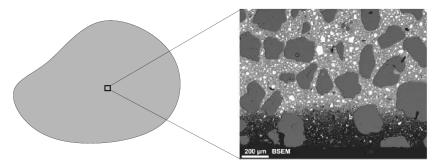
Introduction Heterogeneous materials Computational Homogenisation

Model order reduction in Computational Homogenisation Proper Orthogonal Decomposition (POD) System approximation Results

Conclusion

Heterogeneous materials

Many natural or engineered materials are heterogeneous



- Homogeneous at the macroscopic length scale
- Heterogeneous at the microscopic length scale

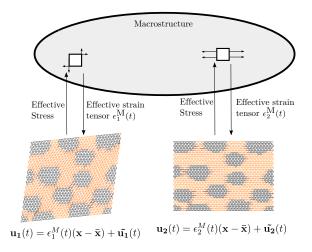
Need to model the macro-structure while taking the micro-structures into account

 \implies better understanding of material behaviour, design, etc..

Two choices:

- Direct numerical simulation: brute force!
- Multiscale methods: when modelling a non-linear materials
 Computational Homogenisation

Semi-concurrent Computational Homogenisation (FE², ...)



Problem

- For non-linear materials: Have to solve a RVE boundary value problem at each point of the macro-mesh where it is needed. Still expensive!
- Need parallel programming

Strategy

- Use model order reduction to make the solving of the RVE boundary value problems computationally achievable
- Linear displacement:

$$\boldsymbol{\epsilon}^{\mathrm{M}}(t) = \begin{pmatrix} \epsilon_{xx}(t) & \epsilon_{xy}(t) \\ \epsilon_{xy}(t) & \epsilon_{yy}(t) \end{pmatrix}$$

$$\mathbf{u}(t) = \epsilon^{\mathrm{M}}(t)(\mathbf{x} - \bar{\mathbf{x}}) + \tilde{\mathbf{u}}$$
 with $\tilde{\mathbf{u}}_{|\Gamma} = \mathbf{0}$

Fluctuation $\tilde{\mathbf{u}}$ approximated by: $\tilde{\mathbf{u}} \approx \sum_{i} \phi_{i} \alpha_{i}$

Projection-based model order reduction

The RVE problem can be written:

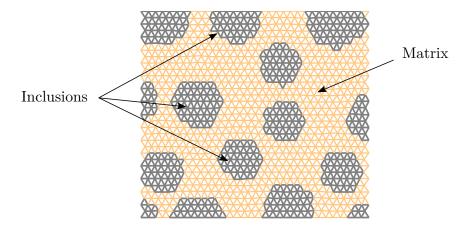
$$\underbrace{\underline{\mathbf{F}}_{\text{int}}(\tilde{\mathbf{u}}(\epsilon^{M}(t)), \epsilon^{M}(t))}_{\text{Non-linear}} + \underline{\mathbf{F}}_{\text{ext}}(\epsilon^{M}(t)) = \underline{\mathbf{0}}$$
(1)

We are interested in the solution $\underline{\tilde{\mathbf{u}}}(\epsilon^{\mathrm{M}})$ for many different values of $\epsilon^{\mathrm{M}}(t \in [0, T]) \equiv \epsilon_{xx}, \epsilon_{xy}, \epsilon_{yy}$.

Projection-based model order reduction assumption:

Solutions $\underline{\tilde{\mathbf{u}}}(\epsilon^{\mathrm{M}})$ for different parameters ϵ^{M} are contained in a space of small dimension $span((\phi_{i})_{i \in [\![1,n]\!]})$

RVE boundary value problem



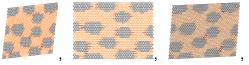
How to choose the basis $[\phi_1, \phi_2, \ldots] = \Phi$?

How to choose the basis $[\phi_1, \phi_2, \ldots] = \Phi$?

