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Conventions

• A = {a1, a2, . . . , an}: a set of n alternatives.

• LO: the set of all linear orders on A.

• u = (O1, O2, . . . , Oq): a profile of q linear orders on A.

• B: the majority margin matrix.

• M : the strict majority relation.

• PO(u): the set of prudent orders of profile u.

• XPO(u): the set of extended prudent orders of profile u.

• RP(u): the set of linear orders obtained by the Ranked Pairs rule of
profile u.

• LPO(u): the set of lexicographic prudent orders of profile u.

• K(u): the set of Kemeny orders of profile u.

• E(R): the set of linear extensions of the binary relation R.

• t(R): the transitive closure of the binary relation R.

• r(R): the reflexive closure of the binary relation R.

• c(R): the complement of the binary relation R.

• δ(R1, R2): the symmetric difference distance between the binary rela-
tions R1 and R2.

• ρO(ai): the rank of alternative ai in the linear order O. By convention,
the alternative in the first position has rank 1, in the second position
has rank 2, and so on.

• |{.}|: the cardinality of the set {.}.
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Introduction

The subject of this PhD thesis is about ordinal ranking rules. An ordinal
ranking rule is a procedure which combines several initial rankings into a
global ranking.

There is nowadays a clear operational need for such tools. In Human Re-
source management for instance, it is common practice to rank candidates
during a recruitment process or to rank employees during a performance
appraisal. When more than one HR manager is involved, these individual
preferences have to be combined in order to come up with a final ranking.
In higher education, it becomes more and more common that universities
are evaluated with respect to some indicators in order to measure the qual-
ity of the degrees they offer or the research they perform. Ordinal ranking
rules are a very practical way of combining these indicators. In multicri-
teria decision aid, it is commonly accepted that criteria can be qualitative.
But then you also need adequate tools to aggregate these qualitative criteria.

Despite these numerous fields of applications, ordinal ranking rules are
often regarded with a certain part of suspiciousness. This can be due to the
fact that engaging on the road of ordinal ranking rules will inevitably lead
to the Borda-Condorcet debate and that Arrow’s theorem seems always to
be looming in the background. To some, this line of research seems rather
vain. In our view however, there is a clear potential for ordinal ranking rules
which address in a more appropriate way the particularities of a decision aid
context.

From a cognitive point of view, it is very natural to compare alternatives
two by two. Establishing a ranking that way is however a very difficult prob-
lem, since it is well known that the pairwise preference information can be
contradicted on a global level. This is commonly referred to as Condorcet’s
paradox. Consequently, deriving a global ranking implicitly assumes forcing
a transitivity, which, initially, was not necessarily present in the data.

That is why pairwise based ordinal ranking rule should be as transparent
as possible in order to offer a useful insight into the decision problem. Given
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the difficulty and ambiguity of aggregating ordinal data, it is also worthwhile
studying ranking rules which, depending on the initial data, do not lead to
one, but to several global rankings, hence leaving some indeterminateness
about the final result.

It appears that the concept of a prudent order, initially introduced by
Arrow and Raynaud, is a possible answer from such a perspective. In this
approach, pairwise majority margins are computed which count for any two
alternatives the number of initial rankings that prefer the first over the sec-
ond alternative. A prudent order is then defined as a linear order which
maximizes the smallest pairwise majority margin.

Since the related literature lacks in solid theoretical foundations for this
type of aggregation rule, it was our main objective in this thesis to thor-
oughly study and gain a better understanding of the family of prudent rank-
ing rules. According to our definition, a prudent ranking rule is a rule which
outputs only prudent orders.

To achieve this goal, we pursued different strategies: i) axiomatic char-
acterizations which highlight the distinctive features of a ranking rule, ii)
comparison of the properties or results of prudent ranking rules to those of
other ranking rules, and iii) empirical simulations allowing for more quanti-
tative conclusions.

Following the tradition of social choice theory, we decided to study pru-
dent ranking rules from a very fundamental point of view. The theoretical
working premises are that a set of linear orders must be aggregated into one
or several final linear orders, under the condition of anonymity. The latter
condition means that all the initial linear orders have the same importance.
These working assumptions can be criticized, especially from an operational
point of view. We think however that it is crucial to gain a solid understand-
ing of prudent ranking rules in a more simplified framework before trying
to extend them to more general situations, where more complex preference
structures than linear orders are involved and importance coefficients may
play a role.

The thesis is divided into 3 parts. Part I (Chapter 1 - Chapter 3) con-
tains an introduction to the ordinal ranking problem. Our main theoretical
contributions can be found in Part II (Chapter 4 - Chapter 8). This part
is the most technical one. Finally, Part III (Chapter 9 - Chapter 10) illus-
trates the use of prudent ranking rules in two fields of applications.

More particularly, in Chapter 1 the ordinal ranking problem is de-
scribed in detail and its importance is motivated. In Chapter 2, the con-
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cept of prudent ranking rules is introduced. A review of the literature is
made on prudent and non-prudent ranking rules. In Chapter 3, the in-
terest of studying prudent ranking rules is motivated, especially from the
perspective of using them as a decision support tool.

In Part II, we start in Chapter 4 by studying some properties of the
prudent order preference function which are commonly used to analyze rank-
ing rules. Chapter 5 presents an axiomatic characterization of the prudent
order preference function. Chapter 6 is devoted to Tideman’s Ranked
Pairs rule, which is characterized, using the same axiomatic framework as
for the prudent order preference function. We define in Chapter 7 a new
prudent ranking rule based on an underlying leximin relation. Finally, in
Chapter 8, we prove that we can construct profiles for which the result of
a prudent ranking rule and a non-prudent ranking rule can be contradictory.

In Part III, we first discuss in Chapter 9 the use of prudent ranking
rules in the group ranking problem, while in Chapter 10, we address the
problem of composite indicators. In both these chapters, we illustrate our
models on some realistic data.

Of course, we were not able to study all the prudent ranking rules or to
answer every question in depth. More importantly, our research has been
able to open up the field of prudent ranking rules. In the conclusion, we
then discuss the most interesting aspects which still deserve to be further
investigated. Finally, the results of the simulations performed in Debord’s
PhD thesis on the number of prudent orders can be found in the appendix.
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Part I

Ordinal ranking rules
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Chapter 1

Motivations for ordinal

ranking rules

This introductory chapter aims at delimiting and motivating the topic of
this thesis. In Section 1.1 we start by describing what we understand by an
ordinal ranking problem and we introduce the main definitions and notation
which will be necessary to formalize a ranking rule. In Section 1.2, we briefly
discuss three particular fields of applications of ranking rules. Finally, in
Section 1.3, we summarize the main reasons of using ordinal ranking rules
in practice.

1.1 Definitions and notation

Let us suppose that a set of alternatives can be ranked from the best to
the worst on various dimensions. In such a situation, we are naturally con-
fronted with the problem of how to combine these various rankings into one
global ranking. This is precisely the problem that we will be addressing in
this thesis.

In fact, the ordinal ranking problem can be characterized by the following
two aspects:

1. On the input side, we suppose that a set of alternatives can be ranked
from the best to the worst on several dimensions.

2. On the output side, the aim will be to construct a global ranking which
“best” combines the information contained in the initial rankings.

More particularly, we focus on mechanisms that aggregate or combine
this multi-dimensional ordinal data into a new, so-called “compromise” or
“consensus” or “group” or “global” ranking. Since on each dimension the
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Figure 1.1: An ordinal ranking rule.

alternatives are evaluated on an ordinal scale, we speak of an “ordinal” rank-
ing rule. This idea is represented in Figure 1.1.

Ordinal ranking rules will be at the core of this thesis. We provide now
the definitions and notation needed to formalize such an ordinal ranking
rule. This clarifies the assumptions on which we rely.

First of all, the construction of the set of alternatives is crucial and can
be difficult and time consuming. For instance, in a decision process, Keeney
[53] suggests to construct alternatives, both in a single decision maker or
multiple decision maker context, by focusing on values. However, we will
not concentrate on this step. Hence, we will assume that a set of n alterna-
tives, denoted by A = {a1, a2, . . . , an}, has been previously constructed and
will remain stable throughout the decision process.

We are mainly concerned with ranking the alternatives from the best to
the worst, which can conveniently be represented as an ordered list. For
instance,

a1a2a3a4

reads as follows: a1 is preferred to a2, which is preferred to a3, which is
preferred to a4.

Such an ordered list can be modeled by means of a binary relation. A bi-
nary relation R on A is a subset of the Cartesian product A×A. ∀ai, aj ∈ A,
(ai, aj) ∈ R means that alternative ai is as least as good as alternative aj .

20



For instance, the binary relation corresponding to a1a2a3a4 is:

{(a1, a2), (a1, a3), (a1, a4), (a2, a3), (a2, a4), (a3, a4)

(a1, a1), (a2, a2), (a3, a3), (a4, a4)}.

We need the following properties of a binary relation R:

Definition 1 Let R be a binary relation defined on A.

R is antisymmetric if
∀ai, aj ∈ A, (ai, aj) ∈ R and (aj , ai) ∈ R ⇒ ai = aj .

R is complete if
∀ai, aj ∈ A, (ai, aj) ∈ R or (aj , ai) ∈ R.

R is transitive if
∀ai, aj , ak ∈ A, (ai, aj) ∈ R and (aj , ak) ∈ R ⇒ (ai, ak) ∈ R.

R is reflexive if
∀ai ∈ A, (ai, ai) ∈ R.

The following definitions of particular binary relations can for instance
be found in [17].

Definition 2

A partial order is a transitive and antisymmetric binary relation. We
denote JO the set of all the partial orders on A.

A weak order is a complete and transitive binary relation. We denote WO
the set of all the weak orders on A.

A linear order is a complete, transitive and antisymmetric binary relation.
We denote LO the set of all the linear orders on A.

A profile u = (O1, O2, O3, . . . , Oq) is a vector that contains the q rank-
ings corresponding to the q dimensions which need to be combined. We will
furthermore assume that in these rankings the alternatives are ordered from
the best to the worst without allowing ties, which means that each ranking
is a linear order.

An ordinal ranking rule can be formalized with a mapping f as follows:

f : LOq −→ D
u = (O1, O2, . . . , Oq) 7→ f(u)
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The solution space D can have various forms. As we will see in Section 2.2,
the following two cases are generally encountered in the literature:

Case WO f(u) is a weak order.

Case SLO f(u) is a set of linear orders. In this case, we sometimes follow Young
and Levenglick’s terminology [109] and speak of f as a preference func-
tion. Vincke [106] calls ranking rules that lead to several solutions, for
instance several linear orders, preaggregation procedures.

By ranking rule, we thus understand a well defined procedure or algo-
rithm that takes as input a profile of linear orders and that computes an
output that either consists of a weak order or several linear orders. Some au-
thors call these solutions “consenus rankings” (see for instance [24]), others,
who work in the arrowian tradition of social choice theory, rather call them
“social orderings”. We will in general adopt the terminology “compromise
rankings” because, following the multicriteria decision aid paradigm, we are
looking for a compromise of the rankings which belong to the initial profile
and which may model some criteria.

We will be mostly manipulating binary relations. Several other concepts
involving binary relations will be useful, namely the distance between two
relations, the linear extensions of a relation, the transitive and reflexive clo-
sure of a relation and the complement of a relation.

Often, the distance between two binary relations R1 and R2 can be
expressed using the symmetric difference between these two sets:

δ(R1, R2) =
|{R1 \ R2 ∪ R2 \ R1}|

2
,

where . \ . denotes the set difference and |{.}| denotes the cardinality of the
set {.}.

A linear extension of a relation R is simply a linear order that contains
R, i.e. R ⊆ O. We denote E(R) the set of all the linear extensions of R:

E(R) = {O ∈ LO : R ⊆ O}.

Let us note that this set E(R) can possibly be empty. In fact, Szpilrajn [100]
showed that if the relation R is acyclic, then it can be extended into at least
one linear order. If however R contains a cycle, then the relation cannot be
extended and the set of linear extensions is empty.

The transitive closure of a relation R, denoted by t(R), is the smallest
relation that is transitive and that contains R. The reflexive closure of a
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relation R, denoted by r(R) is the smallest relation that is reflexive and that
contains R. The complement c(R) of a relation is defined as follows:
∀ai, aj ∈ A,

(ai, aj) ∈ c(R) ⇐⇒ (ai, aj) 6∈ R.

We refer to Fishburn [44] for a detailed discussion on the operators t(.), r(.)
and c(.).

1.2 Fields of applications

The ordinal ranking problem appears in a variety of situations. In this
section, we briefly discuss three potential fields of applications:

1. The group ranking problem

2. The composite indicator problem

3. Multicriteria decision aid.

In Part III of this thesis, we will come back to the first two of these fields
of applications. More particularly, we will discuss how prudent ranking rules
can support a group in searching for a compromise ranking (see Chapter 9)
and how they can be used to combine sub-indicators (see Chapter 10).

1.2.1 The group ranking problem

The group ranking problem can be characterized by a group of people be-
longing to the same organization or the same company who have to work
together in order to come up with a common group ranking. The group
ranking problem is not bounded to a particular industry, but can appear
both in the private and public sector:

Example 1: R&D Project analysis
At NASA [101], the board has to decide on how to split the annual bud-
get between different R&D projects. To do so, the research projects
are evaluated by various departments (safety, systems engineering...).
Here the group members correspond to the heads of the various de-
partments. The management finally takes into account the preferences
of the departments in order to rank the projects, which will help them
decide on the budget spending.

Example 2: Recruitment
A group ranking problem in a company may also arise in recruitment
situations (see for instance [102]). Candidates for a job position are
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evaluated and ranked by a group of human resource managers. These
individual opinions have then to be combined in order to build a com-
mon ranking of the available candidates.

Example 3: Strategic decisions
The FNR, the scientific funding agency from Luxembourg, has asked a
group of researchers to help them select research domains that should
be developed in the medium and long term in Luxembourg. After
discussion, the group selects a restricted set of the most pertinent re-
search domains. The problem for the group will now be to agree on a
common ranking of these research domains. This particular example
will be further discussed in Section 9.7.

One way of addressing the group ranking problem is to assume that,
first, each group member proposes his individual ranking. In a second step,
these rankings have then to be combined in order to come up with a group
ranking, using for instance an ordinal ranking rule.

1.2.2 The composite indicator problem

Socio-economic indicators have become a popular tool to evaluate countries,
companies, universities etc. with respect to some particular issue. By trying
to reflect a complex reality, indicators are usually a combination of different
sub-indicators. That is why we call them composite indicators. These sub-
indicators measure, though often indirectly, a certain aspect of the reality
that we would like to represent. Let us look at two examples of composite
indicators:

Example 1: Human Development Index
Historically, one of the first of such indicators is the so-called Human
Development Index of the United Nation Development Program. This
indicator tries to give a measure of the degree of development of a
country. It is roughly based on three sub-indicators. The first sub-
indicator takes into account life expectancy. The second one measures
the level of education by looking, among other statistics, at the illit-
eracy rate. Finally, the third sub-indicator is based on the GDP. The
precise definition of the indicator can for instance be found on page
394 of [88].

