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Abstract

These are notes on the uniformization of complex elliptic curves via Weierstrass functions. Everything
is taken out from references [1], [2] and [3], our contribution is just to give a self-contained exposition and
more details for certain parts of the original proofs.
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1 Lattices, tori and meromorphic functions
1.1 Change of lattices, complex tori
Let ω1 and ω2 be two complex numbers in C that are free over R (λ1ω1 + λ2ω2 = 0, λ1, λ2 ∈ R ⇒
λ1 = λ2 = 0).

They define a 2-dimensional lattice

Γ := {mω1 + nω2 |m, n ∈ Z}

which is a discrete abelian group in C. For example, when ω1 = 3 + i and ω2 = 1 + 2i we get

ω1
•

•

•

•

•

ω1 + ω2
•

ω2
•

•

•

•

•

• •

•

•

•

•

•

We can define a torus T by setting

1



Definition 1.1.1. The complex torus associated to the lattice Γ is the quotient space

T := C/Γ

An element of T is thus an equivalence class of elements of C for the equivalence relation

z ∼ z′ ⇔ ∃n, m ∈ Z /z = z′ + nω1 +mω2

The complex structure of C induces a complex structure on T such that the projection C→ T is holomorphic.
This complex structures depends on the lattice Γ. However, if we define Γ′ to be the lattice

Γ′ := {m+ nτ |m, n ∈ Z}

where τ := ω2/ω1, and T′ to be the torus C/Γ′, then the bijective “multiplication by ω1” map

C → C
z 7→ ω1z

sends Γ′ bijectively to Γ.
Proposition 1.1.2. Multiplication by ω1 induces a biholomorphic isomorphism

T′
∼=−→ T

Thus, we can reduce ourselves to the study of tori given by lattices with ω1 = 1 and ω2 = τ . We can
even suppose that Im τ > 0 since the lattice generated by 1 and τ is the same as the lattice generated by 1
and −τ .

1.2 Meromorphic functions
We now fix a lattice Γ := {m+ nτ |m, n ∈ Z} and denote by T := C/Γ the associated torus with projection
π : C→ T.

By definition of the complex structure on T, a function f : T → C is meromorphic if and only if the
composite f ◦π : C→ C is. Thus, we are interested in meromorphic functions on C that are invariant under
addition of elements of Γ, i.e. Γ-periodic.
Remark 1.2.1. Constant functions are holomorphic thus meromorphic. Note that Liouville’s theorem
implies that bounded holomorphic functions are constant. Since T is compact, any holomorphic function is
bounded, thus constant.

Among meromorphic periodic functions, some are of particular interest for us:
Definition 1.2.2. The Weierstrass function ℘ : C→ C is defined by

℘(z) := 1
z2 +

∑
ω∈Γ
ω 6=0

1
(z − ω)2 −

1
ω2

for all z in C.
Proposition 1.2.3. The Weierstrass function is
• well-defined and holomorphic on C− Γ,
• meromorphic in each z of Γ with a pole of order 2,
• even and Γ-periodic.

It’s derived function is odd, Γ-periodic, meromorphic with poles of order 3 on the lattice and is given by

℘′(z) =
∑
ω∈Γ
ω 6=0

−2
(z − ω)3

Proof. Well defined amounts to prove that the sum involved in the definition of ℘ is convergent. For any ω
in Γ− {0}

1
(z − ω)2 −

1
ω2 = ω2 − z2 + 2zω − ω2

ω2(z − ω)2 = 1
ω3

2z − z2/ω

z/ω − 1
Since

lim
ω→∞

∣∣∣∣2z − z2/ω

z/ω − 1

∣∣∣∣ = 2|z|
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there exists a positive constant C(z) such that∣∣∣∣2z − z2/ω

z/ω − 1

∣∣∣∣ < C(z)

for all ω in Γ− {0}. Thus ∣∣∣∣ 1
(z − ω)2 −

1
ω2

∣∣∣∣ < C(z)
|ω|3

The fact that
∑
ω∈Γ
ω 6=0

C(z)
|ω|3 is convergent implies that

∑
ω∈Γ
ω 6=0

1
(z − ω)2 −

1
ω2 (1)

is absolutely convergent, thus convergent. This proves that ℘ is well-defined.
To see that ℘ is holomorphic in z ∈ C−Γ, remark that there exists a neighbourhood V of z and a positive

number such that the constants C(z′) are bounded by C when z′ is in V i.e.

C(z′) < C ∀z′ ∈ V

Thus the sum (1) is normaly convergent on V . Since each term 1
(z−ω)2 − 1

ω2 is holomorphic in z, the limit
is also holomorphic in z. Morevover, ℘′(z) can be obtained by deriving term by term so that

℘′(z) = −
∑
ω∈Γ

2
(z − ω)3

t is clear that ℘′ is meromorphic with poles of order 3 on the lattice and that it is Γ-periodic.
It is clear that each element of the lattice is a pole of order 2 of ℘. To see that ℘ is even notice that one

can reparametrize the sum (1) using −ω instead of ω.
The periodicity goes as follows: choose a point γ in Γ and set

Q(z) := ℘(z + γ)− ℘(z)

for all z in C − Γ. Then
Q′(z) := ℘′(z + γ)− ℘′(z) = 0

because ℘′ is Γ-periodic. Thus, there exists a constant C (depending on γ a priori) such that

Q(z) := ℘(z + γ)− ℘(z) = C

But for z = −γ/2 we have that
Q(−γ/2) := ℘(γ/2)− ℘(−γ/2) = 0

because ℘ is even. Thus, C = 0 and ℘(z + γ) = ℘(z) for all z in C− Γ. This proves that ℘ is Γ-periodic.