► "Offline" Stage = Learning stage : Solve the RVE problem for a certain number of chosen values of ϵ^M

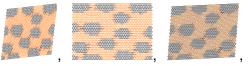
How to choose the basis $[\phi_1, \phi_2, \ldots] = \Phi$?

- "Offline" Stage \equiv Learning stage : Solve the RVE problem for a certain number of chosen values of ϵ^M
- ► We obtain a base of solutions (the snapshot): (u₁, u₂, ..., u_{n_S}) = S



How to choose the basis $[\phi_1, \phi_2, \ldots] = \Phi$?

- "Offline" Stage \equiv Learning stage : Solve the RVE problem for a certain number of chosen values of ϵ^M
- ► We obtain a base of solutions (the snapshot): (u₁, u₂, ..., u_{n_s}) = S



► That snapshot may be large and have linearly dependent components ⇒ Need to extract the core information from it

$$J^{\rm s}_{\langle . \rangle}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{k}^{n_{\rm POD}} \phi_{\mathbf{k}}. \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

$$J_{\langle . \rangle}^{\rm s}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{k}^{n_{\rm POD}} \phi_{\mathbf{k}}. \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

with the constraint $\left< \phi_{\mathbf{i}}, \phi_{\mathbf{j}} \right> = \delta_{ij}$

What is the quantity of interest here? Which scalar product and norm should we choose?

$$J_{\langle . \rangle}^{\rm s}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{k}^{n_{\rm POD}} \phi_{\mathbf{k}}. \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$

$$J_{\langle . \rangle}^{\rm s}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{k}^{n_{\rm POD}} \phi_{\mathbf{k}}. \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

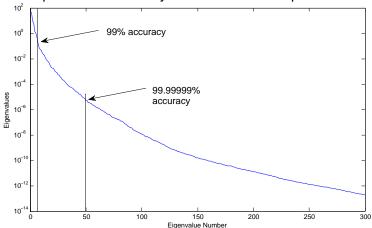
- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$
- ► Some kind of energy scalar product makes more sense: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{K}_{\{\tau | \tau < t\}} \mathbf{y}$

$$J_{\langle . \rangle}^{\rm s}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{k}^{n_{\rm POD}} \phi_{\mathbf{k}}. \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$
- ► Some kind of energy scalar product makes more sense: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{K}_{\{\tau | \tau < t\}} \mathbf{y}$
- ► Simplify to (x, y) = x^TK₀ y since we want a fixed basis with time

$$J^{\rm s}_{\langle . \rangle}(\mathbf{\Phi}) = \sum_{\mu \in \mathcal{P}^{\rm s}} \|\mathbf{u}_i - \sum_{\mathbf{k}}^{n_{\rm POD}} \phi_{\mathbf{k}} \cdot \langle \phi_{\mathbf{k}}, \mathbf{u}_i \rangle \|^2$$
(2)

- What is the quantity of interest here? Which scalar product and norm should we choose?
- The canonic scalar product? $\Rightarrow \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$
- ► Some kind of energy scalar product makes more sense: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{K}_{\{\tau | \tau < t\}} \mathbf{y}$
- ► Simplify to (x, y) = x^TK₀ y since we want a fixed basis with time
- ► One can prove analytically that the solution is given by the CARDIFF eigenvectors of K₀ S S^TK₀



Next question: how many vectors should we pick?

Reduced equations

► Reduced system after linearisation: $\min_{\alpha} \| \mathbf{K} \mathbf{\Phi} \, \alpha + \mathbf{F}_{\mathsf{ext}} \|$

Reduced equations

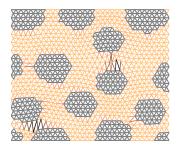
- ► Reduced system after linearisation: min $\|\mathbf{K} \Phi \alpha + \mathbf{F}_{ext}\|$
- In the Galerkin framework: $\mathbf{\Phi}^T \mathbf{K} \mathbf{\Phi} \alpha + \mathbf{\Phi}^T \mathbf{F}_{ext} = 0$