Example 2: Competitivity Indicator
The “Observatoire de la Compétivitité” of the Luxembourg Ministry
of Economy has recently developed a so-called competitivity indicator
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of the 25 EU countries [28]. This indicator should reflect the degree
of advancement of the various countries with respect to the Lisbon
strategy. To construct the indicator, 10 different sub-indicators have
been selected. We will come back to this example in Section 10.3.

One approach to combine sub-indicators is to forget about the values of
the evaluations of the objects on each sub-indicator. Instead we will only
consider the underlying order of each sub-indicator. These rankings have
then to be combined into a global ranking, using an ordinal ranking rule.

1.2.3 Multicriteria decision aid

Another field of applications of ordinal ranking rules is multicriteria deci-
sion aid (MCDA). This discipline aims at supporting a decision maker who
is confronted with a set of possible alternatives that can be evaluated accord-
ing to various, usually conflicting criteria by explicitly taken into account
his or her preferences. This paradigm has given rise to many methodologi-
cal, theoretical and practical developments [41]. The particular problem of
aggregating ordinal data is also a major issue. In fact, when the criteria
are ordinal, then we need techniques to combine them in order to propose
a recommendation, e.g. a ranking, to the decision maker. This problem
appears for instance in the well-known family of ELECTRE methods [91].

However, most of the models that we will develop in this thesis are not
directly suitable for MCDA because of the following two reasons:

• We suppose that both the input and output preference structures are
rather simple. More particularly, we assume that the rankings are lin-
ear orders. In MCDA however, often more complex preference struc-
tures, such as for instance preference structures that allow incompa-
rability or non-transitive indifferences, are considered.

• We usually assume anonymity with respect to the input rankings. In-
tuitively, this means that all the rankings play the same role. In MCDA
however, it is crucial to take into account differences of importance of
the different criteria, since they contribute to model the preferences of
the decision maker.

In fact, ordinal ranking rules can only be used in the particular case
where all the criteria are linear orders and all the criteria have the same
importance. This being said, many MCDA methods are inspired by ordinal
ranking rules. For instance, the PROMETHEE method [76] can be seen
as a generalization of Borda’s rule (see Section 2.2.2 for a definition of this
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ranking rule). Following this idea, we will briefly discuss the use of weights
in the framework of prudent ranking rules in Section 10.2.

1.3 Reasons for ordinality

In this section, we discuss the main reasons or benefits of using an ordinal
ranking rule, for instance in one of the three situations described in the pre-
vious section.

The first feature of the ordinal ranking problem is that we solely rely on
ordinal data as input. The main reason for this is that we do not want to
make or that we are not able of making stronger assumptions:

• In some situations, evaluating alternatives on an ordinal scale is often
easier than assigning a precise numerical value to an alternative on
a particular dimension. For instance, in multicriteria decision aid, it
can be realistic to tell that one alternative is “better” than another
alternative on a more qualitative criterion such as “comfort”, but it
can be more difficult to tell by how much.

• Working with ordinal data as input also makes sense when the vari-
ous dimensions which need to be combined are non-commensurable.
Even if an alternative can be characterized by a precise numerical
value on each dimension, the existence of different evaluation scales
usually makes it impossible to properly combine these values. This
is typically the case when the alternatives have been evaluated by
independent sources. A good illustration of such a situation are com-
posite indicators, where the different sub-indicators have sometimes
been constructed by completely different organizations.

The second feature of the ordinal ranking problem is that the final so-
lution should be a ranking. There are some reasons that motivate the need
for constructing a global ranking:

• Working with a ranking is typically useful in prioritization problems,
where we are interested in a priority list in order to decide how to
spend the limited amount of funds or resources between the options.
In fact, not only the project ranked first will get some funding, but
also the subsequent ones receive still some, but probably less, fundings.
For instance, in the strategic decision example of the group ranking
problem, the problem rather consists in prioritizing research domains,
and not selecting the “best” research domain.

• A ranking is also useful in the k-choice problem, which consists in
choosing k best alternatives within the whole set of available alterna-
tives. In such a situation, we could construct a ranking and select the
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k first alternatives of that ranking (see Meyer and Bisdorff [78] for a
more detailed discussion on k-choice problems). For instance, in the
recruitment example of the group ranking problem, the company may
not only seek one, but several new employees.

• A ranking is also interesting in situations where those who evaluate
and rank the alternatives are not the decision makers themselves. In
such a context, a ranking contains a richer information than solely
a choice subset and leaves some amount of appreciation to the real
decision maker. For instance, a particularity of composite indicators
is usually that those who design them are different from those who use
them in their decision process.

• A ranking can be of use in situations where the first alternatives can
in a later stage disappear. In the recruitment example of the group
ranking problem, it may happen that the candidate ranked first has
already accepted a position in another company, and so the job will
be offered to the candidate ranked second.

Finally, it is very important to acknowledge that in all these situations,
the use of an ordinal ranking rule is usually embedded in a whole decision aid
process. According to Roy, “Decision analysis consists in trying to answer
questions raised by actors involved in a decision process using a model.”1

An ordinal ranking rule is thus only a tool which is used at a particular
moment during a decision process. In the same line, Bouyssou & al. argue
that the “... usefulness [of ranking rules] not only depends on their intrinsic
formal qualities but also on the quality of their implementation (structura-
tion of the problem, communication with actors involved in the process,
transparency of the model, etc.).” 2

1B. Roy (1996), Multicriteria Methodology for Decision Analysis, Kluwer Academic
Publishers.

2D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs and P. Vincke (2006), Evaluation

and Decision Models with Multiple Criteria, Springer.
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Chapter 2

Classification of ordinal

ranking rules

In this chapter, we present several existing ordinal ranking rules. In Sec-
tion 2.1, we first introduce the different informational levels on which these
ranking rules are based. The definitions of some prudent and non-prudent
ranking rules can be found in Section 2.2. Finally, in Section 2.3, we propose
a classification of the ranking rules into different families. This will give a
first hint on the particularities of prudent ranking rules.

2.1 Informational levels

A technical difference between the rules is that, although they all take as
input a profile of linear orders, they work in reality with different types of
information contained in that profile. We introduce in this section these
different informational levels. These quantities will then be used in the def-
initions of the ranking rules presented in Section 2.2.

First of all, the information contained in a profile u can naturally be
combined in a n times n dimensional concordance matrix C, where the
value of row i and column j (1 ≤ i ≤ n, 1 ≤ j ≤ n), denoted by Cij , simply
counts the number of rankings in the profile u where alternative ai is as
least as good as alternative aj . Let us note that since we work with linear
orders orders, if ai 6= aj , then Cij simply counts the number of rankings in
the profile where ai is preferred to aj .

Definition 3 The strict concordance matrix C is a n times n dimensional
matrix defined as follows:

∀ai, aj ∈ A, Cij = |{k ∈ {1, . . . , q} : (ai, aj) ∈ Ok}|.
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Since the profile consists of linear orders, it is easy to see that,

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, Cij + Cji = q.

Instead of working with C, many ranking rules are simply based on so-
called majority margins. In fact, following the idea of balancing reasons (see
Bisdorff [9]), a majority margin is defined for any two alternatives as the
number of rankings in the profile where ai is as least as good as aj minus the
number of rankings in the profile where ai is not as least as good as aj . In
our particular case where the profile consists of linear orders, this is simply
the number of rankings that prefer ai over aj minus the number of rankings
that prefer aj over ai

1:

Definition 4 The majority margin matrix B is a n times n dimensional
matrix defined as follows: :
∀ai, aj ∈ A,

Bij = |{k ∈ {1, . . . , q} : (ai, aj) ∈ Ok}| − |{k ∈ {1, . . . , q} : (aj , ai) ∈ Ok}|.

Again, because of the fact that the profile consists of linear orders, we have
that

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, Bij + Bji = 0.

We call this the constant-sum property. If Bij > 0, then there are more
linear orders in the profile that prefer ai over aj than there are linear orders
that prefer aj over ai. If Bij < 0, then there are more linear orders that
prefer aj over ai than there are linear orders that prefer ai over aj . In case,
Bij = 0, there is an equal number of linear orders preferring ai over aj and
preferring aj over ai.

It is easy to see that, given C, we can directly obtain B, since ∀ai, aj ∈ A,
Bij = Cij −Cji. However, the converse is not true, which means that, given
B we cannot compute C without knowing the size q of the profile. In fact,
it is easy to see that

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, Cij =
1

2
(Bij + q).

The reader may wonder at this stage, why such strong aggregation mech-
anisms are used, loosing that way the initial rankings contained in the pro-
file. In that context, Debord [31] showed that, if a ranking rule verifies
only two reasonable and rather weak assumptions (namely E-invariance and
anonymity), then the result of that ranking rule must only depend on the

1Let us note that this definition does not apply if the profile contains more general
preference structures than linear orders. We refer the reader to [9] for more details.

30



majority margins of that profile.

It is convenient to know that majority margins have been characterized
by Debord [31]. Using the following result, we are able to tell if a given ma-
trix B can be seen as a majority margin matrix of a profile of linear orders.

Proposition 1 Let B be a n times n dimensional matrix such that

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, Bij + Bji = 0.

B can be seen as the majority margin matrix of a profile of linear orders if
and only if one of the following two statements are valid

• ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, Bij is even.

• ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, Bij is odd.

It is important to note that we do not have such a characterization for
concordance matrices. In fact, even under the constant-sum assumption,
not every concordance matrix can be obtained from a profile of linear or-
ders. It is impossible to obtain for instance a 3 times 3 matrix C, where
C12 = q (and consequently C21 = 0), C23 = q (and consequently C32 = 0)
and C31 = q (and consequently C13 = 0). In fact, this would correspond to
a profile where there is unanimity on a preference cycle, which is impossible,
given the transitivity property of linear orders of the initial profile.

The information contained in B can be further weakened. In fact, a
mathematical object that goes back to Condorcet is the so-called strict ma-
jority relation:

Definition 5 The strict majority relation M is a binary relation defined as
follows:

∀ai, aj ∈ A, (ai, aj) ∈ M ⇐⇒ Bij > 0.

It is easy to see that, given B, we can obtain M but the converse is not
true. At the core of the problem encountered in voting theory lies the fact
that M is not necessarily transitive. Consider for instance the profile with
three alternatives and three rankings u = (abc, cab, bac). Then (a, b) ∈ M ,
(b, c) ∈ M and (c, a) ∈ M . This is commonly referred to as Condorcet’s
paradox. There exists a huge literature on how often this paradox occurs
and what are the domain conditions on the profile to avoid it (see for in-
stance the recent book of Gehrlein [47] for an overview). We will however
not insist on these two particular aspects in this thesis.

Finally, from a more cardinal or rank-oriented perspective,∀ai ∈ A,∀O ∈
LO, let ρO(ai) denote the rank of alternative ai in the linear order O. By
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Alternative to rank

Q

Majority margin Majority relation

Figure 2.1: The relationships between the informational levels

convention, the alternative in the first position has rank 1, in the second
position has rank 2, and so on. A profile can be combined into a matrix Q

that counts the number of times that an alternative ai occupies a rank j:

Definition 6 The alternative to rank matrix Q is a n times n dimensional
matrix defined as follows:

∀ai ∈ A,∀j ∈ {1, . . . , q} : Qij = |{k ∈ {1, . . . , q} : ρOk
(ai) = j}|.

The relationships between the quantities introduced are schematically
represented in Figure 2.1. Let us note that there is no explicit link between
the matrix Q and the matrix B or the relation M .

2.2 Some ranking rules

In this section we present some popular ranking rules that have been in-
troduced in the literature. Some of these rules have been developed on an
ad-hoc basis, while others have stronger theoretical foundations. In Section
2.2.1, we first introduce prudent ranking rules, which will be at the core of
this thesis, whereas other popular rules, which we refer to as non-prudent,
are introduced in Section 2.2.2.

From a technical point of view, each rule is categorized according to:

• The type of solutions: a weak order (WO) or a set of linear orders
(SLO).

• The informational level on which the ranking rule is based: Major-
ity relation (M), majority margin matrix (B) or alternative to rank
matrix (Q).

Let us finally remark that some ranking rules rely on a heavy algorith-
mic resolution and many problems are NP-complete (see also Hudry [50] and
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Bartholdi, Tovey and Trick [5]). This may cause problems from a practical
point of view. Let us quote Bartholdi & al., who proved the NP-completeness
of a voting rule proposed by Dodgson (aka Lewis Caroll): “We think Lewis
Caroll would have appreciated the idea that a candidate’s mandate might
have been expired before it was ever recognized.”2 We will however less in-
sist on the complexity of the rules. Instead, our main interest will rather be
the definition of the rules.

2.2.1 Prudent ranking rules

Arrow and Raynaud [2] established a list of axioms which a ranking rule
should verify. Among these, Axiom V’ states that the compromise ranking
should be a so-called prudent order. Let us now formally introduce this
important concept.

Let λ ∈ {−q, . . . , q} and let us define the cut relations R≥λ and R>λ as
follows:
∀ai, aj ∈ A,

(ai, aj) ∈ R≥λ if

{
Bij ≥ λ and i 6= j

i = j

(ai, aj) ∈ R>λ if Bij > λ and i 6= j.

Hence, we always suppose that ∀ai ∈ A, the pairs (ai, ai) belong to the
relation R≥λ, whereas R>λ is always irreflexive.

When λ = −q, then R≥λ is a complete and symmetric relation, and
consequently contains at least one linear order. By gradually increasing the
cut value, ordered pairs will disappear from the corresponding cut relation.
Let α be the largest value such that the corresponding cut relation still
contains at least one linear order:

α = max{λ ∈ {−q, . . . , q} : R≥λ contains at least one linear order}.

We say that a relation R contains a cycle if there exists a subset of
alternatives {ai1 , ai2 , . . . , aip} ⊆ A such that (ai1 , ai2) ∈ R, (ai2 , ai3) ∈ R,
. . . , (aip , ai1) ∈ R. When λ = q, then R>λ is empty and consequently does
not contain any cycle. By gradually decreasing the cut value, some ordered

2J.J. Bartholdi, C.A. Tovey and M.A. Trick (1989), Voting schemes for which it can be

difficult to tell who won the election, Social Choice and Welfare 6, 157-165.
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pairs will be added to the corresponding strict cut relation. Let β be the
smallest value such that the corresponding strict cut relation is acyclic:

β = min{λ ∈ {−q, . . . , q} : R>λ is acyclic }.

