

Faculty of Science, Technology and
Communication

Computer Science/ Telecommunications
University of Luxembourg

6, rue Coudenhove-Kalergi
L-1359 Luxembourg

TR_LASSY_14_03
April 2014

Slicing High-level Petri nets

Yasir Imtiaz Khan

Slicing High-level Petri nets

Yasir Imtiaz Khan and Nicolas Guelfi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,nicolas.guelfi}@uni.lu

Abstract. High-level Petri nets (evolutions of low-level Petri nets) are
well suitable formalisms to represent complex data, which influence the
behavior of distributed, concurrent systems. However, usual verification
techniques such as model checking and testing remain an open challenge
for both (i.e., low-level and high-level Petri nets) because of the state
space explosion problem and test case selection. The contribution of this
paper is to propose a technique to improve the model checking and test-
ing of systems modeled in Algebraic Petri nets (a variant of high-level
petri nets). To achieve the objective, we propose different slicing algo-
rithms for Algebraic Petri nets. We argue that our slicing algorithms
significantly improve the state of the art related to slicing APNs and can
also be applied to low-level Petri nets with the slight modifications. We
exemplify our proposed algorithms through a running case study of a car
crash management system.

Key words: High-level Petri nets, Model checking, Testing, Slicing

1 Introduction

Petri nets are well known low-level formalism for modeling and verifying dis-
tributed, concurrent systems. The major drawback of low-level Petri nets for-
malism is their inability to represent complex data, which influences the behavior
of a system. Various evolutions of low-level Petri nets (PNs) have been created
to raise the level of abstraction of PNs. Among others, high-level Petri nets
(HLPNs) raise the level of an abstraction of PNs by using complex structured
data [15]. However, HLPN can be unfolded (i.e., translated) into a behaviourally
equivalent PNs.

For the analysis of concurrent and distributed systems (including those are
modeled using PNs or HLPNs) model checking is a common approach, consisting
in verifying a property against all possible states of a system. However, model
checking remains an open challenge for both (PNs & HLPNs) because of the
state space explosion problem. As systems get moderately complex, completely
enumerating their states demands a growing amount of resources, which in some
cases makes model checking impractical both in terms of time and memory
consumption [2,4,9,18]. This is particularly true for HLPN models, as the use of
complex data (with possibly large associated data domains) makes the number
of states grow very quickly.

2 Yasir Imtiaz Khan and Nicolas Guelfi

An intense field of research is targeting to find ways to optimize model check-
ing, either by reducing the state space or by improving the performance of model
checkers. In recent years major advances has been made by either modularizing
the system or by reducing the states to consider (e.g., partial orders, symmetries).
The symbolic model checking partially overcomes this problem by encoding the
state space in a condensed way by using Decision Diagrams and has been success-
fully applied to PNs [1,2]. Among others, Petri net slicing (PN slicing) has been
successfully used to optimize the model checking and testing [3, 7, 8, 10–14, 19].
PN slicing is a syntactic technique used to reduce a Petri net model based on
the given criteria. The given criteria refer to the point of interest for which Petri
net model is analyzed. The sliced part constitutes only that part of the Petri net
model that may affect the given criteria.

One limitation of the proposed slicing algorithms in the literature so far is
that most of them are only applicable to low-level Petri nets. Recently, an al-
gorithm for slicing Algebraic Petri nets has been proposed [8]. The objective of
proposed algorithm is to optimize the model checking of APNs by slicing par-
tially unfolded APNs. To the best of our knowledge there does not exist any
proposal for slicing APNs in the context of testing. In this work, we propose dif-
ferent slicing algorithms to improve the model checking and testing of APNs. We
highlight the significant differences of slicing constructions and their evaluations
and applications contexts. We argue that our slicing algorithms significantly im-
prove the state of the art related to slicing APNs. Our slicing algorithms can
also be applied to low-level Petri nets with the slight modifications.

The remaining part of the paper is structured as follows: in the section 2
we give formal definitions necessary for the understanding of proposed slicing
algorithms. In the section 3, different slicing algorithms are presented together
with their formal and informal descriptions. In the section 4, we discuss related
work and a comparison with the existing approaches. A small case study from
the domain of crisis management system (a car crash management system) is
taken to exemplify the proposed slicing algorithms in section 5. An experimental
evaluation of the proposed algorithms is performed in section 6. In the section 7,
we draw conclusions and discuss future work concerning to the proposed work.

2 Basic Definitions

Algebraic Petri nets are an evolution of low-level Petri nets. APNs has two
aspects, i.e., the control aspect, which is handled by a Petri Net and the data
aspect, which is handled by one or many algebraic abstract data types (AADTs).
(Note: we refer the interested reader to Appendix for the details on algebraic
specifications used in the formal definition of APNs for our work.) [5,13,15,16].

Definition 1. A marked Algebraic Petri Net APN =< SPEC,P, T, f, asg, cond,
�,m0 > consist of
� an algebraic specification SPEC = (⌃,E), where signature ⌃ consists of

sorts S and operation symbols OP and E is a set of ⌃equations defining the
meaning of operations,

Slicing High-level Petri nets 3

� P and T are finite and disjoint sets, called places and transitions, resp.,
� f ✓ (P ⇥ T) [(T ⇥ P), the elements of which are called arcs,
� a sort assignment asg : P ! S,
� a function, cond : T ! Pfin(⌃ � equation), assigning to each transition a

finite set of equational conditions.
� an arc inscription function � assigning to every (p,t) or (t,p) in f a finite

multiset over TOP,asg(p), where TOP,asg(p) are algebraic terms (if used “closed”(resp.free)
terms to indicate if they are build with sorted variables closed or not),
� an initial marking m0 assigning a finite multiset over TOP,asg(p) to every

place p.

