Interaction of graphene with metallic and semiconductor surfaces. Ab initio approach to the lattice dynamics

<u>Alejandro Molina-Sánchez</u>, Henrique Miranda and Ludger Wirtz

Interaction graphene/substrate

- Graphene has interesting properties
 - Test bench for fundamental physics.
- Response of graphene to the substrate interaction
 - Boron nitride, silicon carbide, iridium.
 - Raman and electron energy loss spectroscopy.
 - · Lattice dynamics. Density functional theory and GW
 - Attachment graphene/surface.
 - Influence of dielectric screening.
 - Persistence (or not) of some graphene fingerprints (Kohn anomaly, Dirac cone, etc).

Graphene@BN

Boron nitride is one of the suitable substrates to keep intrinsic graphene

2D-line comes from a 2-phonon process

Lazzeri et. al. Phys. Rev. B 78, 081406 (2008) S. Berciaud et. al., Nano Lett. 10, 4074 (2010)

Calculation in "sandwich" graphene (conserving symmetry)

Slope of the TO phonon at K is proportional to the electron-phonon coupling.
GW approximation must be used.

 $\langle D_{\mathbf{K}}^2 \rangle_F = \lim_{d \to 0} \frac{1}{8} \left(\frac{\Delta E_{\mathbf{K}}}{d} \right)^2$

Graphene@BN

	graphene	on BN
$D_{\kappa}(LDA)$	89.25	86.00
$\overline{D_{\kappa}(GW)}$	207.88	191.27

Dielectric screening reduces the bandgap and the strength of the electron-phonon coupling.

- The slope of the optical phonon branch decreases.
- This also explains the down-shift in suspended graphene.
 Nano Lett. 1, 346 (2009).

- Our approach can be tested by making a BN-graphene-BN sandwich.
- We observe double up-shift for the 2D-line.

Dielectric screening is the responsible of the up-shift.

Graphene@SiC. Buffer layer

Contribution of the buffer layer to the Raman spectrum from epitaxial graphene on SiC?

- Hybridization π -states and SiC states.
- Spectra are not compose of discrete peaks.
- Resemble a density of states?

Substraction of SiC spectra

Graphene@SiC. Buffer layer

- Strong bonding C-Si: buckling of 0.04 nm
- Large cell to commensurate graphene and SiC
- Performing calculations in large supercells is like an origami, we fold the dispersion relation.
- We need to unfold the phonon modes to make easier the interpretation of our results.

Graphene@SiC. Buffer layer

DOS can be compared with Raman spectra

Different with respect to hBN

Graphene@Iridium(111)

of ZA mode at Γ

- Graphene is very detached (d=3.5 nm)
- Lattice parameters are not commensurate.
 Ir(111) = 5.131Bohr, Graphene = 4.630 Bohr
- Formation of Moiré patterns
- Calculations in large supercells

Diffraction spots: longrange Moiré pattern

Calculations performing with LDA.

Graphene unit cell, compressing iridium.

M. Endlich, AMS, L. Wirtz, J. Kröger. Phys. Rev. B 88, 205403 (2013)

Graphene@Iridium(111)

- LDA calculations in graphene unit cell.
- The metallic screening cancels almost entirely the GW correction.

	graphene	on Ir	on BN
D _K (LDA)	89.25	89.25	86.00
$D_{\kappa}(GW)$	207.88	131.75	191.27

- Variation of the local environment produces a corrugation in graphene.
- Number of atoms in unit cell exceeds the limit of application of ab-initio methods.
- Empirical methods. Force constant model.

Graphene@Iridium(111)

Preliminar results for a 8x8-graphene unit cell (177 atoms)

Corrugation is still missing in the modeling Graphene phonon bands are almost unchanged

Conclusions and future work

 Lattice dynamics gives valuable information about attachment of graphene, screening, and conservation of intrinsic properties.

Acknowledgements

- F. Fromm and T. Seyller (U. Chemnitz, DE).
- F. Forster and C. Stampfer (U. Aachen, DE).
- M. Endlich and J. Kröger (TU Ilmenau, DE).

Conclusions and futur

nemnitz, DE).

npfer (U. Aachen, DE).

J. Kröger (TU Ilmenau, DE).

• M