Let us note that, consequently, R≥β must contain at least one cycle
involving at least two alternatives. Although working in a different context,
Kramer [63] had already noticed the interest of the relation R>β . However,
he did not mention its close relationship with R≥α. The following theorem
of Arrow and Raynaud [2] establishes the link between these two relations.

Theorem 1 If the constant sum property holds, then any linear order O

containing R>β is contained in R≥α and any linear order contained in R≥α

also contains R>β.

Arrow and Raynaud [2] thus proposed that the compromise ranking
should be a prudent order.

Definition 7 A prudent order O is a linear order that contains R>β and is
contained in R≥α :

O ∈ LO : R>β ⊆ O ⊆ R≥α.

The authors justify such a ranking to be prudent by the fact that ordered
pairs of alternatives that belong to the relation R>β are pairs with a high
majority. If these pairs would not belong to the final compromise ranking,
there would be a large majority against such a ranking. On the other hand,
a group ranking which is not contained in R≥α has at least one ordered pair
of alternatives (ai, aj) such that Bij is strictly smaller than α. That is why
such a group ranking should be discarded. Hence, a prudent order can be
seen as the optimal trade-off between the absence of cycles and the existence
of a linear order.

Let us note that in case the constant-sum property is verified, which will
always be the case in our setting since we only work with profiles consisting
of linear orders, then being contained in R≥α or containing R>β are two
equivalent conditions according to Theorem 1. We will thus consider a pref-
erence function denoted by PO, called prudent order preference function,
that associates to every profile u the set of all linear extensions of R>β :

PO(u) = {O ∈ LO : R>β ⊆ O}

= E(R>β).

Let us also stress that there always exists at least one prudent order,
since any acyclic relation can be extended into at least one linear order (see
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Szpilrajn [100]). From a technical point of view, the prudent order prefer-
ence function is of type (SLO/B), which means it is based on the majority
margin matrix B and the result is a set of linear orders.

Let us now illustrate this ranking rule on the following profile on 4 al-
ternatives, where the number in front of the linear order specifies how often
this linear order is repeated in the profile:

4 abcd 3 bcad

4 dcab 4 dabc

4 cabd 2 cdab

5 dbca 2 bacd

1 cbda 1 acdb

The following majority margins are obtained:

a b c d

a . 8 –8 –2
b –8 . 6 –2
c 8 –6 . 4
d 2 2 –4 .

In this example, β = 6, since:

• R>6 = {(c, a), (a, b)} is an acyclic relation.

• B(a, b) ≥ 6, B(b, c) ≥ 6 and B(c, a) ≥ 6, and so R≥6 is not acyclic
anymore.

The set of prudent orders corresponds to all the linear extensions of R>6.
There are in all 4 prudent orders:

PO(u) = {dcab, cabd, cdab, cadb}.

More generally, we will be interested in ranking rules that always produce
prudent orders. We call such rules prudent ranking rules.

Definition 8 A preference function f is a prudent ranking rule if:

∀u, f(u) ⊆ PO(u).

The prudent order preference function is trivially a prudent ranking rule.
Let us now present three other prudent ranking rules that have been pro-
posed in the literature, namely the rule proposed by Kohler [2, 62], the rule
proposed by Arrow and Raynaud [2] and the Ranked Pairs rule [104, 110].
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• Kohler’s rule (SLO/B)
This rule can be seen as a sequential maximin rule3. At step r (where
r goes from 1 to n):

– Compute for each row i the smallest value Bij(j 6= i).

– Select the alternative for which this minimum is maximal. If
there are ties, select one alternative arbitrarily.

– Put the selected alternative at position r in the final ranking.

– Delete the row and the column corresponding to the selected
alternative.

It has been shown in [2, 62] that under the constant-sum property
Kohler’s rule is indeed a prudent ranking rule. The rule is illustrated
in Figure 2.2. We first select alternative d which is put in the first
position of the compromise ranking. This alternative is then removed
from the matrix. In the second step, c is selected, put at the second
position in the compromise ranking and removed from the matrix. In
the third step a is selected and, finally b is put at the last position.
We thus obtain the prudent order dcab. We denote KO(u) the set of
all the linear orders that can be found using this ranking rule.

• Arrow and Raynaud’s rule (SLO/B)
This rule is very similar to Kohler’s rule. At step r (where r goes from
1 to n):

– Compute for each row i the largest value Bij(i 6= j).

– Select the alternative for which this maximum is minimal. If
there are ties, select one alternative arbitrarily.

– Put the selected alternative at position n − r + 1 in the final
ranking.

– Delete the row and the column corresponding to the selected
alternative.

It has been shown in [2] that under the constant-sum property Arrow
and Raynaud’s rule is indeed a prudent ranking rule. The rule is il-
lustrated in Figure 2.3, where the ranking cabd is eventually obtained.
We denote AR(u) the set of all the linear orders that can be found
using this ranking rule.

3A maximin rule selects the alternative ai ∈ A such that ∀aj ∈ A we have that
mink 6=i Bik ≥ mink 6=j Bjk
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a b c d min

a . 8 –8 –2 –8
b –8 . 6 –2 –8
c 8 –6 . 4 –6
d 2 2 –4 . –4

a b c min

a . 8 –8 –8
b –8 . 6 –8
c 8 –6 . –6

a b min

a . 8 8
b –8 . –8

Figure 2.2: An illustration of Kohler’s ranking rule.

a b c d max

a . 8 –8 –2 8
b –8 . 6 –2 6
c 8 –6 . 4 8
d 2 2 –4 . 2

a b c max

a . 8 –8 8
b –8 . 6 6
c 8 –6 . 8

a c max

a . –8 –8
c 8 . 8

Figure 2.3: An illustration of Arrow and Raynaud’s ranking rule.

• Ranked Pairs rule (SLO/B)

– Rank the ordered pairs (ai, aj) according to their values Bij from
the largest to the smallest. Take any linear order compatible with
this weak order.

– Consider the pairs in that order and do the following:

∗ If the ordered pair creates a cycle with the pairs already
blocked, skip this ordered pair.

∗ If the ordered pair does not create a cycle with the pairs
already blocked, block this ordered pair.

By construction this is a prudent ranking rule. In fact, the ordered
pairs of R>β are always blocked since no cycles can appear up to that
point. Consequently, any linear order found by that ranking rule must
contain R>β . Let us illustrate this on the example. First, we block
the two pairs (c, a) and (a, b) with a majority margin of 8. We then
skip pair (b, c) with a majority margin of 6 since it creates a cycle
with the pairs already blocked. We then block the pair (c, d) with
a majority margin of 4. In fact, this pair does not create any cycle
with the pairs already blocked. Finally, we block the pairs (d, a) and
(d, b) with a majority margin of 2 and so the ranking cdab is eventually
obtained. We denote RP(u) the set of all the linear orders that can
be obtained with this rule. We will come back to this rule in Chapter 6.
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PO(u) KO(u) AR(u) RP(u)

dcab X
cabd X
cdab X
cadb

Table 2.1: The result of 4 prudent ranking rules.

All the results of these four prudent ranking rules are summarized in
Table 2.1. Let us do the following remarks.

• It is clear that these are four different prudent ranking rules. In the
example in Table 2.1 we even use a profile u such that

KO(u) ∩ AR(u) ∩RP(u) = ∅.

Furthermore, all three ranking rules differ from the prudent order pref-
erence function.

• As PO, the three ranking rules KO,AR and RP can also lead to
multiple solutions because of possible ex-aequos when selecting an al-
ternative or when blocking an ordered pair.

• Kohler’s rule is an illustration of a ranking by choosing procedure.
First we apply a choice procedure to determine the alternative that
is ranked first. This alternative is removed from the data set and the
same choice procedure is reapplied on the not yet ranked set of alter-
natives. This scheme is sequentially repeated until all the alternatives
have been ranked. For Kohler’s rule, the choice procedure consists in
choosing an alternative ai such that the smallest Bij is maximal (in
case of ties we choose one alternative randomly). Arrow and Raynaud
is a procedure that ranks upwards by eliminating always the worst
choice.

• Apart from being prudent ranking rules, KO and AR are also sequen-
tially prudent [2, 31]. This means that, at each step of the algorithm,
the bi-partition of the alternatives already ranked and the alternatives
that still need to be ranked verify a form of prudence.

• Unlike conjectured by Arrow and Raynaud in their book [2], Lans-
downe [70] highlighted that Kohler’s rule and Arrow and Raynaud’s
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Name Type Reference

Bernardo SLO/Q [8]
Cook & Seiford SLO/Q [25]
Dodgson WO/u1 [11, 59]
MAH WO/B [7]
Robust Borda WO/Q [6]
Simpson WO/B [98]
Median Kendall SLO/u1 [56]

Table 2.2: Some other ranking rules.

rule may not be sufficient to find the whole set of prudent orders, which
means that there can exist a profile u such that KO(u) ∪ AR(u) 6=
PO(u) In fact, this can also be observed from the results of our intro-
ductory example in Table 2.1.

2.2.2 Non-prudent ranking rules

It is clear that not every ranking rule can be considered as prudent, ac-
cording to Definition 8. In this section, we give the precise definitions of
four well-known non-prudent ranking rules, namely the ones accredited to
Borda, Copeland, Kemeny and Slater. Other ranking rules proposed in the
literature can be found in Table 2.2 with the relevant references. We also
refer to Cook [24] for a review on other distance based ad-hoc consensus
models.

• Borda’s rule (WO/Q)
Borda’s well-known rule [12] orders the alternatives according to their
sums of ranks they occupy in the profile. This can be modeled by
means of the matrix Q. The Borda score is thus defined as follows:

∀ai ∈ A, bi =

n∑

k=1

Qikk.

The Borda ranking �B is the weak order defined as follows:

∀ai, aj ∈ A, (ai, aj) ∈�B ⇐⇒ bi ≤ bj .

Since Borda’s rule seems very intuitive, it has received a large atten-
tion by the scientific community. A famous characterization of this
rule is due to Young [108].
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Finally, Borda’s rule can also be seen as a special case of so-called
scoring rules. Instead of assigning 1 point to the first position, 2 points
to the second position, and so on, one may assign more generally s1

points to the first position, s2 points to the second position, and so
on, as long as s1 ≤ s2 ≤ . . . ≤ sn.

• Copeland’s rule (WO/M)
Another “reasonable” ranking rule based on the majority relation has
been proposed by Copeland [26].The idea is that the more a given
alternative beats other alternatives at majority the better this alter-
native should be ranked. Similarly, the more other alternatives beat
a given alternative at majority, the lower this alternative should be
ranked. A score is attached to each alternative that translates these
two objectives and the alternatives are then ranked according to these
Copeland scores:
∀ai ∈ A,

ci = 2|{ak ∈ A : (ai, ak) ∈ M}|+|{ak ∈ A : (ak, ai) 6∈ M and (ai, ak) 6∈ M}|.

The Copeland ranking �C is the weak order defined as follows:

∀ai, aj ∈ A, (ai, aj) ∈�C ⇐⇒ ci ≥ cj .

The Copeland choice function has been characterized by Henriet [49].

• Kemeny’s rule (SLO/B)
Kemeny [54] and Kemeny and Snell [55] approached the problem of
finding a compromise ranking by first showing that the symmetric
difference distance δ is the only distance function that verifies a set of
reasonable axioms. The final compromise rankings will then be defined
as the linear orders which are closest, in average, to the linear orders
of the profile according to the distance δ:

min

q
∑

i=1

δ(O, Oi)

s.t. O ∈ LO.

One may show that the objective function of this optimization prob-
lem can also be replaced with

∑

(ai,aj)∈O Bij and consequently the
model only depends on the majority margins. We refer the reader to
Montjardet [79] for other formulations of the objective function of this

1This ranking rule relies upon the whole profile in the sense that the knowledge of M ,
B or Q is not sufficient to compute the result.
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combinatorial optimization problem. In some contexts, a Kemeny or-
der is also called a median order.

Kemeny orders have been widely studied in the literature and the prop-
erties they verify (e.g. strong consistency plus Young-Condorcet, see
Young and Levenglick [109]) can be appealing. Unfortunately, finding
Kemeny orders is an NP-complete problem [5, 50].

• Slater’s rule(SLO/M)
Slater [99] proposed to solve Condorcet’s paradox by selecting the
rankings that are closest, according to the symmetric difference dis-
tance δ, to the majority relation M . Formally, we have the following
optimization problem that needs to be solved to find the so-called
Slater orders:

min δ(O, M)

s.t. O ∈ LO.

If OS is a Slater order, then the distance δ(OS , M) is sometimes called
the Slater index.

2.3 Classification

In this section, we classify into ranking rule families the prudent and non-
prudent ranking rules that we have encountered so far. To do so, we cate-
gorize the ranking rules on the basis of three aspects.

Condorcet ranking consistency (CRC)

We say that a ranking rule is Condorcet ranking consistent if the follow-
ing holds: if the reflexive closure r(M) of the strict majority relation
of the profile is a linear order, then this linear order must be the result
of the ranking rule.

From the perspective that we compare the alternatives pairwise, this
property seems to be a minimal requirement. In fact, if there is a majority
of rankings in the profile that prefer ai over aj and the majority relation
is complete and transitive, then it will be difficult to justify why we would
not put ai before aj in any compromise ranking. As explained by Arrow
and Raynaud, we are interested in ranking rues “...that would be identical
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to the majority method, if applicable.”4It is easy to see that Kemeny’s rule,
Slater’s rule and Copeland’s rule all verify CRC. Furthermore, any prudent
ranking rule also verifies this property, as we will prove in Corollary 2 in
Section 4.2. However, Borda’s rule does not verify this basic requirement.
Let us present an intriguing counterexample taken from [4], which shows
that things are not so obvious:

1 gabcfhde

1 fhgabcde

1 fdehgabc

On the one hand, the Borda ranking of this profile is the weak order

fgh ∼ abdce,

where h and a are in a tie. On the other hand, the majority relation leads
to the linear order fhgabcde, which is thus different from Borda’s ranking.
Nevertheless, even such a transitive majority relation could be criticized
with the following argument: g is placed once in the first, once in the third
and once in the fifth position, whereas h is placed once in the second, once
in the fourth and once in the sixth position. So it seems intuitive that g is
preferred to h. This is the case in the Borda ranking but not in the transitive
majority ranking! Even if we will pursue in this thesis the idea that CRC
is essential in a decision aid context, we refer the interested reader to Saari
(see for instance [96]), who insists that a property such as CRC is irrelevant.

B-ordinality (BO)

We say that a ranking rule is B-ordinal if the following holds: let u1

be a profile with a majority margin matrix B1 and let u2 be a profile
with a majority margin matrix B2. If ∀ai, aj ∈ A,

B1
ij > 0 ⇐⇒ B2

ij > 0

B1
ij = 0 ⇐⇒ B2

ij = 0

and ∀ai, aj , ak, al ∈ A,

B1
ij > B1

kl ⇐⇒ B2
ij > B2

kl

B1
ij = B1

kl ⇐⇒ B2
ij = B2

kl,

then the result for u1 and for u2 must be identical.