Definition 2. The preset of p 2 P is •p = {t 2 T |(t, p) 2 f} and the postset
of p is p• = {t 2 T |(p, t) 2 f}. The pre and post sets of t 2 T defined as: •t
= {p 2 P |(p, t) 2 f} and t• = {p 2 P |(t, p) 2 f}.

Definition 3. Let m and m0 two markings of APN and t a transition in T then
< m, t,m0 > is a valid firing triplet (denoted by m[tim0) iff

1) 8p 2• t | m(p) � �(p, t) (i.e., t is enabled by m).
2)8p 2 P | m0(p) = m(p)� �(p, t) + �(t, p).

3 Slicing Algorithms

PN slicing is a technique used to syntactically reduce a PN model in such a
way that at best the reduced PN model contains only those parts that may
influence the property the PN model is analyzed for. Considering a property
over a Petri net, we are interested to define a syntactically smaller net that
could be equivalent with respect to the satisfaction of the property of interest.
To do so the slicing technique starts by identifying the places directly concerns
by the property. These places constitute the slicing criterion. The algorithm
then keeps all the transitions that create or consume tokens from the criterion
places, plus all the places that are pre-condition for those transitions. This step
is iteratively repeated for the latter places, until reaching a fixed point.

Roughly, we can divide PN slicing algorithms into two major classes, which
are Static Slicing algorithms and Dynamic Slicing algorithms. An algorithm is
said to be static if the initial markings of places are not considered for building
the slice. Only a set of places are considered as a slicing criterion. The Static
Slicing algorithms starts from the given criterion place and includes all the pre
and post set of transitions together with their incoming places. There may exist
sequence of transitions in the resultant slice that are not fireable because their
incoming places are not initially marked and do not get markings from any other
way. An algorithm is said to be dynamic slicing algorithm, if the initial markings
of places are considered for building the slice. The slicing criterion will utilize
the available information of initial markings and produce more smaller slice. For
a given slicing criterion that consist of initial markings and a set of places for a
PN model, we are interested to extract a subnet with those places and transitions
of PN model that can contribute to change the marking of criterion place in any

4 Yasir Imtiaz Khan and Nicolas Guelfi

execution starting from initial marking. The resultant slice will exclude sequence
of transitions in the resultant slice that are not fireable because their incoming
places are not initially marked and do not get markings from any other way.

One characteristic of APNs that makes them complex to slice is the use
of multiset of algebraic terms over the arcs. In principle, algebraic terms may
contain the variables. Even though, we want to reach a syntactically reduced net,
its reduction by slicing needs to determine the possible ground substitutions of
these algebraic terms.

We follow [8] to partially unfold the APN first and then perform the slicing on
the unfolded APN. In general, unfolding generates all possible firing sequences
from the initial marking of the APN, though maintaining a partial order of
events based on the causal relation induced by the net, concurrency is preserved.
AlPiNA (a symbolic model checker for Algebraic Petri nets) allows the user to
define partial algebraic unfolding and presumed bounds for infinite domains [1],
using some aggressive strategies for reducing the size of large data domains. The
complete description of the partial unfolding for APNs is out of the scope, for
further details and description about the partial unfolding used in our approach,
we refer the interested reader to follow [1, 8]. Fig. 1 shows an APN model. All
places and all variables over the arcs are of sort naturals (defined in the algebraic
specification of the model, and representing the N set). Since the N domain is
infinite (or anyway extremely large even in its finite computer implementations),
it is clear that it is impractical to unfold this net by considering all possible
bindings of the variables to all possible values in N. However, given the initial
marking of the APN and its structure it is easy to see that none of the terms on
the arcs (and none of the tokens in the places) will ever assume any natural value
above 3. For this reason, following [1], we can set a presumed bound of 3 for the
naturals data type, greatly reducing the size of the data domain. By assuming

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x
x x

y
x

yy
y

y

z

zz

B

C

E

D

F

G

Fig. 1. An example APN model (APNexample)

this bound, the unfolding technique in [1] proceeds in three steps. First, the
data domains of the variables are unfolded up to the presumed bound. Second,
variable bindings are computed, and only those are kept that satisfy the guards.

Slicing High-level Petri nets 5

Third, the computed bindings are used to instantiate a binding-specific version
of the transition. The resulting unfolded APN for this APN model is shown in
Fig. 2. The transitions arcs are indexed with the incoming and outgoing values
of tokens.

A
[1,2] t12

t13

t11
B

t21

t23

t22

t51,2
t51,3

t53,3

t51,1

[1]

C

G

t52,1
t52,2
t52,3
t53,1
t53,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]
t31,3

t31,2

t31,1

t32,1

t43

D

F

t33,1
t33,2
t33,3

t32,3

t32,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

t42

t41
2

1
2

3

1
1
1
2
2

2

3

3

1

2
3
1

2

3

1

2

3

3

Fig. 2. The unfolded example APN model (UnfoldedAPN)

3.1 Abstract Slicing on Unfolded APNs

Abstract slicing has been defined as a static slicing algorithm. The objective is to
improve the model checking of APNs. In the previous static algorithm proposed
for APNs, the conception of reading and non-reading transitions is applied to
refine the slicing results. The basic idea of reading and no-reading transitions
was coined by Astrid Rakow in the context of PNs [14], and later adapted in
the context of APNs in [8]. Informally, the reading transitions are a subset of
transitions set in PNs and are not subject to change the marking of a place. On
the other hand the non-reading transitions are supposed to change the markings
of a place (see Fig.3). To identify a transition to be a reading or non-reading in a
low-level or high-level Petri nets, we compare the arcs inscriptions attached over
the incoming and outgoing arcs from transition to place and place to transition.
Excluding reading transitions and including only non-reading transitions reduces
the slice size.