The Weirestrass function associated to the lattice Γ satisfies a nice differential equation:
Proposition 1.2.4. The Weierstrass function ℘ and its derivative ℘′ satisfy

(℘′)2 = 4℘3 + g2℘+ g3 (2)
where g2 and g3 are the Eisenstein series (of the lattice Γ) defined by

g2 = g2(τ) :=
∑
ω∈Γ
ω 6=0

−60
ω4 =

∑
(m,n)∈Z2

(m,n)6=(0,0)

−60
(m+ nτ)4 ; g3 = g3(τ) :=

∑
ω∈Γ
ω 6=0

−140
ω6 =

∑
(m,n)∈Z2

(m,n)6=(0,0)

−140
(m+ nτ)6

Theorem 1.2.5. The field of meromorphic functions on T, denoted M(T) is generated by ℘ and ℘′ i.e.

M(T) ∼= C(℘, ℘′)

More precisely, relation (2) is the “smallest relation” satisfied by ℘ and ℘′ i.e.

φ : C(X)[Y ]/(Y 2 − 4X3 − g2X − g3) −→ M(T)
X 7−→ ℘
Y 7−→ ℘′

is an isomorphism of fields.
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Proof. We only prove the surjectivity of φ. Let f : T→ C be a meromorphic function on the torus. If z0 is
a pole of order k of f ◦ π which is not on the lattice Γ, then setting f ◦ π(℘ − ℘(z0))k gives a holomorphic
function in z0. Indeed, since z0 doesn’t belong to Γ, ℘ is homolorphic in z0 and admits a Taylor expansion
near z0 of the form

℘(z) = ℘(z0) + ℘′(z0)(z − z0) + o(|z − z0|)
This implies that z 7→ f(π(z))(℘(z) − ℘(z0))k admits a finite limit in z0 ans thus is holomorphic in z0.
Proceeding in the same fashion for all poles that are not on the lattice we get a Γ-periodic function z 7→
f(π(z))Q(℘(z)), where Q(℘) is a polynomial in ℘, which has only possible poles on the lattice (this means
that the induced function on the T can just have a pole in 0 := π(Γ)). If we suppose that z 7→ f(π(z))Q(℘(z))
has a pole of even order 2k in 0, then there exists a constant c such that

z 7→ f(π(z))Q(℘(z))− c℘(z)k

has a pole of order at most 2k − 1 in 0. Similarly, if the pole as odd order 2k − 1 we can substract a good
multiple of ℘′ to lower the order of this pole. We see that repeating this procedure leads to a function that
is holomorphic in zero. In other words, there exists a polynomial in two variables R(X,Y ) such that the
function on the torus fQ(℘) − R(℘, ℘′) is holomorphic. Since T is compact, this function is bounded thus
constant (by Liouville’s theorem). Hence, there exists a constant C in C such that

fQ(℘)−R(℘, ℘′) = C

i.e.
f = C +R(℘, ℘′)

Q(℘)
This proves that any meromorphic function f is a rational function in ℘ and ℘′ which implies that φ is
surjective.

2 The link with elliptic curves
2.1 The projective plane, complex elliptic curves
Definition 2.1.1. The complex projective plane, denoted CP 2 is the set of complex lines in C3. Any
non-zero vector (z1, z2, z3) in C3 spans a complex line i.e. an element of CP 2 that we denote by [z1 : z2 : z3]
(homogenous coordinates). CP 2 is an affine complex variety with open affine cover given by U1, U2, U3
where

Ui := {L = [z1, z2, z3] ∈ CP 2 | zi 6= 0}.
A projective curve is a closed subset of CP 2 which is the zero-locus of a homogenous polynomial P in
C[X,Y, Z]. It is said to be non-singular when the partial derivatives of P never vanish simultaneously on
its zero locus.