4Arrow and Raynaud (1986), Multicriterion Decision Making, MIT Press, page 81.
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B-ordinality means that the result of the ranking rule only depends on the
order of the values of the majority margins, whereas the numeric values
of the majority margins do not matter. Prudent ranking rules are usually
BO. In fact, BO is closely related to Majority Profile Consistency and Weak
Majority Profile Consistency, which are two properties that we will use in
the axiomatic characterizations of some prudent ranking rules (see Chapters
5 and 6). A typical example for a non-BO ranking rule is Kemeny’s rule.
Let us consider the following counter example, where B1 is the majority
margin matrix of a profile u1. According to Proposition 1, we know that a
profile of linear orders corresponding to B1 must exist.

B1 a b c d

a . 1 1 –3
b –1 . 3 3
c –1 –3 . 3
d 3 –3 –3 .

→ bcda is the unique Kemeny order.

Let us now consider another profile u2 with a majority margin matrix
B2. Using Proposition 1, we know that such a profile of linear orders must
exist.

B2 a b c d

a . 3 3 –5
b –3 . 5 5
c –3 –5 . 5
d 5 –5 –5 .

→ abcd is the unique Kemeny order.

The order of the majority margins for u1 is the same as the the order of the
majority margins for u2:

B1(a, b) = B1(a, c) < B1(b, c) = B1(b, d) = B1(c, d) = B1(d, a).

B2(a, b) = B2(a, c) < B2(b, c) = B2(b, d) = B2(c, d) = B2(d, a).

However, the result for profile u1 differs from the result for profile u2.

A particular family of BO ranking rules are those rules that only depend
on the strict majority relation.

M-invariance (MI)
We say that a ranking rule is M-invariant if the following holds: let u1

be a profile with a majority margin matrix B1 and let u2 be a profile
with a majority margin matrix B2. If ∀ai, aj ∈ A,

B1
ij > 0 ⇐⇒ B2

ij > 0

B1
ij = 0 ⇐⇒ B2

ij = 0,

then the result for u1 and for u2 must be identical.
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MI ranking rules are those rules that only take into account the fact that
there is a majority between two alternatives. We encountered two such rules:
Slater’s rule and Copeland’s rule. BO ranking rules which do not verify MI,
such as for instance most prudent ranking rules, work with a richer infor-
mation because majority margins do count.

The overall situation of the ranking rules that we have presented in the
previous section with respect to the three properties Condorcet ranking con-
sistency, B-ordinality and M-invariance are summarized in a tree in Figure
2.4. We already included in the classification the extended prudent order
and the lexicographic prudent order preference functions, which are two
prudent ranking rules that will be introduced in Chapter 5 and in Chapter
7. In this thesis we will be mainly concerned with ranking rules that are
Condorcet ranking consistent, B-ordinal but not M-invariant.
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Figure 2.4: Summary of the ranking rules with respect to Condorcet ranking
consistency, B-Ordinality and M-invariance.
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Chapter 3

Ordinal ranking rules as a

decision support tool

In this chapter we postulate that prudent ranking rules can be an appropri-
ate tool in practice. First, in Section 3.1, we introduce social choice theory
and we highlight some differences between an election and the type of prob-
lems we are considering. We focus our discussion on prudent ranking rules
in Section 3.2.

3.1 Social choice theory

According to Riker, “Social choice theory is the description and analysis of
the way that the preferences of individual members of a group are amalga-
mated into a decision of the group as a whole.”1. Scholars of social choice
theory study aggregation procedures, and in particular ordinal ranking rules,
from a very abstract perspective. Usually the nature of the group or the
nature of the decision at stake is not specified. This approach has lead to the
introduction of rather general concepts and has favored the development of
very deep results. Probably the most disturbing and most influential result
was Arrow’s famous impossibility theorem [1].

Despite being a rather theoretical discipline, social choice theory even-
tually aims at designing voting rules that could be applied in an election.
It is however crucial to clearly distinguish between, on the one hand, the
problem of an election and, on the other hand, the group ranking problem
or the MCDA problem described in Section 1.2.

First of all, we use a different vocabulary, depending on the fact if we

1W. Riker (1986), The art of political manipulation, Yale University Press.
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consider an election, a group ranking problem or a MCDA problem:

Election Group MCDA

Who ranks? Voters Group members Criteria
What is ranked? Candidates Alternatives Alternatives

As we have seen, in all three situations, we need algorithms that combine
multi-dimensional ordinal data. Despite this technical similarity, let us more
particularly insist on the following conceptual differences, which have been
partly put forward by Bouyssou, Marchant and Perny [14] and by Marchant
[75].

• Definition of the problem
A candidate is a person that accepts to run in an election. Since each
candidate is personally responsible to manifest his interest, the set of
candidates is objectively well-defined and stable before the start of
any election. In the same way, it is usually clear who are the voters,
which means the people that are allowed to cast a ballot. They can
for instance be the members of a society, the adult population of a
country, etc.

In a group ranking problem, it is usually easy to determine the group
members. These are the people of the same organization or the same
company working on a particular problem. In a MCDA problem, es-
tablishing a family of criteria can be a more tedious process. In both
contexts, the definition of the set of alternatives is usually far from
obvious. Usually this set is not an a priori of the problem, but has to
be constructed by the decision makers. During the decision process,
some alternatives might dynamically change, others will disappear and
new ones are likely to appear.

• Indeterminateness of the result
In an election, the rules are clearly set a priori. The ballots are suf-
ficient to unambiguously determine the result. This result has to be
accepted by the voters and candidates and it is not open to further
discussion or negotiation. Consequently, the result cannot be indeter-
minate.

In a group ranking problem or in a MCDA problem, the recommen-
dation proposed by any decision aid method can be questioned and
discussed and eventually rejected. Hence, it makes totally sense to
highlight the indeterminateness of the result. Pointing out the more
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problematic parts of the solution will hopefully stimulate the discus-
sion on the problem. Furthermore, there can be a possibility that the
result is progressively refined.

Let us summarize our discussion:

Election Group MCDA

Def. of cand./alt. easy difficult difficult

Def. of voters/group members/criteria easy easy difficult

Indeterminateness of the result not useful useful useful

The main point that we would like to make here is that underlining the
indeterminateness of the the result does not make sense in an election but
can be useful in more operational decision aid situations. Unfortunately,
most of the ranking rules are not suitable from this perspective. This can
be explained by the fact that most of the ordinal ranking rules have been
developed and studied by the social choice community who are less inter-
ested by ambiguous results. Our thesis is that there is a need for ordinal
ranking rules that explicitly take into account the difficulty and ambiguity of
aggregating ordinal data. We show in the next section why prudent orders
can be a possible answer to this concern.

3.2 Motivations for prudent ranking rules

The choice of a particular, not necessarily prudent, ranking rule is a fun-
damental problem. Roy and Bouyssou [93] (page 359 - 360) bring up this
issue when discussing the use of ordinal ranking rules in a decision aid con-
text. The problem is complicated by the fact that, although the rules that
we could use all take as input the same ordinal data and they all look, a
priori, very reasonable, they can possibly lead to very different results. Con-
sequently, the result rather depends on the choice of a particular ranking
rule than on the input data itself. This may cause problems since it will be
difficult to justify, in practice, the use of a particular ranking rule.

The difficulty of a choosing a ranking rule can apparently be overcome
by adopting the following ad-hoc solution. In fact, one could consider all
the solutions obtained by a set of different popular ranking rules (see for
instance Colson [23]). In a way, a new rule is defined by combining existing
rules. If the different rules agree, then we are tempted to interpret this as
a confirmation of the results since each ranking rule has its own logic and
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consequently treats the data from its own perspective. On the contrary, this
approach can cause confusion, misunderstandings and misinterpretations in
case the different results are contradictory. Even if the results of various
ranking rules do agree, the interpretation is not straightforward.

We will however not pursue this more pragmatic approach. Instead, we
give some hints why prudent ranking rules can be interesting to consider.

3.2.1 Interpretation of a prudent order

Intuitively, a prudent order is a compromise ranking such that the weak-
est pairwise preference link is maximal. Equivalently, a prudent order is a
compromise ranking such that the strongest opposition against this solution
is minimal. According to Arrow and Raynaud, this makes especially sense
when “... working in an industrial or business-like context.”2 Let us illus-
trate this idea of “maximizing the strongest opposition” in the context of
the group ranking problem.

Consider the following example with three alternatives and 9 group mem-
bers.

GM1 abc GM6 bca

GM2 abc GM7 abc

GM3 cab GM8 abc

GM4 bca GM9 cab

GM5 cab

Given this situation, a compromise ranking has to be constructed. Since
there are 3 alternatives, there are in total 3!=6 linear orders that can be
considered. Let us now analyze these 6 solutions one by one. Each solution
consists of 3 ordered pairs of alternatives and we focus on the opposition
that any such ordered pair gets from the group members.

• Solution abc.

Pair of altern. (a,b) (a,c) (b,c) Strong. Coal.

Oppos. from GM 4,6 3,4,5,6,9 3,5,9 3,4,5,6,9

• Solution acb.

Pair of altern. (a,c) (a,b) (c,b) Strong. Coal.

Oppos. from GM 3,4,5,6,9 4,6 1,2,4,6,7,8 1,2,4,6,7,8

2Arrow and Raynaud (1986), Multicriterion Decision Making, MIT Press.
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• Solution bac.

Pair of altern. (b,a) (b,c) (a,c) Strong. Coal.

Oppos. from GM 1,2,3,5,7,8,9 3,5,9 3,4,5,6,9 1,2,3,5,7,8,9

• Solution bca.

Pair of altern. (b,c) (b,a) (c,a) Strong. Coal.

Oppos. from GM 3,5,9 1,2,3,5,7,8,9 1,2,7,8 1,2,3,5,7,8,9

• Solution cab.

Pair of altern. (c,a) (c,b) (a,b) Strong. Coal.

Oppos. from GM 1,2,7,8 1,2,4,6,7,8 4,6 1,2,4,6,7,8

• Solution cba.

Pair of altern. (c,b) (c,a) (b,a) Strong. Coal.

Oppos. from GM 1,2,4,6,7,8 3,4,5,6,9 1,2,3,5,7,8,9 1,2,3,5,7,8,9

Take a closer look at the first solution abc: there are 2 group members
that are opposed to the fact that a is preferred to b (namely GM4 and GM6),
there are 5 group members that are opposed to the fact that a is preferred
to c and there are 3 group members that are opposed to the fact that b is
preferred to c. Hence, the strongest coalition against this ranking consists
of the group members 3, 4, 5, 6 and 9, who all agree on the fact that c

is preferred to a. Let us now imagine that this ranking will be the final
group solution. Then, the group members belonging to the strongest coali-
tion could join their forces and veto against this solution. Put in another
way, by adopting this ranking, we go against the common will of the group
members of the strongest coalition.

Since we have to chose at least one group ranking, following the argu-
mentation of the previous paragraph, we are going to select the ranking for
which the strongest coalition against this ranking is smallest possible. After
analyzing the six solutions, we conclude that the first ranking abc could be
a potential group ranking, since the strongest coalition against this ranking
only consists of 5 group members, whereas the strongest coalition of all the
other solutions consists of at least 6 group members.

To our point of view, the concept of a prudent order is thus an inter-
esting, and above all, easy and transparent interpretation. An analyst or a
decision maker is surely more comfortable with using a ranking rule based
on a principle which he can easily grasp than having to use a ranking rule
as a black-box tool.
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3.2.2 Properties of prudent ranking rules

In theory, the choice of a particular ranking rule can only be justified by
looking at its properties. In Bouyssou & al. [16], some guidelines are given
for popular social choice rules or multicriteria decision aid methods. Since
no perfect aggregation mechanism exists, we select the one that performs
well on those aspects relevant to our particular context. Let us come back
to the properties introduced in the classification in Section 2.3.

• Condorcet ranking consistency
We think that it is interesting from a cognitive point of view to com-
pare alternatives pairwisely. A decision maker can always compare
two alternatives and ask himself which of the two alternatives she or
he prefers. Once you accept to compare alternatives pairwisely, it will
be difficult not to require Condorcet ranking consistency.

• B-ordinality
B-ordinality implies that a very high majority margin cannot compen-
sate for a very low majority margin. This makes especially sense when
the pairwise preference intensities are not on a cardinal, but rather on
an ordinal scale. For instance, a consequence of B-ordinality will be
that the use of importance coefficients will become more transparent
(see Chapter 10).

• Absence of M-invariance
We think that the ranking rule should not solely depend on the strict
majority relation. There is a difference between a majority margin
of +1 and a majority margin of +100. This needs to be taken into
account somehow.

Many ranking rules can be imagined which follow the prudence principle.
Those prudent ranking rules which we will consider in this thesis all satisfy
the three properties that we have just mentioned.

3.2.3 Multiplicity of prudent orders

We will especially focus on the largest (with respect to inclusion) prudent
ranking rule, namely the prudent order preference function which outputs
the whole set of prudent orders.

Let us directly acknowledge that the number of prudent orders can be
rather large. Following some simulations on the cardinality of the set of
prudent orders for small profiles, Debord concluded that: “La simulation
[...] semblerait indiquer que, statistiquement, le cardinal de la [...] procédure
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prudente reste élevé et donc que l’ambigüıté quant au choix final demeure.”3

The result of Debord’s simulations can be found in the appendix.

At first sight, enlarging the set of solutions seems counter-intuitive. In
fact, a ranking rule that possibly leads to a large amount of rankings is
usually considered as a bad aggregation mechanism. Consider for instance
a rule that associates to every profile all the linear orders. Such a rule is
a very poor decision support. Furthermore, the large amount of different
solutions can be very contradictory (see also Perny [86]). This may cause
problems from a conceptual point of view, since we do not know which com-
promise ranking, among all the “optimal” compromise rankings, we should
eventually choose.

Although the high number of prudent orders is perceived by Debord (and
many others) as an inconvenience, it is precisely this feature that makes them
attractive to us. We claim that the multiplicity of results should not be per-
ceived as an inconvenience, but rather as a consequence of the difficulty of
aggregating ordinal data. As discussed broadly in Section 3.1, leaving open
some indeterminateness can make sense in some situations.

How are we going to manage this set of compromise rankings in practice?
In this thesis, we will suggest to analyze the set of potentially interesting
compromise rankings using the idea of robust information. We will be look-
ing for conclusions that remain valid for all the compromise rankings (see
Roy [92]). That way, more solid information can be obtained. Moreover,
this approach also allows to highlight problems and conflicts, since the qual-
ity of the robust conclusions obtained is inversely proportional to the degree
of contradictions contained in the results. Hence, robustness is used as an
ex-post exploitation tool (see also Dias [33] for a discussion on the use of
robustness in decision aid). If feasible, an interactive approach can finally
help to manage the possible diversity of the results and support the explo-
ration and refinement of the set of solutions.