Definition 4. (Reading(resp.Non-reading) transitions of APN) Let t 2
T be a transition in an unfolded APN. We call t a reading-transition iff its firing
does not change the marking of any place p 2 (•t [t•) , i.e., iff 8p 2 (•t [

6 Yasir Imtiaz Khan and Nicolas Guelfi

t•),�(p, t) = �(t, p). Conversely, we call t a non-reading transition iff �(p, t) 6=
�(t, p).

We extend the existing slicing operators by using the notion of neutral transitions
together with the reading transitions. Informally, a neutral transition consumes
and produces the same token from its incoming place to an outgoing place. The
cardinality of incoming and outgoing arcs of a neutral tranistion is strictly equal
to one and the cardinality of outgoing arcs from an incoming place of a neutral
transition is equal to one as well.

Definition 5. (Neutral transitions of APN) Let t 2 T be a transition in an
unfolded APN. We call t a neutral-transition iff it consumes token from a place
p 2• t and produce the same token to p0 2 t•, i.e., t 2 T ^ 9p9p0|p 2• t ^ p0 2
t• ^ |p•| = 1 ^ |•t| = 1 ^ |t•| = 1 ^ �(t, p) = �(t, p0).

[]t1
2

P2
[2]

2
P1

t1[3]
3P1

3

Neutral Transition Reading Transition

Fig. 3. Neutral and Reading transitions of Unfolded APN

Abstract Slicing Algorithm The abstract slicing algorithm starts with an
unfolded APN and a slicing criterion Q ✓ P . Let Q ✓ P be a set, containing
crietrion place(s). We build a slice for an unfolded APN based on Q by applying
following algorithm:

Slicing High-level Petri nets 7

Algorithm 1: Abstract slicing algorithm
AbsSlicing(hSPEC,P, T, F, asg, cond,�,m0i, Q){
T 0 {t 2 T | 9p 2 Q ^ t 2 (•p [p•) ^ �(p, t) 6= �(t, p)};
P 0 Q [{•T 0} ;
Pdone ; ;
while ((9p 2 (P 0 \ Pdone)) do

while (9t 2 ((•p [p•) \ T 0) ^ �(p, t) 6= �(t, p)) do

P 0 P 0 [{•t};
T 0 T 0 [{t};

end

Pdone Pdone [{p};
end

while (9t9p9p0|t 2 T 0 ^ p 2• t ^ p0 2 t• ^ |•t| = 1 ^ |t•| = 1 ^ |p•| = 1
^p 62 Q ^ p0 62 Q ^ �(p, t) = �(t, p0)) do

m(p0) m(p0) [m(p);
�(t, p0) �(t, p0) [�(t, p);
while (9t0 2• t|t0 2 T 0) do

�(p0, t) �(p0, t) [�(p, t0);
T 0 T 0 \ {t 2 T 0|t 2 p• ^ t 2• p0};
P 0 P 0 \ {p};

end

end

return hSPEC,P 0, T 0, F|P 0,T 0 , asg|P 0 , cond|T 0 ,�|P 0,T 0 ,m0|P 0
i;

}

In the Abstract slicing algorithm, initially T 0 (representing transitions set of
the slice) contains the set of all pre and post transitions of the given criterion
place. Only the non-reading transitions are added to T 0 set. And P0(representing
the places set of the slice) contains all the preset places of the transitions in T 0.
The algorithm then iteratively adds other preset transitions together with their
preset places in the T 0 and P 0. Then the neutral transitions are identified and
their pre and post places are merged to one place together with their markings.

Considering the APN-Model shown in fig. 1, let us now take two example
properties (i.e., one from the class of safety properties and one from liveness
properties) and apply our proposed algorithm on them. Informally, we can define
the properties:

'1 : “The values of tokens inside place D are always smaller than 5”.
'2 : “Eventually place D is not empty”.

Formally, we can specify both properties in CTL as:
'1 = AG(8tokens 2 D|tokens < 5).
'2 = AF(|D| = 1).
For both properties, the slicing criterion Q = {D}, as D is the only place

concerned by the properties. The resultant sliced nets can be observed in fig.4,
which are smaller than the original Unfolded net (shown in fig.2).

8 Yasir Imtiaz Khan and Nicolas Guelfi

[1,2]

B
t21

t23

t22 [] t42

D 11

2

3

1

2

3

t43

t41

2

3

Sliced net for Property '1 '2and

Fig. 4. The sliced unfolded APNs (by applying abstract slicing)

Table 1. Comparison of number of states required to verify the property with and
without abstract slicing

Properties No of states required
without slicing

No of states required
with slicing

'1 148 9

'2 148 9

Let us compare the number of states required to verify the given property
without slicing and after applying abstract slicing. In the first column of Table.1,
number of states are given that are required to verify the property without slicing
and in the second column number of states are given to verify the property by
slicing.

The abstract slicing can be applied to low-level Petri nets with slight modifi-
cations. The criterion to build abstract slice for both formalisms (i.e., Algebraic
Petri nets and low-level Petri nets) remain the same. In case of low-level Petri
nets, we do not unfold the net and the slice is built directly. The idea of includ-
ing non-reading transitions together with the merging of places by identifying
neutral transitions remains same for both formalisms.