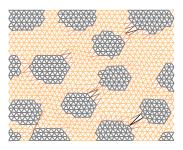
Reduced equations

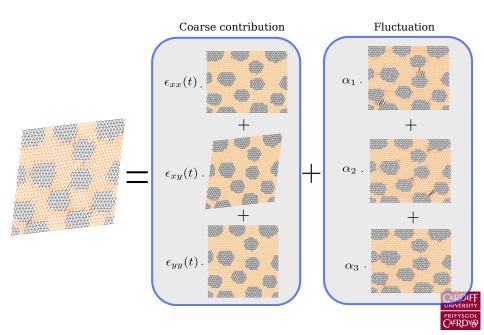
- ► Reduced system after linearisation: min $\|\mathbf{K} \Phi \alpha + \mathbf{F}_{ext}\|$
- In the Galerkin framework: $\mathbf{\Phi}^T \mathbf{K} \mathbf{\Phi} \alpha + \mathbf{\Phi}^T \mathbf{F}_{ext} = 0$
- That's it! In the online stage, this much smaller system will be solved.

Example

Snapshot selection: simplify to monotonic loading in ϵ_{xx} , ϵ_{xy} , ϵ_{yy} . 100 snapshots . First 2 modes:







Is that good enough?

- Speed-up actually poor
- Equation "Φ^T KΦ α + Φ^T F_{ext} = 0" quicker to solve but Φ^T KΦ still expensive to evaluate
- ► Need to do something more ⇒ system approximation

Idea

 Define a surrogate structure that retains only very few elements of the original one

Idea

 Define a surrogate structure that retains only very few elements of the original one

 Reconstruct the operators using a second POD basis representing the internal forces

"Gappy" technique

Originally used to reconstruct altered signals

• $\underline{\mathbf{F}}_{int} (\Phi \alpha)$ approximated by $\underline{\mathbf{F}}_{int} (\Phi \alpha) \approx \Psi \beta$

"Gappy" technique

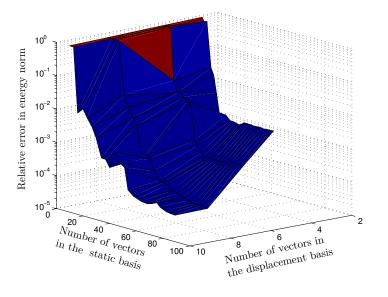
Originally used to reconstruct altered signals

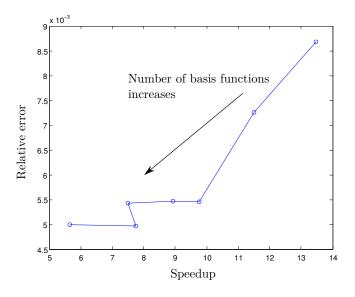
- $\underline{F}_{int}(\Phi \alpha)$ approximated by $\underline{F}_{int}(\Phi \alpha) \approx \Psi \beta$
- E_{int} (Φ α) is evaluated exactly only on a few selected nodes: E_{int} (Φ α)

"Gappy" technique

Originally used to reconstruct altered signals

- $\underline{\mathbf{F}}_{int} (\Phi \alpha)$ approximated by $\underline{\mathbf{F}}_{int} (\Phi \alpha) \approx \Psi \beta$
- ► <u>F</u>_{int} (Φ α) is evaluated exactly only on a few selected nodes: <u>F</u>_{int} (Φ α)
- β found through: $\min_{\beta} \left\| \widehat{\Psi} \beta \underline{\mathbf{F}}_{int}(\widehat{\Phi} \alpha) \right\|_2$





Conclusion

- Model order reduction can be used to solved the RVE problem faster and with a reasonable accuracy
- Can be thought of as a bridge between analytical and computational homogenisation: the reduced bases are pseudo-analytical solutions of the RVE problem that is still computationally solved at very reduced cost

Thank you for your attention!