3.2.4 Variety of prudent ranking rules

Instead of using the prudent order preference function, we could also consider
a prudent ranking rule which outputs only one (or a few) “good” prudent
orders. This is useful in situations where one final ranking is immediately
requested and there is not the possibility of interactively refining the set of
prudent orders. In a way, the refinement of the set of prudent orders needs
to be done in an automatic way. That is why we will discuss more in detail

3B. Debord (1987), Axiomatisation de procédures d’agrégation de préférences, PhD
Thesis, Université Scientifique et Médicale de Grenoble.
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in this thesis three prudent ranking rules different from the prudent order
preference function:

• The extended prudent order preference function XPO(u) (see Chapter 5).

• The Ranked Pairs rule RP(u) (see Chapter 6).

• The lexicographic prudent order preference function LPO(u) (see Chap-
ter 7).

In fact, these ranking rules offer an increasingly sharper refinement of the
set of prudent orders:

∀u, PO(u) ⊇ XPO(u) ⊇ RP(u) ⊇ LPO(u).

The choice of a particular ranking rule is highly dependent on the con-
text. On the one hand, a prudent ranking rule such as for instance LPO
are more suitable from a “prescriptive” perspective, since it unveils the best
possible compromise ranking from a prudent point of view, given the pref-
erence information contained in the profile. On the other hand, a prudent
ranking rule such as for instance PO is more suitable from a “constructive”
perspective, since it leaves some indeterminateness on the result and allows
to interactively discover the best compromise ranking. Of course, the fron-
tier between constructive and prescriptive approaches remains fuzzy. We
refer the reader to Chapter 2 in [16] for a discussion on these concepts, al-
though these authors rather discuss different approaches than methods.

Since in practice it can be difficult to correctly assess the degree of con-
structiveness or prescriptiveness of a situation, we believe that the most in-
teresting prudent ranking rules are the two extremes: PO and LPO. Let us
finally note that these two prudent ranking rules could also be used together.
For instance, we compute the best prudent orders using the lexicographic
prudent order preference function. These rankings can then possibly be en-
riched with the information available about the whole set of prudent orders.
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Part II

Prudent ranking rules:

theoretical contributions
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Chapter 4

The prudent order

preference function

In this chapter, we focus on technical properties that are commonly used
to analyze ordinal ranking rules. Such an insight into the behavior of the
prudent order preference function can help to indicate the reasonableness of
the prudence principle as an aggregation mechanism.

More particularly, we come back in Section 4.1 to the definition of the
prudent order preference function. We highlight in Section 4.2 the link of
prudent orders with the strict majority relation. In Section 4.3, we address
the issue of consistency. In Section 4.4, we analyze the impact on the result
when removing alternatives, especially in view of Arrow’s independence of
irrelevant alternatives axiom. Finally, in Section 4.5, we make some com-
ments on the prudent choice problem.

4.1 Definition

As we have seen in Section 2.2.1, a prudent order is a linear extension of
R>β , where β is the smallest value such that the corresponding strict cut
relation is acyclic. Equivalently, a prudent order is a linear order contained
in R≥α, where α is the largest possible value such that the corresponding
cut relation contains at least one linear order.

For “problematic” profiles, β is large and α is small. As the two relations
R>β and R≥α drift further apart, the number of prudent orders increases,
until the trivial case where every linear order on A is a prudent order (see
for instance Lansdowne [70] for such an example). The following proposition
points out some particularities of these coefficients α and β.
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Proposition 2 Let u be a profile with q linear orders. Let α and β be the
two optimal cut values for this profile.

1. α + β = 0.

2. If β < 0, then the reflexive closure of the strict majority relation of u

must be a linear order.

3. β < q.

4. If β = −q, then u must be a profile consisting of q times a same linear
order.

Proof:

1. This equality has been proved in Arrow and Raynaud [2]. We recall
that c(R) denotes the complement and t(R) denotes the transitive clo-
sure of a binary relation R.

2. By definition, the strict majority relation M is equal to the strict cut
relation R>0. Since β < 0, we have R>0 ⊆ R>β . Consequently, we
have M ⊆ R>β . Since R>β is acyclic, so must be M . We are now going
to show that r(M) is also complete, where r(.) denotes the reflexive
closure. This will imply that r(M) is a linear order. Let us suppose by
contradiction that r(M) is not complete, i.e. there exists two different
alternatives ai and aj with (ai, aj) 6∈ M and (aj , ai) 6∈ M . Because of
the constant-sum property (∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, Bij +Bji = 0),
this implies that Bij = Bji = 0. Since we suppose that β < 0, this
means that (ai, aj) ∈ R>β and (aj , ai) ∈ R>β . This is a contradiction
since R>β is by construction acyclic.

3. Let us suppose by contradiction that β = q. This means that R≥q

contains a cycle: Bi1j1 = q, Bi2j2 = q, . . . , Bip−1jp = q, Bjpi1 = q.
Having an unanimous cycle is not possible since the profile consists of
linear orders, which are by definition acyclic.

4. Since β = −q, Point 1 of this proposition implies that α = q. Con-
sequently, the relation R≥q must contain a linear order O. In other
words, ∀(ai, aj) ∈ O, we must have that Bij = q. This is only possible
with a profile containing q times the linear order O.

�

The next proposition gives some further equivalent definitions of a pru-
dent order.

Proposition 3 Let OP be a linear order. The following statements are
equivalent:
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1. OP is a prudent order.

2. OP ⊆ ctc(R≥α).

3. OP is an optimal solution of maxO∈LO min(ai,aj)∈O,ai 6=aj
Bij.

4. t(R>β) ⊆ OP .

5. OP is an optimal solution of minO∈LO max(ai,aj) 6∈O Bij.

Proof:

• Equivalence between 1 and 2
OP is a prudent order ⇐⇒ OP ⊆ R≥α ⇐⇒ c(R≥α) ⊆ c(OP )
⇐⇒ tc(R≥α) ⊆ tc(OP ) = c(OP ) (since c(OP ) is transitive)
⇐⇒ cc(OP ) = OP ⊆ ctc(R≥α).

• Equivalence between 1 and 3
Let us first show that

α = max
O∈LO

min
(ai,aj)∈O,ai 6=aj

Bij .

Let us suppose by contradiction that there exists O′ ∈ LO such that

min
(ai,aj)∈O′,ai 6=aj

Bij = α′ > α.

This implies that:

∀(ai, aj) ∈ O′, Bij ≥ α′.

Consequently O′ ⊆ R′
≥α′ . Hence there exists α′ > α such that R≥α′

still contains at least one linear order. This contradicts the definition
of α.

OP is a prudent order if and only if OP ⊆ R≥α. This is equivalent to
stating that

∀(ai, aj) ∈ OP , Bij ≥ α.

This is equivalent to stating that

OP ∈ arg max
O∈LO

min
(ai,aj)∈O,ai 6=aj

Bij ,

since α = maxO∈LO min(ai,aj)∈O,ai 6=aj
Bij .

• Equivalence between 1 and 4
OP is a prudent order ⇐⇒ R>β ⊆ OP ⇐⇒ t(R>β) ⊆ t(OP ) = OP

(since OP is transitive).
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• Equivalence between 3 and 5 follows directly from the constant-sum
assumption (∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n, Bij + Bji = 0) and the fact
that linear orders are antisymmetric.

�

The interpretation of Point 3 of this proposition is that prudent orders
are those linear orders which maximize the weakest link, which means the
smallest pairwise majority margin. The interpretation of Point 5 is that
prudent orders are those linear orders which minimize the strongest oppo-
sition. Consequently, ∀u, the set PO(u) is never empty, since LO is finite
and by exhaustive enumeration at least one linear order is optimal under
each of these two problems.

The formulation of prudent orders as an optimization problem allows
us also to put prudent orders into perspective with the so-called Kemeny
orders [54]. We have seen in Section 2.2.2 that OK is a Kemeny order if
and only if ∀O ∈ LO,

∑

(ai,aj)∈Ok
Bij ≥

∑

(ai,aj)∈O Bij . Hence, Kemeny
orders are linear orders optimal under a sum operator, whereas, according
to Point 3 of Proposition 3, prudent orders are optimal using a min operator.

There is a straightforward approach to enumerate all the prudent orders
(see also Debord [31], page 102). First, use Kohler’s algorithm (see Sec-
tion 2.2.1) to find one prudent order denoted by OP . Find the strongest
opposition against this ranking OP , which means the largest Bij such that
(ai, aj) 6∈ OP . This value corresponds to β. Hence, we can easily compute
R>β and t(R>β).

Enumerating all the prudent orders then boils down to enumerating all
the linear extensions of the partial order t(R>β). A constant amortized time
algorithm for linear extension enumeration, that is an algorithm that runs
in O(|PO(u)|), is presented in Pruesse and Ruskey [89].

Debord [31] performed some simulations on the number of prudent or-
ders for profiles up to 7 alternatives and up to 17 rankings. His results
can be found in the appendix. Unfortunately, the number of prudent or-
ders increases dramatically with the number of alternatives. That is why
the simulations of Debord were restricted to small profiles since, by relying
on complete enumeration, the computational limits of this approach were
quickly reached. In fact, counting linear extensions of a partial order is
shown by Brightwell and Winkler [18] to be a #P-complete problem. This
means that it is as difficult as finding the number of assignments of a 3-SAT
instance.
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Any set of linear extensions of a partial order can be represented with
a so-called linear extension graph. A vertex of this graph corresponds to
one linear extension and there is an edge between two vertices if the cor-
responding two linear extensions only differ by exactly one transposition of
adjacent alternatives. It has been shown that this graph is connected for
every partial order (see for instance the paper of Pruesse and Ruskey [89]).

Since the set of prudent orders is the set of linear extensions of the partial
order t(R>β), it can be represented with a linear extension graph. Since the
linear extension graph is connected, we can tell that any two prudent orders
are linked by a chain of prudent orders and two consecutive prudent orders
of this chain only differ by a transposition of two adjacent alternatives. A
similar result has been highlighted in Debord’s PhD thesis (see corollary 7.2
in [30]), however without referring to the linear extension graph.

Let us illustrate the linear extension graph on a profile with 4 alternatives
a, b, c and d. Let u = (abcd, bcda, cdab, dabc, dcba). This profile has the
following majority margins:

a b c d

a . 1 –1 –3
b –1 . 1 –1
c 1 –1 . 1
d 3 1 –1 .

By applying Kohler’s rule, the linear order dabc can be obtained. The
oppositions against this solution are as follows:

B(c, b) = −1 B(c, a) = 1 B(c, d) = 1

B(b, a) = −1 B(b, d) = −1 B(a, d) = −3

Hence, the strongest opposition against this ranking is 1, and so β = 1. The
set of prudent orders then corresponds to all the linear extensions of the
relation R>1 = {(d, a)}. The linear extension graph of this partial order
is given in Figure 4.1. In this graph, the twelve vertices correspond to the
twelve prudent orders.

4.2 Majority

The set of prudent orders is closely linked with the strict majority relation
M . In general, the reflexive closure of the strict majority relation M is not a
linear order. However, if r(M) is a linear order, then Lansdowne [69] showed
that r(M) must be a prudent order. In fact, this is the only prudent order,
as will be shown by the following more general result:

61



e
e

e

PPPPPPPP

T
T
TT

�
�

�� %
%

%

��������

�
�

��

@
@

@@

���� HHHH

dbca

dcba

bdca

bdac

dacb dcab

dbac

dabc

cdba cbda

bcda

cdab

Figure 4.1: The linear extension graph.

Proposition 4 Let M be the strict majority relation of profile u. If M is
acyclic, then PO(u) = E(M).

Proof: Let us suppose M acyclic. Either r(M) is complete or not.

• r(M) is complete.
We can note that, since r(M) is complete, ∀(ai, aj) with (ai, aj) 6∈
r(M), we must have Bij < 0. Let γ = max{Bij : (ai, aj) 6∈ r(M)}.
By construction we have that R>γ = M and so R>γ is acyclic. Fur-
thermore, there exists (ai, aj) 6∈ r(M) such that Bij = γ. Since r(M)
is complete and (ai, aj) 6∈ r(M), we must have that (aj , ai) ∈ r(M).
Consequently, (ai, aj) ∈ R≥γ and (aj , ai) ∈ R≥γ . This means that R≥γ

contains a cycle. Hence, β = γ and PO(u) = E(R>β) = E(R>γ) =
E(M).

• r(M) is not complete.
By definition, M = R>0 and since M is acyclic, so must be R>0. Since
r(M) is not complete, there must exist two different alternatives ai and
aj such that (ai, aj) 6∈ R>0 and (aj , ai) 6∈ R>0. Since Bij ≤ 0, Bji ≤ 0
and Bij + Bji = 0, we must have Bij = Bji = 0. Consequently R≥0

contains a cycle. Hence β = 0, and so R>β = R>0 = M . Conse-
quently, PO(u) = E(M).

�

Corollary 1 If r(M) is a partial order, then PO(u) = E(r(M)).

Corollary 2 If r(M) is a linear order, then PO(u) = {r(M)}.
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Another interpretation of prudent orders worth mentioning here has been
highlighted by Debord [30]. Let us suppose that the profile u is such that
the reflexive closure of the strict majority relation is not a linear order. We
denote ∀λ > 0 and ∀O ∈ LO by u + λO a profile consisting of the linear
orders of profile u and of λ times the linear order O.

For any linear order O ∈ LO we denote by µO the minimal number of
times that one has to add O to u such that the reflexive closure of the strict
majority relation of the profile u + µOO corresponds exactly to the linear
order O. In other words, µO corresponds to the necessary strength of the
linear order O to impose itself as the majority solution. We define

µmin = min
O∈LO

µO.

Debord [30] then proved the following theorem.

Theorem 2 Let u be a profile such that the reflexive closure of the strict
majority relation is not a linear order. O is a prudent order if and only if
the reflexive closure of the strict majority relation of the profile u + µminO

is equal to O.

Hence, a prudent order can be interpreted as a linear order that one
has to add the smallest number of times to the profile so that the reflexive
closure of the strict majority relation of the new profile corresponds exactly
to this linear order.

We illustrate this theorem on the profile introduced in Section 2.2.1. In
this case µmin = 7. We know that dcab is a prudent order. Let us now add
this linear order 7 times to the initial profile u:

u∗ = (u, dcab, dcab, dcab, dcab, dcab, dcab, dcab).

The reflexive closure of the strict majority relation of this new profile u∗ is
exactly the linear order dcab. This can be checked by looking at the major-
ity margins of u∗:

a b c d

a . 15 –15 –9
b –15 . –1 –9
c 15 1 . –3
d 9 9 3 .