Abstract Slicing on APN without unfolding Abstract slicing extends the
previous proposal of APNs slicing by unfolding the APN and then slicing the
unfolded APN. One major criticism on the abstract slicing and previous slicing
construction is the complexity of unfolding of APNs. As discussed in the previ-
ous section, APNs are unfolded to identify the reading transitions(resp. neutral
transitions) such that a more refined slice can be obtained. We can avoid the com-
plexity of unfolding APNs and can perform slicing directly on APNs with a slight
trade-off. It is important to note that by applying abstract slicing directly on
APNs, the reusltant slice may end up with some reading transitions(resp.neutral
transitions) included. This is due the fact that arc inscriptions are syntactically
compared to identify reading transitions(resp. neutral transitions) in slicing al-

Slicing High-level Petri nets 9

gorithm. In Fig.5, two reading transitions(resp. neutral transitions) can be ob-
served, abstract slicing will not consider the transition i.e., shown in the right
side of figure as a reading transition(resp. neutral transitions). This is a slight
trade off to avoid the complexity of unfolding. Although, based on our expe-
rience to study different APN models, this is a rare situation to find reading
transitions(resp. neutral transitions) that are semantically non-reading transi-
tions(resp. non-neutral transitions). Abstract slicing algorithm can be directly
appliled to APNs without any change in the syntax.

t1[1]
xP1

y
Syntactically and semantically

reading transition
Syntactically non-reading but semantically

reading transition

t1[1]
xP1

x
x=y

Syntactically and semantically
neutral transition

Syntactically non-neutral but semantically
neutral transition

t1[1]
x

P1 x
x=y

[]

P2
t1[1]

x
P1 y

[]

P2

Fig. 5. Syntactically reading (resp. neutral) and non-reading (resp. non-neutral) tran-
sitions of APNs

3.2 Proof of the preservation of properties

The APNs has more behaviours than the sliced APNs, as we discard some be-
haviours intentionally. We impose fairness assumption for the APNs to satisfy
the property.

Theorem 1. Let apn be a marked APN and apn0 be its sliced net for a slicing
criterion Q ✓ P . Let ' be a CTL and be a CTL�X formula.

apn |=sf ') apn0 |= '.
apn |=sf (apn0 |= .

The theorem has been proved already in [8]. The proof idea is by showing the
equivalence of maximal firing sequences of both the sliced and original APN.

Lemma 1. Let apn0 be a marked APN and Q be a slicing criteria such that
Q ✓ P . Let apn = APNSlice(apn0, Q) and apn0 = AbstractSlice(apn0, Q). Let
t be a neutral transition of the apn between p1 and p2. Let m and m0 be two
markings of apn and apn0. p1 62 Q^p2 62 Q) m0(p1p2) = m(p1)+m(p2), where
(p1p2) 2 P 0 and m0(x) = m(x) for every x 2 P 0 \ {(p1p2)}.

Proof. Let t be a neutral transition. The markings of the places that are pre
and post of a neutral transition are combined by abstract slicing algorithm (see

10 Yasir Imtiaz Khan and Nicolas Guelfi

Alg.2). By construction, it is guaranteed that the markings of a combined place
in the abstract slice is equal to the sum of pre and post places of a neutral
transition (in the APNsliced net) if pre or post places are not the criterion
places.

Theorem 2. Let apn0 be a marked APN and Q be a slicing criteria such that
Q ✓ P . Let apn = APNSlice(apn0, Q) and apn0 = AbstractSlice(apn0, Q) be
two sliced APNs. Let ' be a CTL formula.

apn |= ', apn0 |= '.

Proof. We prove this theorem by contradiction. Let us assume to the contrary
that apn |= ') apn0 6|= '. Intuitively, there exists a state (i.e., reachable
markings) in the reachability graph that violates the property satisfaction. Let
us assume that there exists such reachable marking m0 in the abstract sliced
APN that violates the property. There are two possible cases to get such kind
of markings. The first is to combine the places and the pre place of a neutral
transition is the criterion place. The second is when the post place is the criterion
place. Since, for both the cases, we can not combine the places if any of the
pre or post places are in the criterion place by Lemma 1. Thus there does not
exist any reachable state that violates the property in abstract sliced APN.
So, we conclude that apn |= ') apn0 |= '. Analogously, we can prove that
apn |= ') apn0 |= �.

3.3 Concerned Slicing

Concerned slicing algorithm has been defined as a dynamic slicing algorithm.
The objective is to extract a subnet with those places and transitions of APN
model that can contribute to change the markings of a given criterion place
in any execution starting from the initial markings for certain specific values.
Concerned slicing can be useful in the debugging. Consider for instance that the
user is analyzing a particular trace of the marked APN model (using a simulation
tool), so that erroneous state is reached.

The slicing criterion to build the concerned slice is different as compared
to the abstract slicing algorithm. In the concerned slicing algorithm, available
information about the initial markings and a presumed bound is utilized to
produce the smaller slice.

Slicing High-level Petri nets 11

Algorithm 2: Concerned slicing algorithm
ConcernSlicing(hSPEC,P, T, F, asg, cond,�,m0i, Q){
T 0 ;;
P 0 Q ;
while (•P 6= T 0) do

P 0 P 0 [• T 0 ;
T 0 T 0 [• P 0;

end

T 00 {t 2 T 0 | m0[ti};
P 00 {p 2 P 0 | m0(p) > 0} [T 00• ;
Tdo {t 2 T 0 \ T 00 |• t ✓ P 00};
while Tdo 6= ;) do

P 00 P 00 [T •
do ;

T 00 T 00 [Tdo ;
Tdo {t 2 T 0 \ T 00 |• t ✓ P 00};

end

return hSPEC,P 00, T 00, F|P 00,T 00 , asg|P 00 , cond|T 00 ,�|P 00,T 00 ,m0|P 00
i;

}

Starting from the criterion place the algorithm iteratively include all the
incoming transitions together with their input places until reaching a fix point.
Then starting from the set of initially marked places set the algorithm proceeds
further by checking the enabled transitions. Then the post set of places are
included in the slice. The algorithm computes the paths that may be followed
by the tokens of the initial marking.