An elliptic curve is a non-singular projective curve which is the zero locus of a polynomial P such that
there exists an affine chart in which P takes the form

Y 2 − 4X3 − aX − b

Remark 2.1.2. To any polynomial P :=
∑

i,j
ai,iX

iY j of degree n in C[X,Y ], we can associate a homoge-
nous polynomial P̃ of degree n in C[X,Y, Z] by setting

P̃ :=
∑
i,j

ai,iX
iY jZn−i−j

The projective curve corresponding to the zero locus of P̃ will be referred to as the projective curve associated
to P in the sequel.
Proposition 2.1.3. The projective curve associated to a polynomial

P := Y 2 −X3 − aX − b

is non singular (i.e. elliptic) if and only if the discriminant

∆(a, b) := 4a3 + 27b2

is not zero.
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Proof. We have that ∂P
∂Y

(x, y) = 0 if and only if y = 0. Thus, the only points (x, y) of the zero locus of P
(on the curve) where ∂P

∂Y
vanishes are of the form (x, 0). But such a point is on the curve if and only if

P (x, 0) = −x3 − ax− b = 0

If x1, x2, x3 are the roots of X3 + aX + b, this condition is equivalent to the fact that x = xi for some
i ∈ {1, 2, 3}. But

∂P

∂X
= − ∂

∂X

(
(X − x1)(X − x2)(X − x3)

)
= −((X − x2)(X − x3) + (X − x1)(X − x3) + (X − x1)(X − x2))

thus we see that ∂P
∂X

(xi, 0) = 0 if and only if there exists j 6= i such that xi = xj i.e. if and only if P has a
root of multiplicity strictly greater than one (meaning that card{x1, x2, x3} 6 2).

Now recall that the coefficients a and b of the polynomial X3 + aX + b can be expressed in terms of its
roots xi in the following manner

a = x1x2 + x1x3 + x2x3 and b = −x1x2x3

so that
∆(a, b) := 4a3 + 27b2 = 4(x1x2 + x1x3 + x2x3)3 + 27(x1x2x3)2

Since there is no term of degree 2 in x3 + aX + b the sum of the roots is zero thus x3 = −x2 − x1. Hence

∆(a, b) =− 4(x2
1 + x2x1 + x2

2)3 + 27(x2
1x2 + x1x

2
2)2

=− 4(x6
1 + x3

1x
3
2 + x6

2 + 3(x5
1x2 + 2x4

1x
2
2 + 2x2

1x
4
2 + x1x

5
2) + 6x3

1x
3
2) + 27(x4

1x
2
2 + 2x3

1x
3
2 + x2

1x
4
2)

=− 4x6
1 − 12x5

1x2 + 3x4
1x

2
2 + 26x3

1x
3
2 + 3x2

1x
4
2 − 12x1x

5
2 − 4x6

2

On the other hand,

(x1 − x2)2(x1 − x3)2(x2 − x3)2 =(x1 − x2)2(2x1 + x2)2(x1 + 2x2)2

=(2x3
1 + 3x2

1x2 − 3x1x
2
2 − 2x3

2)2

=4x6
1 + 12x5

1x2 − 3x4
1x

2
2 − 26x3

1x
3
2 − 3x2

1x
4
2 + 12x1x

5
2 + 4x6

2

=−∆(a, b)

Hence{
P (x, y) = 0
∂P
∂Y

(x, y) = 0
∂P
∂X

(x, y) = 0
⇔

{
y = 0
x ∈ {x1, x2, x3}
card{x1, x2, x3} 6 2

⇔

{
y = 0
x ∈ {x1, x2, x3}
(x1 − x2)2(x1 − x3)2(x2 − x3)2 = −∆(a, b) = 0

Thus the curve is singular if and only if ∆(a, b) = 0.

2.2 The uniformization isomorphism
In the first section, we have seen that given τ in the upper half plane, the torus T := C/Γ (where Γ is the
lattice generated by 1 and τ) is endowed with a particular meromorphic function: the Weierstrass function
℘ : T→ C which satisfies the differential equation:

(℘′)2 = 4℘3 + g2℘+ g3

or equivalently

(℘
′

2 )2 = ℘3 + g2

4 ℘+ g3

4
This means that for any z in C − Γ, the element [℘(z) : ℘′(z)

2 : 1] of CP 2 belongs to the projective curve
associated to the polynomial Y 2 −X3 − g2

4 X −
g3
4 . Recall that g2 and g3 depend on the choice of τ .

Proposition 2.2.1. For any τ with strictly positive imaginary part,

∆(g2

4 ,
g3

4 ) 6= 0.

Thus, the projective curve associated to Y 2 −X3 − g2
4 X −

g3
4 is elliptic.

Let C(τ) be the elliptic curve associated to Y 2 −X3 − g2
4 X −

g3
4 .
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Theorem 2.2.2. [Uniformization isomorphism] The map

T → C(τ) ⊂ CP 2

[z] 7→
{

[℘(z) : ℘′(z)/2 : 1] if z /∈ Γ,
[1 : 1 : 0] if z ∈ Γ.

is a biholomorphism.
The reciproque of the preceeding theorem is true:

Theorem 2.2.3. Any complex elliptic curve is “isomorphic” to an elliptic curve of the form C(τ) for a
certain τ , thus analytically isomorphic to a complex torus.

Thus, we see that, thanks to the uniformization isomorphism theorem and its reciproque, any complex
elliptic curve C can be identified with the complex torus T associated to a certain lattice Γ (associated to a
certan choice of τ). But since T is a quotient of abelian groups, it is itself an abelian group (with neutral
element [0]). This implies that any elliptic C can be endowed with an abelian group multiplication. Is there
a way to describe this multiplication geometrically ? This might be the subject of next lectures...
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