Growth kinetics of solid-liquid interfaces EBERHARD KARLS UNIVERSITÄT TÜBINGEN Fonds National de la Recherche Luxembourg UNIVERSITÉ DU Francesco Turci¹, Martin Oettel², Tanja Schilling¹ LUXEMBOURG

1 Theory of Soft Matter Group - Université du Luxembourg , 2 Institut für Angewandte Physik - Eberhard Karls Universität Tübingen

1. Introduction

Materials science makes extensive use of **coarse-grained** models for the dynamics and growth of **solid** and **melt** phases. In particular, so called **Phase-Field** models are used for the determination of macroscopic properties. This theory can be derived from a simplification of the **Dynamical Density Functional Theory** [1].

This effective approach implies that **few density modes** are sufficient for the description of the dynamics. We test this assumption on a simple **non-equilibrium** model for crystal growth, comparing **numerical simulations** and 3d DDFT calculations.

2. Langevin dynamics of LJ particles

Planar growth of a crystal of Lennard-Jones particles.

- Langevin dynamics (for comparison with DDFT where Brownian motion is assumed)
- NVT ensemble.
- Fixed structured perfect fcc walls exposing the [100]

Fig.2. Crystalline growth: perfect, frozen fcc particles (yellow), free fcc particles (green), pre-structured particles (fuchsia) and liquid (turquoise), distinguished using the locally averaged bond order parameters. Prestructured hcp patches are concentrated at the interfaces.

Fig.1 LJ phase diagram: melting line.

orientation to the liquid.

• **Metastable** liquid such that $\rho_{lig} = \rho_{sol} = 0.9732$.

3. Geometrical properties

Averaged local bond order parameters [2] distinguish liquid/ solid phases (Fig.2). At the interface (Fig. 3) the particles jump from an **hcp** order to the **fcc** stacking.

before

atter

Fig.3. PDF $_{\bar{q}_4}^{of}$ the averaged local bond order parameters \bar{q}_4^{of} and \bar{q}_6^{of} at different times during the growth (see fig.2 for comparison) for particles in the vicinity of the interface.

After full growth, the ABAB fcc stacking in [100] implies a **defect** when the walls facets are not compatible. The defect is a **dislocation** of all the crystalline planes.

Fig.4. Formation of a dislocation.

4. Modes and interface width

5. DDFT

Deterministic evolution of the **density field** according to a diffusion-like equation

$$\frac{\partial \rho(\vec{r},t)}{\partial t} = \nabla \left[\rho(\vec{r},t) \nabla \left(\frac{\delta F}{\delta \rho} + V^{ext}(\vec{r}) \right) \right]$$

where the chemical potential is chosen according to the Ramakrishnan-**Youssouf** approximation

$$\frac{\delta F}{\delta \rho} = \beta^{-1} (\ln \rho - \Delta \rho * c_{ref}^{(2)} + \mu_{ref})$$

0

with $c_{ref}^{(2)}$ being the **direct correlation function**, derived via mean field approximation from the pair potential of choice.

Density field

Real-space, discrete-time

- evolution provides the 3d density field and
- reproduces the crystal 1.5 growth.
 - We have then access to

Fig.5. Laterally averaged density profile (yellow) and its reconstruction using low order modes (**black**) during growth.

A few modes are needed to determine the laterally averaged density profile, correctly matching the position of the interface (fig. 5).

Interface **widths** can be computed from both the density and the q6 profiles. The scaling w~t^{\alpha} is different for the two approaches and deviates from the KPZ growth model.

Fig.6. Interface widths computed from the BOP profile and the density profile compared with KPZ predictions.

Chemical Potential

0.5 related quantities such as the free energy, the chemical potential or the grand potential.

> We will therefore extend previous equilibrium work [4] providing a full comparison of the interface properties between the atomistic and the coarsegrained model.

References

[1] H. Emmerich et al. Advances in Physics 61, 665 (2012). [2] W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008). [3] E. Marinari et al., J. Phys. A, 33, 8181 (2000). [4] M. Oettel et al, Physical Review E 86, 021404 (2012).