Considering the APN-Model shown in fig. 1, let us now take the place D
as criterion and apply our proposed algorithm on it. The resultant sliced APN-
Model is shown in the fig. 6

[]

A

x

[]

[1,2]

t1

[1,2]

t3

t2

x
x x

yy

z

B

E

D

Fig. 6. The sliced APN by applying concerned slicing

12 Yasir Imtiaz Khan and Nicolas Guelfi

4 Related Work

The term slicing was coined by M.Weiser for the first time in the context of
program debugging [20]. According to Wieser proposal a program slice (PS) is a
reduced, executable program that can be obtained from a program P based on
the variables of interest and line number by removing statements such that PS
replicates part of the behavior of program.

To explain the basic idea of program slicing according to Wieser [20], let us
consider an example program shown in Fig.7,. Fig.6(a) shows a program which
requests a positive integer number n and computes the sum and the product of
the first n positive integer numbers. We take as slicing criterion a line number
and a set of variables, C = (line10, {product}).

Fig.6(b) shows sliced program that is obtained by tracing backwards possible
influences on the variables: In line 7, product is multiplied by i, and in line 8, i
is incremented too, so we need to keep all the instructions that impact the value
of i. As a result all the computations that do not contribute to the final value
of product have been sliced away (interested reader can find more details about
program slicing from [17,21]).

Fig. 7. An example program and sliced program w.r.t. given criterion

The first algorithm about Petri net slicing was presented by Chang et al [3].
They proposed an algorithm on Petri nets testing that slices out all sets of
paths, called concurrency sets, such that all paths within the same set should
be executed concurrently. Lee et al. proposed the Petri nets slice approach in
order to partition huge place transition net models into manageable modules,
so that the partitioned model can be analyzed by compositional reachability
analysis technique [10]. Llorens et al. introduced two different techniques for
dynamic slicing of Petri nets [11]. In the first technique of Llorens et al. the
Petri net and an initial marking is taken into account, but produces a slice w.r.t.
any possibly firing sequence. The second approach further reduces the computed

Slicing High-level Petri nets 13

slice by fixing a particular firing sequence. Wangyang et al presented a backward
dynamic slicing algorithm [19]. The basic idea of proposed algorithm is similar
to the algorithm proposed by Lloren et al, [11]. At first for both algorithms, a
static backward slice is computed for a given criterion place(s). Secondly, in case
of Llorens et al a forward slice is computed for the complete Petri net model
whereas in case of Wangyang et al forward slice is computed for the resultant
Petri net model obtained from static backward slice.

Astrid Rakow developed two flavors of Petri net slicing, CTL⇤
�X slicing and

Safety slicing in [14]. The key idea behind the construction is to distinguish
between reading and non-reading transitions. A reading transition t 2 T can
not change the token count of place p 2 P while other transitions are non-
reading transitions. For CTL⇤

�X slicing, a subnet is built iteratively by taking
all non-reading transitions of a place P together with their input places, start-
ing with given criterion place. And for the Safety slicing a subnet is built by
taking only transitions that increase token count on places in P and their input
places. CTL⇤

�X slicing algorithm is fairly conservative. By assuming a very weak
fairness assumption on Petri net it approximates the temporal behavior quite
accurately by preserving all CTL⇤

�X properties and for safety slicing focus is on
the preservation of stutter-invariant linear safety properties only.

Khan et al presented slicing technique for algebraic Petri nets (a variant of
high-level net) [8]. They argued that all the slicing constructions are limited
to low-level Petri nets and cannot be applied as it is to the high-level Petri
nets. In order to be applied to high-level Petri nets they need to be adapted
to take into account the data types. In algebraic Petri nets (APNs), terms may
contain the variables over the arcs from place to transitions (or transitions to
places) or guard conditions. Authors proposed to unfold the APN to know the
ground substitutions of the variables. They used a particular unfolding approach
developed by SMV group i.e., a partial unfolding [1]. Perhaps, the proposed
approach is independent of any unfolding approach. The algorithm proposed for
slicing APNs starts by taking an unfolded APN and the criterion places. We use
the same strategy for defining static slicing for algebraic Petri nets as proposed
by khan et al in . The major difference between their and our slicing construction
is that we use the neutral transition together with reading transition to reduce
the slice size (as discussed in section). We also introduce a notion of dynamic
slicing for the first time in the context of algebraic Petri nets.

5 Case Study

We took a small case study from the domain of crisis management systems (car
crash management system) for the experimental investigation of the proposed
slicing algorithms. In a car crash management system (CCMS); reports on a
car crash are received and validated, and a Superobserver (i.e., an emergency
response team) is assigned to manage each crash.

The APN Model can be observed in Fig. 8, it represents the semantics of the
operation of a car crash management system. This behavioral model contains

14 Yasir Imtiaz Khan and Nicolas Guelfi

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

assigncrisis
isvalidcrisis($sy=true)
& invalidsobs($sob,

getcrisistype($sy)=true)

[$sy] [assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]
ExecutingCrisis

[$sy]
sendreport

[$ec]

[]
ExecutedCrisisReport

[rp($ec)]

[Fire, Fire,
Blockage,Blockage]

[sobs(YK,Fire)
sobs(NG,Blockage)]

[]

[]

[system(getcrisistype($sy),
 false)]ValdidatingCrisis

validatecrisis

[$vcs]

Fig. 8. Car crash APN model

labeled places and transitions. There are two tokens in the place Recording

Crisis Data that are Fire and Blockage. These tokens are used to mention
which type of data has been recorded. The input arc of transition sendcrisis

takes the cd variable as an input from the place Recording Crisis Data and
the output arc contains term system(cd) of sort sys (It is important to note
that for better readability, we omit $ symbol from the terms over the arcs). The
sendcrisis transition passes a recorded crisis to system for further operations.
All the recorded crises are sent for validation through sendcrisisforvalidation

transitions. Initially, every recoded crisis is set to false. The output arc of validatecrisis
contains the system(getcrisistype(vcs),true) term which sends validated
crisis to system. The transition assigncrisis has two guards, the first one is
isvalid(sy)=true that enables to block invalid crisis reporting to be executed
for the mission and the second one is isvalid(sob,getcrisestype(sy))=true
which is used to block invalid Superobserver (a skilled person for handling
crisis situation) to execute the crisis mission. The Superobserver YK will be
assigned to handle Fire situation only. The transition assigncrisis contains
two input arcs with sob and sy variables and the output arc contains term
assigncrisis(sob,sy) of sort crisis. The output arc of transition sendreport

contains term rp(ec). This enables to send a report about the executed crisis
mission. We refer the interested reader to [6] for the algebraic specification of a
car crash management system.