Consider now the linear order abcd, which is not a prudent order. The
following majority margins will be obtained when adding abcd 7 times to
the initial profile u:
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Property Name Mentioned by

f(u1) ∩ f(u2) 6= ∅
⇒ f(u1 + u2) = f(u1) ∩ f(u2) Strong consistency Young and Levenglick [109]

f(u1) = f(u2)
⇒ f(u1 + u2) = f(u1) = f(u2) Weak consistency Saari [94]

f(u1) ∩ f(u2) ∩ f(u1 + u2) 6= ∅ Very weak consistency Durand [39]

Table 4.1: Some Consistency properties of a preference function f .

a b c d

a . 15 –1 5
b –15 . 13 5
c 1 –13 . 11
d –5 –5 –11 .

The reflexive strict majority relation of this new profile is not equal to abcd

(for instance (a, c) belongs to this linear order but does not belong to the
strict majority relation). In fact, abcd has to be added 9 times in order to
impose itself as the majority solution.

4.3 Consistency

In this section, we study different formulations of what can be called a
consistency property. Given two profiles

u1 = (O1
1, O

1
2, . . . , O

1
q) and u2 = (O2

1, O
2
2, . . . , O

2
q′),

we construct a new profile denoted by

u1 + u2 = (O1
1, O

1
2, . . . , O

1
q , O

2
1, O

2
2, . . . , O

2
q′)

which consists in concatenating the two initial profiles. The relationships
between PO(u1),PO(u2) and PO(u1 + u2) are then studied. In Table 4.1,
we give some examples of consistency properties which have been mentioned
in the literature.

Durand [39] was studying in his PhD thesis the consistency of prudent
choice rules. He noticed already that the prudence principle is hardly com-
patible with the idea of consistency. In fact, in his models, no positive result
about consistency has been mentioned. More particularly, Durand’s work
consists in performing simulations in order to estimate the frequency of pro-
files where some kind of consistency is nevertheless verified.
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u1

4 cab

3 abc

1 bca

3 cba

3 acb

→

B1 a b c

a . 6 –2
b –6 . –6
c 2 6 .

→ PO(u1) = {cab}

u2

4 bac

5 acb

5 cba

→

B2 a b c

a . –4 4
b 4 . –6
c –4 6 .

→ PO(u2) = E({(c, b)})

u1 + u2 →

S a b c

a . 2 2
b –2 . –12
c –2 12 .

→ PO(u1 + u2) = {acb}

Figure 4.2: Reference example for different consistency properties.

Let us however remark that Durand was working with prudent choice
and not prudent ranking functions. Unfortunately, the picture seems to be
not more encouraging when working with rankings instead of choice sub-
sets. In the example in Figure 4.2, PO(u1) = {cab}, PO(u2) consists of
all the linear extensions of {(c, b)} and PO(u1 + u2) = {acb}. So, in this
case, PO(u1) ∩ PO(u2) ∩ PO(u1 + u2) = ∅! Using Durand’s terminology
(see Table 4.1), very weak consistency is not verified. This implies that
strong consistency, used by Young and Levenglick [109] in their charac-
terization of Kemeny’s rule, cannot be verified for prudent orders: in the
example in Figure 4.2, although PO(u1) ∩ PO(u2) 6= ∅, it is not true that
PO(u1 + u2) = PO(u1) ∩ PO(u2).

However, a weaker form of consistency can nevertheless be stated for
prudent orders.

Theorem 3 Let Rs
>βs

be the optimal strict cut relation of profile us (s =
1, 2).If

PO(u1) ∩ PO(u2) 6= ∅,

then

PO(u1 + u2) ⊆ E(R1
>β1

∩ R2
>β2

).

Proof: Let B be the majority margin matrix of profile u = u1 + u2.
Let β be the optimal cut-value of profile u. We need the following lemma:
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Lemma 1 R1
>β1

∪R2
>β2

is acyclic if and only if PO(u1)∩PO(u2) 6= ∅, i.e.

there exists a linear order O such that R1
>β1

⊆ O and R2
>β2

⊆ O.

Proof of the lemma:

• ⇒
Since R1

>β1
∪ R2

>β2
is acyclic, there must exist a linear order O (see

Szpilrajn [100]) such that R1
>β1

∪R2
>β2

⊆ O. This implies that R1
>β1

⊆ O

and R2
>β2

⊆ O.

• ⇐
There exists a linear order O such that R1

>β1
⊆ O and R2

>β2
⊆ O.

This implies that R1
>β1

∪ R2
>β2

⊆ O. Let us suppose by contra-

diction that R1
>β1

∪ R2
>β2

contains a cycle. Hence there exist two

different alternatives ai and aj such that (ai, aj) ∈ t(R1
>β1

∪ R2
>β2

)

and (aj , ai) ∈ t(R1
>β1

∪ R2
>β2

), which implies that (ai, aj) ∈ O and
(aj , ai) ∈ O. This is a contradiction since O is antisymmetric.

Proof of the theorem:
Let us cut the majority margins B of profile u = u1 + u2 at level β1 + β2.
Then :

R1
>β1

∩ R2
>β2

⊆ R>β1+β2 ⊆ R1
>β1

∪ R2
>β2

On the one hand, if (ai, aj) ∈ R1
>β1

∩ R2
>β2

, then we have B1
ij > β1 and

B2
ij > β2, which implies that Bij > β1+β2, which implies that (ai, aj) ∈ R>β1+β2 .

On the other hand, if (ai, aj) 6∈ R1
>β1

and (ai, aj) 6∈ R2
>β2

, then we have

B1
ij ≤ β1 and B2

ij ≤ β2, which implies that Bij ≤ β1 + β2, which implies
that (ai, aj) 6∈ R>β1+β2 .

Since PO(u1) ∩ PO(u2) 6= ∅, Lemma 1 tells us that R1
>β1

∪ R2
>β2

is
acyclic. That is why R>β1+β2 is also acyclic. Consequently β ≤ β1 + β2 and
so R>β1+β2 ⊆ R>β . Consequently, R1

>β1
∩ R2

>β2
⊆ R>β , which implies that

PO(u1 + u2) ⊆ E(R1
>β1

∩ R2
>β2

).
�

The example in Figure 4.2 illustrates this kind of consistency property.
The intersection of PO(u1) with PO(u2) is non empty. Since

R1
>β1

= {(c, a), (c, b), (a, b)}

and R2
>β2

= {(c, b)}, we have that R1
>β1

∩ R2
>β2

= {(c, b)}. Indeed, the

reader can check that PO(u1 + u2) ⊆ E({(c, b)}).

A consequence of Theorem 3 is the following corollary.

Corollary 3 If R1
>β1

= R2
>β2

, then PO(u1 + u2) ⊆ PO(u1).
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u1

1 abcd

1 bcda

1 cdab

1 dabc

→

B1 a b c d

a . 2 0 –2
b –2 . 2 0
c 0 –2 . 2
d 2 0 –2 .

→ PO(u1) = LO

u2

2 abdc

2 bdca

2 cabd

2 dacb

→

B2 a b c d

a . 4 –4 0
b –4 . 0 4
c 4 0 . –4
d 0 –4 4 .

→ PO(u2) = LO

u1 + u2 →

B a b c d

a . 6 –4 –2
b –6 . 2 4
c 4 –2 . –2
d 2 –4 2 .

→ PO(u1 + u2) = {cabd}

Figure 4.3: Although profiles u1 and u2 have the same set of prudent orders,
u1 + u2 is smaller.

Even in this particular formulation, we cannot replace the set inclusion
by an equality. In Figure 4.3, for both profiles the optimal strict cut rela-
tions are empty and consequently for both profiles every linear order is a
prudent order. However, when considering the two profiles together, the set
of prudent orders has shrunk to one linear order. Hence, following Saari’s
terminology (see Table 4.1), prudent orders do not verify weak consistency.

Let us now suppose that O ∈ PO(u). When adding the prudent order
O to the initial profile, we can now state the following proposition, where
the second inclusion is a consequence of Theorem 3.

Proposition 5 For every linear order O with O ∈ PO(u), we have that

{O} ⊆ PO(u + O) ⊆ PO(u).

Proof:

• Let us first show that PO(u + O) ⊆ PO(u). In order to use the
same notation as in Theorem 3, let us denote u1 = u and u2 the
profile consisting solely of the linear order O. It is easy to see that
PO(u2) = {O} and that r(R2

>β2
) = O (where r(.) denotes the reflexive

closure). Since O ∈ PO(u1), we can also tell that R1
>β1

⊆ O. We can
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conclude that R1
>β1

∩ R2
>β2

= R1
>β1

. Applying Theorem 3, we finally
get that:

PO(u+O) = PO(u1+u2) ⊆ E(R1
>β1

∩R2
>β2

) = E(R1
>β1

) = PO(u1) = PO(u).

• Let us now show that {O} ⊆ PO(u + O). We denote by B the major-
ity margin matrix of profile u and by B′ the majority margin matrix
of profile u + O.

Since O ∈ PO(u), we have (see Proposition 3):

∀Õ ∈ LO, min
(ai,aj)∈O,

ai 6=aj

Bij ≥ min
(ai,aj)∈Õ,

ai 6=aj

Bij .

This implies that:

∀Õ ∈ LO, ( min
(ai,aj)∈O,

ai 6=aj

Bij) + 1 ≥ ( min
(ai,aj)∈Õ,

ai 6=aj

Bij) + 1.

Let us note that adding O to the profile u will change the majority
margins as follows. For every i, j with 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, we
have B′

ij = Bij + 1, if (ai, aj) ∈ O and B′
ij = Bij − 1, if (ai, aj) 6∈ O.

Hence, on the left hand side of the last inequality we have:

( min
(ai,aj)∈O,

ai 6=aj

Bij) + 1 = min
(ai,aj)∈O,

ai 6=aj

B′
ij .

On the right hand side we have:

( min
(ai,aj)∈Õ,

ai 6=aj

Bij) + 1 ≥ min
(ai,aj)∈Õ,

ai 6=aj

B′
ij .

Consequently:

∀Õ ∈ LO, min
(ai,aj)∈O,

ai 6=aj

B′
ij ≥ min

(ai,aj)∈Õ,

ai 6=aj

B′
ij .

Hence O ∈ PO(u + O).

�

Combining Proposition 5 with Theorem 2, we can iteratively deduce the
following Corollary:

Corollary 4 Let u be a profile such that the reflexive closure of the strict
majority relation is not a linear order. Let O ∈ PO(u). Then:

{O} = PO(u+µminO) ⊆ PO(u+(µmin−1)O) ⊆ . . . ⊆ PO(u+O) ⊆ PO(u)
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Hence, by progressively adding a prudent order O to a profile, the set of
prudent orders progressively refines until the situation where O corresponds
to the majority relation.

Let us mention that other, more particular, types of consistency prop-
erties are verified by prudent orders. We refer the reader to Weak Majority
Profile Consistency, Majority Profile Consistency, Weak Homogeneity and
Homogeneity, which can all be seen as particular forms of consistency and
which are introduced in Chapter 5.

4.4 Removal of alternatives

Not surprisingly, prudent orders do not verify Arrow’s axiom of indepen-
dence with respect to irrelevant alternatives. This has already been noticed
by Kohler [62]. Let us present his counterexample. There are 3 alternatives
a, b and c. The profile consists of 42 orders abc, 25 orders bca and 33 orders
cab. The following majority margins are obtained:

B a b c

a . 50 –16
b –50 . 34
c 16 –34 .

The unique prudent order is abc. If one removes alternative b, then the
unique prudent order is ca.

Nevertheless, some kind of independence with respect to irrelevant alter-
natives is verified for prudent orders. In fact, it all depends on defining what
is an “irrelevant” pair in a prudent order context. To do so, we suppose that
we restrict our analysis to a particular subset of alternatives A′ ⊆ A.

We denote (R)A′ the binary relation R restricted to A′ ⊆ A:

(R)A′ = {(x, y) ∈ R : x ∈ A′ and y ∈ A′}.

We denote uA′ the profile u = (O1, . . . , Oq) restricted to the alternatives of
A′:

uA′ = ((O1)A′ , . . . , (Oq)A′).

Let POA′(u) be the set of prudent orders restricted to the alternatives of A′.

POA′(u) = {(O)A′ : O ∈ PO(u)}.

Let P = t(R>β) be the transitive closure of the relation R>β correspond-
ing to a profile u.
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Definition 9 Let A′ ⊆ A be a subset of alternatives. We say that A′ is
P -compatible if:

∀ai, aj ∈ A′, ∀ak ∈ A, (ai, ak) ∈ P and (ak, aj) ∈ P ⇒ ak ∈ A′.

We then have the following result when restricting the computations to
a subset of alternatives which are P -compatible:

Proposition 6 Let A′ ⊆ A such that A′ is P -compatible. Then:

PO(uA′) ⊆ POA′(u).

Proof: Let us recall that:

• β is the optimal cut value of profile u.

• P = t(R>β).

We will further use the following notation:

• R′
>λ is the strict λ-cut relation of the majority margins of profile uA′ .

• β′ is the optimal cut value of profile uA′ .

• P ′ = t(R′
>β′).

We have:

(R>β)A′ = R′
>β . (4.1)

Since R>β is an acyclic relation, (R>β)A′ is an acyclic relation and so is
R′

>β . Hence β′ ≤ β, which implies that:

R′
>β ⊆ R′

>β′ . (4.2)

Combining (4.1) and (4.2), we get:

t((R>β)A′) ⊆ t(R′
>β′) = P ′. (4.3)

Let O ∈ PO(uA′). We want to show that O ∈ POA′(u). Since O ∈
PO(uA′), we have by definition that P ′ ⊆ O. Combining this with (4.3), we
get that:

t((R>β)A′) ⊆ O. (4.4)

We are now going to show the following equality:

t((R>β)A′) = (t(R>β))A′ . (4.5)
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(x, y) ∈ t((R>β)A′)

⇐⇒ ∃x, z1, . . . , zp, y ∈ A′ : (x, z1) ∈ (R>β)A′ . . . (zp, y) ∈ (R>β)A′

⇐⇒ ∃x, z1, . . . , zp, y ∈ A′ : (x, z1) ∈ R>β . . . (zp, y) ∈ R>β

⇐⇒ ∃x, z1, . . . , zp, y ∈ A, x, y ∈ A′ : (x, z1) ∈ R>β . . . (zp, y) ∈ R>β

⇐⇒ (x, y) ∈ t(R>β), x, y ∈ A′

⇐⇒ (x, y) ∈ (t(R>β))A′

Let us consider the third equivalence. ⇒ is obvious. ⇐ comes from the
following observation: Since (x, z1) ∈ R>β . . . (zp, y) ∈ R>β , it follows that
(x, z1) ∈ P and (z1, y) ∈ P . Since x, y ∈ A′ and A′ is P -compatible, z1 ∈ A′.
In a similar way, we get that, ∀i ∈ {1, . . . , p}, zi ∈ A′.