An important safety threat, which we will take into an account in this case
study is that the invalid crisis reporting can be hazardous. The invalid crisis
reporting is the situation that results from a wrongly reported crisis. The exe-
cution of a crisis mission based on the wrong reporting can waste both human
and physical resources. In principle, it is essential to validate a crisis that it
is reported correctly. Another, important threat could be to see the number of

Slicing High-level Petri nets 15

Recording Crisis Data
[Fire,Fire,

Blockage,Blockage]

FireBlockage

sendcrisisBlockage sendcrisisFire

sendcrisisforvalidationBlockage

(Fire,true)

(Blockage,true) (Blockage,false)

sendcrisisforvalidationFire

validatecrisis(Fire,false),
(Fire,true)

validatecrisis(Blockage,false),
(Blockage,true)

FireBlockage

[]

System
[]

(Fire,false)

(Blockage,false)

(Fire,false) ValidatingCrisis

Fire

assigncrisis(Fire,true),(YK,Fire),
((Fire,true),(YK,Fire)) (Fire,true)

[sobs(Yk,Fire)
,sobs(NG,Bloc

kage)]

(YK,Fire)

(NG,Blockage)

Superobserver Ready

assigncrisis(Blockage,true),
(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Blockage,true) Blockage

[]

ExecutingCrisis
((Blockage,true), (NG,Blockage))

sendreport(Blockage,true),
(NG,Blockage),((Blockage,true),

(NG,Bloackage))

sendreport(Fire,true),(YK,Fire),
((Fire,true),(YK,Fire))

((Blockage,true), (NG,Blockage))
((Fire,true), (YK,Fire))

((Fire,false), (YK,Fire))
((Blockage,false), (NG,Blockage))

sendreport(Blockage,false),
(NG,Blockage),((Blockage,false),

(NG,Blockage))

sendreport(Fire,false),(YK,Fire),
((Fire,fale),(YK,Fire))

[]

(Fire,false),(YK,Fire),
(Fire,false),(YK,Fire)

(Blockage,false),(NG,Blockage),
(Blockage,false),(NG,Blockage)

(Blockage,true),(NG,Blockage),
(Blockage,true),(NG,Blockage)

(Fire,true),(YK,Fire),
(Fire,true),(YK,Fire)

ExecutedCrisisReport

Fig. 9. The unfolded car crash APN model

16 Yasir Imtiaz Khan and Nicolas Guelfi

superobservers should not exceed from a certain limit. Informally, we can define
the properties:

'1 : All the crises inside place System are validated eventually.
'2 : Place Superobserver Ready never contains more than two superobservers.

Formally we can specify the properties as, let Crises be a set representing
recorded crisis in car crash management system. Let isvalid : Crises! BOOL,
is a function used to validate the recorded crisis.

'1 = AF(8crisis 2 System|isvalid(crisis) = true).
'2 = AG(|SuperobserverReady|  2).
In contrast to generate the full state space for the verification of the properties

'1 and '2, we alleviate the state space by applying our proposed algorithm i.e.,
abstract slicing algorithm. For '1and'2, the criterion places are System and

Superobserver Ready. The unfolded car crash APN model is shown in the Fig.
9. The abstract slicing algorithm takes an unfolded car crash APN model and
System (an input criterion place) as an input and iteratively builds the sliced net
for '1. Respectively for '2, the algorithm starts from Superobserver Ready(as
input criterion place) and builds the slice. The sliced unfolded car crash APN
models are shown in the Fig. 10, for the both prperties i.e., '1 and '2.

Let us compare the number of states required to verify the given property
without slicing and after applying abstract slicing. In the first column of Table.3,
the number of states are given that are required to verify the property without
slicing and in the second column the number of states are given to verify the
property by slicing.

Table 2. Comparison of number of states required to verify the properties with and
without the abstract slicing

Properties No of states required
without slicing

No of states required
with abstract slicing

'1 324 196

'2 324 81

Let us take a criterion place (i.e, System) from the car crash APN model
and apply our proposed concerned slicing algorithm to find which transitions
and places can contribute tokens to that place. It is important to note that, we
perform concerned slicing directly on the car crash APN model instead of the
unfolded car crash APN model (as discussed in the section 3). The sliced car
crash APN-model can be observed in the Fig.11.

Slicing High-level Petri nets 17

Fire,Fire,Block
age,Blockage

System

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),
(Fire,true)

validatecrisis(Blockage,false),
(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)

assigncrisis(Fire,true),(YK,Fire),
((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),
(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),
sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Sliced unfolded car crash APN model for '2

Fire,Fire,Blockage,
Blockage

FireBlockage

sendcrisisFiresendcrisisBlockage

Recording Crisis Data

System

FireBlockage

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),
(Fire,true)

validatecrisis(Blockage,false),
(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)

assigncrisis(Fire,true),(YK,Fire),
((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),
(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),
sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Sliced unfolded car crash APN model for '1

Fig. 10. Sliced unfolded car crash APN model (by applying abstract slicing)

18 Yasir Imtiaz Khan and Nicolas Guelfi

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

[$sy]

[$sy]

[Fire, Fire,
Blockage,Blockage]

[system(getcrisistype($sy),
 false)]ValdidatingCrisis

validatecrisis

[$vcs]

Fig. 11. Sliced car crash APN model (by applying concerned slicing)

6 Evaluation

In this section, we evaluate our abstract slicing algorithm and compare with
existing slicing construction for APNs. We measure the effect of slicing in terms
of savings of the reachable state space, as the size of the state space usually has
a strong impact on time and space needed for model checking.

To show that state space could be reduced for practically relevant properties.
We took some specific examples of temporal properties from the different case
studies. Instead of presenting properties where our methods work best, it is
equally interesting to see where it gives an average or worst case results. Let
us specify the temporal properties that we are interested to verify on the given
APN model.

For the Daily Routine of two Employees and Boss APN model, for example,
we are interested to verify that: “Boss has always meeting”. Formally, we can
specify the property:

'1 = AG(NM 6= ;), where “NM" represents a place not meeting.
For Simple Protocol, for example, we are interested to verify that: “All the

packets are transmitted eventually”. Formally, we can specify the property:
'2 = AF(|PackTorec| = |PackTosend|), where “PackTosend and Pack-

Torec" represents places.
And for a Complaint Handling APN model, we are interested to verify: “All

the registered complaints are collected eventually”. Formally, we can specify the
property:

'3 = AG(RecComp) AFCompReg), where “RecComp" (resp. CompReg)
means “place RecComp (resp. CompReg) is not empty".

For an Insurance claim APN model an interesting property could be to verify
that: “Every accepted claim is settled”. Formally, we can specify the property:

Slicing High-level Petri nets 19

'4 = AG(AC) AFCS), where “AC" (resp. CS) means “place AC (resp.
CS) is not empty".

For a Customer support production system an interesting property could be
to verify that: “Number of requests are always less than 10 ”. Formally, we can
specify the property:

'5 = AG(|Requests| < 10).
For a Producer Consumer APN model an interesting property could be to

verify that: “Buffer place is never empty”. Formally, we can specify the property:
'6 = AG(|Buffer| > 0).

Table 3. Results with different properties concerning to APN models

System Property Tot.States APNslicing AbstractSlicing

Daily Routine of 2
Employees & Boss

'1 80 5 3

Simple Protocol '2 21 21 9

Complaint Handling '3 2200 679 112

A Customer support
Production system

'4 471 171 91

Insurance Claim '5 889 121 49

Producer Consumer '6 372 372 372

Let us study the results summarized in the table shown in Table. 3, the first
column represents the system under observation whereas the second column
refers to the property that we are interested to verify. In the third column, total
number of states is given based on the initial markings of places. In the fourth
column, number of states are given that are required to verify the given property
by applying APNslicing. In the last column, number of states that are required
to verify the given property by applying abstract slicing.

We can draw the following conclusions from the evaluation results such as:

– Abstract slicing often reduces the slice size as compared to APNslicing slice
size. This is due to the inclusion of neutral transition together with read-
ing transitions. As a result number of states are reduced to verify the given
property, which is an improvement towards model checking. We can observe
Table. 3, instead of property '2, there is always an improvement in the re-
duction of states. It is important to note that at worst the slice size obtained
after applying abstract slicing is equal to the slice size obtained by applying
APNslicing.

20 Yasir Imtiaz Khan and Nicolas Guelfi

– Reduction can vary with respect to the net structure and markings of the
places (this is true for both abstract slicing and APNslicing). The slicing
refers to the part of a net that concerns to the property, remaining part may
have more places and transitions that increase the overall number of states.
If slicing removes parts of the net that expose highly concurrent behavior,
the savings may be huge and if the slicing removes dead parts of the net, in
which transitions are never enabled then there is no effect on the state space.

– It has been empirically proved that in general slicing produces best results
for work-flow nets in [8, 14]. Our experiments also prove that for work-flow
nets abstract slicing produces better results.

– Abstract slicing algorithm is a linear time complex.

7 Conclusion and Future Work

In this work, we have presented two slicing algorithms (i.e., Abstract slicing and
Concerned slicing) to improve the verification of systems modeled in the Alge-
braic Petri nets. The Abstract slicing algorithm has been designed to improve the
model checking whereas the Concerned slicing has been designed to improve the
testing of APNs. Both the algorithms are linear time complex and significantly
improves the model checking and testing of APNs.

As a future work, we are targeting to define more refined slicing construc-
tions in the context of APNs and to implement a tool named SLAPn (i.e., slicing
algebraic Petri nets). The objective of SLAPn is to show the practical usability
of slicing by implementing the proposed slicing algorithms. The initial strategy
to implement SLAPn is to extend the AlPiNA (Algebraic Petri net analyzer) a
symbolic model checker. As discussed in the section 3, we are using the same
unfolding approach as AlPiNA. Certainly, this will help to reduce the implemen-
tation effort.

8 Appendix

Definition 6. A signature ⌃ = (S,OP) consists of a set S of sorts and a family
OP = (OPw,s)w2S⇤,s2S of operation symbols. For ✏ being the empty word, we
call OP✏,s the set of constant symbols.

Definition 7. A set X of ⌃-variables is a family X = (Xs)s2S of variables,
disjoint to OP.

Definition 8. The set of terms TOP,s(X) of sort s is inductively defined by:
1. Xs [OP✏,s ✓ TOP,s(X);
2. op(t1, . . . , tn) 2 TOP,s(X) for op 2 OPs1,...,sn,s, n � 1 and ti 2 TOP,si(X)

(for i = 1, . . . , n).
The set TOP,s := TOP,s(;) contains the ground terms of sort s, TOP (X) :=S

s2S TOP,s(X) is the set of ⌃-terms over X and TOP ⌘ TOP (;) is the set of
⌃-ground terms.

Slicing High-level Petri nets 21

Definition 9. Let X be a finite set of ⌃-variables. A substitution over X is
mapping sbt : X ! TOP (X), whereby all x 2 Xs it holds sbt(x) 2 TOP,s(X). If
the image of sbt is contained in TOP , sbt is called ground substitution.