Combining (4.4) and (4.5), we have:

(t(R>β))A′ = (P )A′ ⊆ O.

Let us consider the following two sets:

A+ = {ai 6∈ A′ : ∀aj ∈ A′, (ai, aj) ∈ P or ((ai, aj) 6∈ P and (aj , ai) 6∈ P )}.

A− = {ai 6∈ A′ : ∀aj ∈ A′, (aj , ai) ∈ P or ((ai, aj) 6∈ P and (aj , ai) 6∈ P )}.

Let us note that, since A′ is P -compatible, we must have that

A+ ∪ A− = A \ A′.

A linear extension of a partial order can be constructed sequentially as fol-
lows: remove any maximal element from the partial order and rank it below
the already ranked alternatives in the linear extension; stop the procedure
when all the alternatives have been ranked. In our case, let us apply this
scheme to P by considering first the alternatives of A+, then the alternatives
of A′ and then the alternatives of A− \ A+. Let Õ be a linear extension
obtained that way. Since by construction we have that (Õ)A′ = O and that
P ⊆ Õ, we can conclude that O ∈ POA′(u), which terminates the proof.

�

Hence, by restricting to a specific set of alternatives, some kind of consis-
tency is verified. Although prudent orders may disappear, since the removal
of some particular alternatives can resolve some problems, no new prudent
orders can appear. We will come back to this proposition in Section 9.6,
when we will analyze the convergence of a process which interactively ap-
plies the prudent order preference function to support a group of decision
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PO(u) POA′(u) PO(uA′)

dcba dca

dcab dca

dbca dca

dacb dac

dbac dac

dabc dac

cdba cda X
cdab cda X
bdca dca

bdac dac

cbda cda X
bcda cda X

Table 4.2: Restricting the set of alternatives to A′ = {a, c, d}.

makers in determining a compromise ranking.

In order to illustrate Proposition 6, let us come back to the profile
u = (abcd, bcda, cdab, dabc, dcba) introduced in Section 4.1. We know al-
ready that R>β = {(d, a)} = t(R>β) = P and that there are 12 prudent
orders, which are listed in the first column of table 4.2. We now assume that
A′ = {a, c, d}. It is clear that A′ is P -compatible. In the second column of
table 4.2, the prudent orders of profile u restricted to A′ are listed. In the
third column of this table, a ’X’ indicates that the linear order also belongs
to PO(uA′). In fact, POA′(u) = {dca, cda, dac} and PO(uA′) = {cda},
which illustrates the fact that PO(uA′) ⊆ POA′(u).

4.5 Prudent choice

In this PhD thesis, we are studying preference functions that combine a
profile of linear orders into one or several linear orders. However, in some
situations, the aim is not to rank the alternatives from the best to the
worst, but to chose the “best” alternatives available, given the preferences
contained in the profile. This can for instance happen in an election where a
president has to be elected but we are not necessarily interested in ranking
all the candidates. That is why a lot of effort has been spent on social choice
rules, which are rules that select one or several good alternatives based on
the linear orders of the profile.

The problem of ranking and choosing are related. On the one hand, a
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choosing procedure can trivially be derived from a ranking procedure by
selecting as winners the alternatives ranked first. On the other hand, some
authors ([2, 39, 13]) have been studying procedures which compute a rank-
ing by reapplying iteratively a choosing procedure on the not yet ranked
alternatives. These are called ”ranking by choosing” procedures (for a pru-
dent ranking by choosing procedure see for instance Kohler’s rule presented
in Section 2.2.1 and for a non-prudent ranking by choosing procedure see
for instance the ranking rule MAH proposed by Beck [7]).

Moulin however pleads [80] to clearly distinguish the question of rank-
ing alternatives from the one of selecting winners. Similarly, in the field of
multicriteria decision aid, Bernard Roy [93] explicitly distinguishes between
the problem of choosing (the so-called problematic α) and the problem of
ranking (the so-called problematic γ).

Although in our research we have concentrated only on prudent ranking
rules, this section should point out some ways of defining prudent choice
rules. A very natural way of defining a prudent choice rule is to select all
the alternatives which are ranked first in at least one prudent order. More
formally, we are going to define the prudent choice function, denoted by
PCF , as follows:

PCF(u) = {ai ∈ A : ∃O ∈ PO(u) : ρO(ai) = 1}.

To our knowledge, this social choice function has not been seriously men-
tioned in the literature. Hence, it would be surely relevant to analyze the
properties of such a choice rule. We have not done this yet. Let us never-
theless point out a possible inadequacy of PCF in a choice context.

To formulate our observation, we will need the notion of a top-cycle. The
top-cycle T C(u) of a profile u is the smallest possible subset (in the sense of
the inclusion) of A such that for all ai ∈ TC(u) and for all aj ∈ A \ TC(u)
we have (ai, aj) ∈ M , where M denotes the strict majority relation of profile
u.

The top-cycle is often considered as the weakest of all Condorcet social
choice rules (see for instance Laslier [64]). This set can be very large and
consequently every other Condorcet social choice rule should be smaller
than the top-cycle. Unfortunately, it may happen that T C(u) ⊂ PCF(u).
Consider the following majority margins:

a b c d

a 0 4 –4 2
b –4 0 4 2
c 4 –4 0 2
d –2 –2 –2 0
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For a profile u with such majority margins, it is easy to see that

T C(u) = {a, b, c},

whereas every linear order is a prudent order and so

PCF(u) = {a, b, c, d}.

Hence, T C(u) ⊂ PCF(u). Let us note that there also exist profiles where
the inclusion is the other way around. After slightly changing the majority
margins, we obtain:

a b c d

a 0 4 –2 2
b –4 0 4 2
c 2 –4 0 4
d –2 –2 –4 0

In this case, we still have that T C(u) = {a, b, c}, but now abcd will be
the unique prudent order and so PCF(u) = {a}. Hence, we have that
PCF(u) ⊂ T C(u).

We stop here our discussion on PCF and refer the reader to Section 5.7,
where we will introduce a new preference function XPO which will reconcile
the top-cycle principle with the set of prudent orders.

Apart from PCF , other “prudent” choice functions could be defined. To
do so, we suggest to distinguish between two approaches:

• In a first approach, we consider any prudent ranking rule. The choice
set then consists of all the alternatives that are ranked first in at least
one of the compromise rankings. PCF is an illustration of this strat-
egy. We have also seen that Kohler’s rule is a prudent ranking rule.
The associated choice rule then consists in selecting those alternatives
which are ranked first in one of the orders found by this ranking rule.
Pérez analyzed this choice rule theoretically in [84] and empirically in
[85]. In the same manner, the Ranked Pairs rule, which we will further
discuss in Chapter 6, has initially been introduced by Tideman [104]
as a choice rule, and not as a ranking rule.

• Another approach consists in redefining the prudence principle in a
choice context without referring to rankings. For instance, an approach
based on so called α-elites has been proposed in Debord’s thesis [30].
More generally, the concept of a prudent k choice is discussed in [32],
where a rule is defined which takes as output all the prudent choice
subsets of a fixed size k.
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On the one hand, the literature on choice rules is very rich. On the
other hand, the field of prudent choice rules seems rather unexploited. That
is why some further work should be spent on defining and analyzing prudent
choice rules, especially in view of applying them in a decision aid context.
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Chapter 5

A characterization of the

prudent order preference

function

In this chapter, we propose a characterization of the prudent order prefer-
ence function. This work has been presented at the LAMSADE-DIMACS
Workshop on Voting Theory and Preference Modeling in Paris during Oc-
tober 2006 and has been published in [65] and in [68]. I would like to thank
especially Thierry Marchant and Marc Pirlot for their help and their com-
ments concerning this part of the thesis.

The chapter is organized as follows. First, in Section 5.1, we give an in-
troduction to axiomatic characterizations. In Section 5.2, we analyze which
sets of linear orders can be considered as a set of prudent orders. We in-
troduce in Section 5.3 the axioms used in our characterization results and
discuss these axioms in Section 5.4. In Section 5.5, we present our main
results, whereas in Section 5.6 we check the independence of the axioms.
Finally, in Section 5.7, we refine the set of prudent orders by taking into
account an additional Condorcet-like criterion.

5.1 Introduction to axiomatic characterizations

An axiomatic characterization of a preference function consists in establish-
ing a list of independent axioms and proving that this particular preference
function is the only preference function that verifies all the axioms of that
list simultaneously. Such an approach has been followed by many decision
theorists. For instance, we can mention Young’s characterization of Borda’s
method [108] and his seminal characterization of Kemeny orders [109]. The
Copeland choice function has for instance been characterized by Henriet [49].
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Saari [95] (Section 8.2) has pointed out that in most of these results it
is more appropriate to use the term “property” instead of “axiom”. In fact,
he argues that “axiom” refers to something basic. When two axioms are
combined to form a new axiom, then we do not consider the latter to be an
axiom anymore, since it can be split into two more atomic axioms. More-
over, he criticizes that most “axiomatic” characterizations consist usually
of an artificial collection of properties that are only brought up together in
order to prove the desired characterization result. He claims ambitiously
that “...for a price, give me any decision/election procedure you wish. Tell
me whether you want it promoted or attacked. I will design an appropriate
axiomatic characterization that will do the job.”1

Although there is surely some truth in Saari’s arguments, we feel that
a characterization with axioms (or with properties) is a very powerful and
enlightening approach to understand the intrinsic features of a preference
function, even if this can be due to a less intuitive axiom (or property). Since
the question of characterizing the prudent order preference function has not
been addressed yet, this will be the topic of this chapter. This will help
to highlight the main properties implied by the prudence principle. More
generally, we are going to build an axiomatic framework which can be used
to characterize other prudent ranking rules, namely the extended prudent
order preference function (see Section 5.7) and the Ranked Pairs rule (see
Chapter 6).

Let us emphasize that, in our setting, the type of solution which we will
characterize is neither a ranking, nor a choice subset, but a set of rankings.
This has also been the case in Young’s [109] axiomatization of the set of
Kemeny orders. A major difference however with the Kemeny model is that
the prudent order model is B-ordinal (see Section 2.3). In the literature, we
can find characterizations of ordinal ranking models by Barberà [3], Pirlot
[87] and Fortemps and Pirlot [45], although these authors were working in
very different contexts.

Throughout the next two chapters, we adopt the following notation. For
all ai, aj ∈ A, ai 6= aj , we denote by aiajx−ij a linear order in which ai is
followed by aj and then by the alternatives x−ij with x−ij being an arbi-
trary permutation of the alternatives A \ {ai, aj}. Furthermore, we denote
by −x−ij the reverse permutation of x−ij .

Before presenting the characterization of the prudent order preference
function, we first analyze in the next section the structure of the set of pru-

1D.G. Saari (2001), Decisions and Elections, Cambridge University Press.
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dent orders.

5.2 The set of the sets of prudent orders

In this section, we answer the question whether a given set of linear orders
can be (or cannot be) considered as a set of prudent orders corresponding
to a profile of linear orders.

We know that the set of prudent orders is by definition the set of all the
linear extensions of the relation R>β . The reader may wonder if R>β can be
any possible acyclic relation on the set of alternatives A. The answer will
be given by the following proposition.

Proposition 7 For every acyclic relation H on the set of alternatives A,
there exists a profile u of linear orders such that the optimal strict cut relation
of that profile R>β is equal to H.

Proof: If r(H) is a linear order, then u trivially consists of this one
linear order. If r(H) is not a linear order, then we construct the profile u as
follows. For every ordered pair (ai, aj) such that (ai, aj) ∈ H, we consider
the two linear orders V 1

ij and V 2
ij :

V 1
ij = aiajx−ij V 2

ij = −x−ijaiaj .

The profile u then consists of all the linear orders V 1
ij and V 2

ij such that
(ai, aj) ∈ H:

u =
∑

(ai,aj)∈H

V 1
ij + V 2

ij .

This leads to the following preference margin matrix:
∀ai, aj ∈ A,

Bij =







2 if (ai, aj) ∈ H

−2 if (aj , ai) ∈ H

0 otherwise

We show that in this case β = 0 and consequently R>β = H. On the one
hand, R>0 is acyclic since H is acyclic. On the other hand, we show that
R≥0 contains a cycle. H, being an acyclic relation such that r(H) is not a
linear order, is not complete. Hence there must exist ai and aj such that
(ai, aj) 6∈ H and (aj , ai) 6∈ H. Hence (ai, aj) ∈ R≥0 and (aj , ai) ∈ R≥0. This
proves that R≥0 contains a cycle. �
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A consequence of this proposition is that, apart from being acyclic, we
cannot make any additional assumptions on the relation R>β . At the same
time this proposition allows us to characterize the set of all the sets of
prudent orders of a profile with linear orders on A. In fact, this set, denoted
by ΠΩA, simply consists of all the sets of linear extensions of all the acyclic
binary relations on A:

ΠΩA = {E(R) : R is an acyclic relation on A}.

5.3 Axioms

In this section, we introduce the axioms that we will need to characterize
the prudent order preference function. We first concentrate on giving the
formal description of the axioms. For a more detailed discussion on the in-
terpretation of these axioms, we refer the reader to Section 5.4.

The object which we would like to characterize is a preference function.
A preference function f is a procedure that combines a profile of linear orders
u into a non-empty set of linear orders f(u).

f : LOq 7→ P (LO) \ ∅
u → f(u).

In general, the strict majority relation M contains cycles, which is com-
monly referred to as Condorcet’s paradox. However, in case M is acyclic,
then the first axiom says that this information must be included in the set
of solutions.

Axiom 1 Weak Condorcet Extension (WCE):
If M is acyclic, then:

f(u) ⊆ E(M).

In other words, this means that, if M is acyclic and if (ai, aj) ∈ M , then
ai must be preferred to aj in all the linear orders of f(u). A stronger version
of axiom WCE says that, if M is acyclic, then f(u) corresponds exactly to
all the linear extensions of this relation M .

Axiom 2 Condorcet Extension (CE):
If M is acyclic, then:

f(u) = E(M).

It is easy to see that CE implies WCE.

Let us recall that (see Section 4.3) if u = (O1, O2, . . . , Oq) is a first pro-
file and u′ = (O′

1, O
′
2, . . . , O

′
q′) is a second profile, then we denote u + u′ the
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profile (O1, O2, . . . , Oq, O
′
1, O

′
2, . . . , O

′
q′).

Let uE be a profile such that ∀ai, aj ∈ A, we have that Bij = 0. Adding
such a balanced profile to a given profile can enlarge the set of solutions.

Axiom 3 Weak E-Invariance (WEI)

f(u) ⊆ f(u + uE).

A stronger version of this axiom says that adding a balanced profile uE

to a given profile does not alter the set of solutions.