Let T 2 TOP,s(Y), X a finite subset of Y and sbt a substitution over X. Then
the term sbt(T) results from T by simultaneously replacing the variables x 2 X
by the corresponding terms sbt(x).

Definition 10. A ⌃-equation of sort s over X is a pair (l,r) of terms l, r 2
TOP,s(X).

Definition 11. An algebraic specification SPEC = (⌃,E) consists of a signature
⌃ = (S,OP) and a set E of ⌃-equations.

Definition 12. A ⌃-algebra A = (SA, OPA) consist of a family SA = (As)s2S

of domains and a family OPA = (Nop)op2OP of operations Nop : As1⇥ . . . Asn !
As for op 2 OPs1...sn,s if op 2 OP✏,s, Nop congruent to an element of As.

Definition 13. An assignment of ⌃-variables X to a ⌃-algebra A is a mapping
ass : X ! A,with ass(x) 2 Asiff x 2 Xs. ass is canonically extended to ass :
TOP (X)! A, inductively defined by

1. ass(x) ⌘ ass(x) for x 2 X;
2. ass(c) ⌘ Nc for c 2 OP✏,s;
3. ass(op(t1, . . . , tn)) ⌘ Nop(ass(t1)), . . . , ass(tn)) for op(t1, . . . , tn) 2 TOP (X).

Definition 14. Let SPEC-algebra is SPEC = (⌃,E) in which all equations in
E are valid. Two terms t1 and t2 in TOP (X) are equivalent (t1 ⌘E t2) iff for all
assignments ass : X ! A, ass(t1) = ass(t2).

Definition 15. Let B be a set. A multiset over B is a mapping msB: B ! N.
✏B is the empty multiset with msB(x) = 0 for all x 2 B. A multiset is finite iff

{b 2 B | msB(b) 6= 0} is finite.

Definition 16. Let MSB = {msB: B ! N} be a set of multisets. The addition
function of multisets is denoted by + : MSB ⇥MSB !MSB. Let ms1B ,ms2B
and ms3B 2MSB. 8b 2 B,ms3B(b) = ms1B(b) +ms2B(b).

The subtraction function of multisets is denoted by � : MSB ⇥ MSB !
MSB. Let ms1B ,ms2B and ms3B 2 MSB. 8b 2 B,ms1B(b) � ms2B(b))
8b 2 B, (ms1B �ms2B)(b) = ms1B(b)�ms2B(b).

Definition 17. Let MSB = {msB: B! N} be a set of multisets. Let ms1B ,ms2B
2 MSB . We say that ms1B is smaller than or equal to ms2B (denoted by
ms1B  ms2B) iff
8b 2 B,ms1B(b)  ms2B(b). Further, we say that ms1B 6= ms2B iff
9b 2 B,ms1B(b) 6= ms2B(b). Otherwise, ms1B = ms2B .

22 Yasir Imtiaz Khan and Nicolas Guelfi

References

1. D. Buchs, S. Hostettler, A. Marechal, A. Linard, and M. Risoldi. Alpina: A sym-
bolic model checker. Springer Berlin Heidelberg, pages 287–296, 2010.

2. J. R. Burch, E. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, 1990. LICS ’90,
Proceedings., Fifth Annual IEEE Symposium on e, pages 428–439, 1990.

3. J. Chang and D. J. Richardson. Static and dynamic specification slicing. In In
Proceedings of the Fourth Irvine Software Symposium, 1994.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

5. K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin Heidelberg, 1987.

6. Y. I. Khan. A formal approach for engineering resilient car crash management
system. Technical Report TR-LASSY-12-05, University of Luxembourg, 2012.

7. Y. I. Khan. Optimizing verification of structurally evolving algebraic petri nets.
In V. K. A. Gorbenko, A. Romanovsky, editor, Software Engineering for Resilient
Systems, volume 8166 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013.

8. Y. I. Khan and M. Risoldi. Optimizing algebraic petri net model checking by slic-
ing. International Workshop on Modeling and Business Environments (ModBE’13,
associated with Petri Nets’13), 2013.

9. L. Lamport. What good is temporal logic. Information processing, 83:657–668,
1983.

10. W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach to
enhance petri net reachability analysis. Journal of Research Practices and Infor-
mation Technology, 32:131–143, 2000.

11. M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing techniques
for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–165, Dec. 2008.

12. A. Rakow. Slicing petri nets with an application to workflow verification. In
Proceedings of the 34th conference on Current trends in theory and practice of
computer science, SOFSEM’08, pages 436–447, Berlin, Heidelberg, 2008. Springer-
Verlag.

13. A. Rakow. Slicing and Reduction Techniques for Model Checking Petri Nets. PhD
thesis, University of Oldenburg, 2011.

14. A. Rakow. Safety slicing petri nets. In S. Haddad and L. Pomello, editors, Applica-
tion and Theory of Petri Nets, volume 7347 of Lecture Notes in Computer Science,
pages 268–287. Springer Berlin Heidelberg, 2012.

15. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

16. K. Schmidt. T–invariants of algebraic petri nets. Informatik– Bericht, 1994.
17. F. Tip. A survey of program slicing techniques. JOURNAL OF PROGRAMMING

LANGUAGES, 3:121–189, 1995.
18. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, pages 429–528, London, UK, UK, 1998. Springer-Verlag.

19. Y. Wangyang, Y. Chungang, D. Zhijun, and F. Xianwen. Extended and improved
slicing technologies for petri nets. High Technology Letters, 19(1), 2013.

Slicing High-level Petri nets 23

20. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

21. B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

This work has been supported by the National Research Fund, Luxembourg,
Project MOVERE, ref.C09/IS/02.