Axiom 4 E-Invariance (EI)

f(u) = f(u + uE).

EI implies WEI.

The next axiom says that if the size of the profile is odd and we create a
new profile by taking twice the initial profile, then the set of solutions may
only increase.

Axiom 5 Weak Homogeneity for Odd Profiles (WHOP):
If q is odd, then:

f(u) ⊆ f(u + u).

A stronger version of this axiom simply says that if we double an odd
profile, then the result does not change at all.

Axiom 6 Homogeneity for Odd Profiles (HOP):
If q is odd, then:

f(u) = f(u + u).

HOP implies WHOP.

Before presenting our main axiom, we have to introduce the definition
of a majority profile. Let u be a profile where M is the corresponding strict
majority relation. We analyze now each pair {ai, aj} once:

• If (ai, aj) ∈ M , construct the two linear orders

V 1
ij = aiajx−ij V 2

ij = −x−ijaiaj .

• If (ai, aj) 6∈ M and (aj , ai) 6∈ M , consider one of the following two
exclusive possibilities:
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– Skip this pair.

– Construct two linear orders V 1
ij and V 2

ij such that:

V 1
ij = aiajx−ij V 2

ij = −x−ijaiaj .

Definition 10 Let M be a strict majority relation of profile u. We say that
u(M) is a majority profile of profile u if u(M) can be written as follows:

u(M) =
∑

(ai,aj)∈M

(V 1
ij + V 2

ij) +
∑

(ai,aj)∈ζ

(V 1
ij + V 2

ij),

where ζ ⊆ {(ai, aj) : (ai, aj) 6∈ M and (aj , ai) 6∈ M}.

It is clear that for a given profile u, different majority profiles u(M) can
be constructed. First of all, the sequence x−ij can be arbitrarily chosen
when we construct a linear order aiajx−ij . Furthermore, for pairs {ai, aj}
such that Bij = 0, breaking the indifference between ai and aj in a certain
direction or leaving the indifference untouched could lead to different ma-
jority profiles.

The next axiom says that if we add to a profile u a majority profile
u(M), and the new profile u + u(M) contains cycles (either existing cycles
of profile u or new cycles created by adding u(M)), then the set of compro-
mise solutions either stays the same or shrinks.

Axiom 7 Weak Majority Profile Consistency (WMPC):
Let u be a profile and let u(M) be a majority profile of u. If the strict
majority relation of u + u(M) contains at least one cycle, then:

f(u + u(M)) ⊆ f(u).

Different majority profiles can pull the set of compromise solutions f(u+
u(M)) in possibly different directions. Whatever choice will be made, the
new set f(u + u(M)) must always be contained in the set f(u).

We will also use a stronger version of the WMPC axiom, namely Major-
ity Profile Consistency, which says that adding a majority profile does not
alter the result at all.
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Axiom 8 Majority Profile Consistency (MPC):
Let u be a profile and let u(M) be a majority profile of u. If the strict
majority relation of u + u(M) contains at least one cycle, then:

f(u + u(M)) = f(u).

MPC means that if we add a majority profile u(M) to any given profile u,
and the new profile u+u(M) contains cycles, then the set of solution rankings
must stay the same. Removing the cyclicity condition of profile u + u(M)
from this axiom leads to a contradiction with axiom CE. In fact, if the strict
majority relation of profile u + u(M), denoted by M ′, is acyclic, then the
strict majority relation of profile u must also be acyclic, since one can show
that M ⊆ M ′. According to CE, f(u) = E(M) and f(u + u(M)) = E(M ′).
If we suppose that M ⊂ M ′, then it can happen that f(u + u(M)) ⊂ f(u).

Axiom MPC implies axiom WMPC, since the inclusion is simply replaced
by an equality.

5.4 Discussion

Weak Condorcet Extension and Condorcet Extension are axioms
which indicate that, whenever possible, the solution should comply with
the Condorcet principle. In our framework, a profile can reasonably be con-
sidered as easy if the strict majority relation does not contain any cycles.
In such a case, if there is a path from alternative ai to alternative aj in that
acyclic strict majority relation, then ai should be preferred to aj in all the
solution rankings. In fact, from a pairwise comparison perspective, it would
be difficult to justify or to explain a solution where aj is preferred to ai.

Any preference function satisfying these two axioms must also satisfy
what we called in Section 2.3 Condorcet Ranking Consistency. If the reflex-
ive closure of the majority relation is a linear order, then this linear order is
the unique solution obtained by the preference function.

WCE and CE are generally verified by those procedures which are based
on pairwise comparisons and which produce as a solution a set of linear
orders. For instance, Slater’s rule or Kemeny’s rule both verify this type of
axioms (see Section 2.2.2 for a definition of these rules). In the literature
other formulations of axioms can be found which translate the idea of com-
plying, whenever possible, with the Condorcet principle (see for instance
Truchon [105] or Young and Levenglick [109]).

E-Invariance, which has been used by Debord [31], and Weak E-
Invariance both deal with adding a completely balanced profile to any
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given profile. It seems rather natural to assume that adding a balanced
profile does not change the result, or, at least, keeps the solution rankings
of the initial profile. Interestingly, Debord [31, 30] showed that a preference
function only depends on the pairwise majority margins if and only if it
is anonymous and E-invariant. Consequently preference functions which do
not depend on the majority margins but are anonymous, such as for instance
the model presented by Cook and Seiford [25], do not verify E-Invariance.

Weak Homogeneity for Odd Profiles and Homogeneity for Odd
Profiles require that doubling a profile of odd size does not change the re-
sult, or, at least, keeps the solution rankings of the initial profile. These are
two axioms which weaken the more usual homogeneity condition that asks
for result-invariance when doubling a profile of any size (see for instance De-
bord [31] or Saari [94]). Restricting to profiles of odd size can be explained
by the fact that we are only interested in linking profiles of odd size with
similar profiles of even size.

Weak Majority Profile Consistency and Majority Profile Con-
sistency deal with adding a so-called majority profile to an existing profile.
Let us take again a closer look at such a majority profile. The profile u(M)
translates in fact the information contained in the strict majority relation
M of profile u:

• If (ai, aj) ∈ M , then there is a strict majority of rankings in the initial
profile u that prefer ai over aj . Adding the two linear orders aiajx−ij

and −x−ijaiaj only confirms this fact. The majority margins resulting
from these two linear orders will be +2 for (ai, aj) and –2 for (aj , ai),
whereas the majority margins for all the remaining ordered pairs will
be 0.

• If (aj , ai) 6∈ M and (ai, aj) 6∈ M , then there are as many rankings
in the profile u that prefer ai over aj than there are rankings that
prefer aj over ai. For such a pair, one of the two mutually exclusive
possibilities has to be considered:

– We skip this pair since we do not want to discriminate between
ai and aj .

– We add the two linear orders aiajx−ij and −x−ijaiaj , which
breaks the indifference by improving the situation of ai with re-
spect to aj .

In fact, a majority profile u(M) is, in terms of majority margins, equiv-
alent (up to the pairs with a zero majority margin) to a profile consisting
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of twice the strict majority relation. More formally, let BM denote the ma-
jority margins of profile u(M). We then have:
∀ai, aj ∈ A,

BM
ij =

{
2 if Bij > 0
−2 if Bij < 0

(5.1)

If Bij = Bji = 0, then either BM
ij = 2 and BM

ji = −2, or BM
ij = −2 and

BM
ji = 2, or BM

ij = 0 and BM
ji = 0.

A majority profile is not a totally new concept. In fact, Mc Garvey [77]
showed that any complete binary relation can be seen as the strict majority
relation of a profile of linear orders. In his proof, he precisely used a major-
ity profile. Mc Garvey’s result has in turn been generalized by Debord (see
Proposition 1 in Section 2.1).

Axiom WMPC and MPC establish a relationship between the result of
profile u and the result of profile u + u(M). These axioms suggest that
“confirming the majority” of a profile should not lead to creating new so-
lutions. This is in line with the idea that reinforcing the majority does not
fundamentally change the aggregation problem.

Whereas under axiom MPC we assume that the result of profile u and of
profile u + u(M) is exactly the same, axiom WMPC allows the set of solu-
tions of profile u+u(M) to possibly refine. This can be explained by the fact
that a majority profile can break the indifference between two alternatives.
A majority margin between ai and aj of zero in profile u can become a strict
preference of ai over aj in profile u + u(M). In such a situation, depending
on the preference function, the set of solutions of profile u + u(M) may lose
some linear orders which have been obtained for profile u and where aj is
preferred to ai.

From a technical perspective, performing a translation of the majority
margins (+2 for the positive majority margins of profile u and –2 for the
negative majority margins of profile u) is linked to what we called in Section
2.3 B-ordinality. In fact, if we ignore all the pairs with a majority margin of
0 (ζ = ∅), then the order of the pairs of profile u according to their majority
margins and the order of the pairs of profile u + u(M) according to their
majority margins is the same.

5.5 Characterization

In the proofs of this section, we will need the following lemma:
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Lemma 2 The strict majority relation of a profile is acyclic if and only if
the optimal cut value β for that profile is non-positive.

Proof: If M is acyclic, then R>0 = M is acyclic. Consequently β ≤ 0.
Reciprocally, let β ≤ 0. Then M = R>0 ⊆ R>β . Since R>β is acyclic, so
must be M . �

First, we are going to show that the prudent order preference function
verifies the axioms introduced so far.

Proposition 8 The prudent order preference function verifies Condorcet
Extension, E-Invariance, Homogeneity for Odd Profiles and Majority Profile
Consistency.

Proof: It is easy to see that the prudent order preference function
verifies EI and HOP. CE has been proved in Proposition 4 in Section 4.2.

We finally show that the prudent order preference function also verifies
MPC. Let us suppose that the strict majority relation of profile u + u(M)
contains at least one cycle. We denote by R>λ and R≥λ the cut relations
based on the majority margins of profile u and by R′

>λ and R′
≥λ the cut

relations based on the majority margins of profile u + u(M). Let β be the
optimal cut value of profile u and β′ be the optimal cut value of profile
u + u(M).

If β < 0, then this means that the strict majority relation of profile u

is a linear order (see Proposition 2 in Section 4.1). Consequently, the strict
majority relation of profile u+u(M) is also a linear order. We are not inter-
ested in this case since we suppose that the strict majority relation of profile
u+u(M) contains at least one cycle. Let us from now on suppose that β ≥ 0.

The majority margins of profile u, denoted by B, and the majority mar-
gins of profile u + u(M) , denoted by B′, are linked as follows:

B′
ij =







Bij + 2 if Bij > 0 or (ai, aj) ∈ ζ

Bij − 2 if Bij < 0 or (aj , ai) ∈ ζ

Bij otherwise
(5.2)

That is why we have that:

R′
>β+2 = R>β . (5.3)

Since R>β is acyclic, this implies that

β′ ≤ β + 2. (5.4)

We distinguish between two cases: either β = 0 or β > 0.
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• β = 0
We know that β′ > 0, since we suppose that the strict majority re-
lation of profile u + u(M) contains at least one cycle (see Lemma 2).
We also know that β′ ≤ β + 2 = 2 (see inequality 5.4). Since β = 0,
the profile u must be even. Consequently, the profile u + u(M) must
also be even and the majority margins and the optimal cut values of
u+u(M) take only even values. Hence, β′ = 2. Following equation 5.3,
we have that R′

>β′ = R>β , which means that PO(u) = PO(u+u(M)).

• β > 0
In that case, we have that R′

≥β+2 = R≥β . Since R≥β contains at
least one cycle, then this means that R′

≥β+2 also contains at least one
cycle and consequently β′ ≥ β + 2. We also know that β′ ≤ β + 2
(see inequality 5.4). Consequently, β′ = β +2. Following equation 5.3,
we have that R′

>β′ = R>β , which means that PO(u) = PO(u+u(M)).

We thus showed that, if the the strict majority relation of profile u + u(M)
contains at least one cycle, then PO(u) = PO(u + u(M)). This proves
MPC.

�

Corollary 5 The prudent order preference function verifies Weak Con-
dorcet Extension, Weak E-Invariance, Weak Homogeneity for Odd Profiles
and Weak Majority Profile Consistency.

Let us now present our first result. In fact, we show that if i) the prefer-
ence function should satisfy Weak Condorcet Extension, Weak E-Invariance,
Weak Homogeneity for Odd Profiles and Weak Majority Profile Consistency
and ii) the set of compromise solutions should be as large as possible, then
we must use the prudent order preference function. In a way, since it is
pointless to consider all the linear orders, the axioms restrict the set of pos-
sible solutions to all the prudent orders.

Theorem 4 The prudent order preference function is the largest preference
function (with respect to inclusion) that verifies Weak Condorcet Extension,
Weak E-Invariance, Weak Homogeneity for Odd Profiles and Weak Majority
Profile Consistency.

Proof: We are going to show that any preference function f that
verifies the above mentioned axioms is such such that

f(u) ⊆ PO(u).

87



Since, by Corollary 5, the prudent order preference function verifies these
axioms, the proof will be complete.

Let us suppose that the size of profile u is even. Let B be the majority
margin matrix of this profile and let β be the optimal cut value of this profile.
Hence, PO(u) = E(R>β). If β ≤ 0, then this implies (see Lemma 2) that the
strict majority relation is acyclic and consequently axiom WCE tells us that
f(u) ⊆ E(M) = PO(u). Let us from now on suppose that the strict ma-
jority relation of profile u contains at least one cycle and consequently β > 0.

Consider the following p = β
2 binary relations:

Λ1 = {(ai, aj) ∈ A×A : Bij = 2}.

Λ2 = {(ai, aj) ∈ A×A : Bij = 4}.

Λ3 = {(ai, aj) ∈ A×A : Bij = 6}.

...

Λp = {(ai, aj) ∈ A×A : Bij = β}.

For every (ai, aj) ∈ Λs (s ∈ {1, . . . , p}) and for every (ai, aj) ∈ R>β , we
are going to consider the following two linear orders:

V 1
ji = ajaix−ji V 2

ji = −x−jiajai.

We are going to define a new profile u0 as follows:

u0 = u +
∑

(ai,aj)∈Λ1

(V 1
ji + V 2

ji) + 2
∑

(ai,aj)∈Λ2

(V 1
ji + V 2

ji) + . . .

+p
∑

(ai,aj)∈Λp

(V 1
ji + V 2

ji) + p
∑

(ai,aj)∈R>β

(V 1
ji + V 2

ji).

Let us denote B0 the majority margin matrix of profile u0. In fact, B0

is linked to B in the following way:
∀ai, aj ∈ A,

B0
ij =







Bij − β if Bij > β

Bij + β if Bij < −β

0 otherwise

Let M0 be the strict majority relation of profile u0. In fact, M0 is equal to
R>β , and so M0 is acyclic. By applying axiom WCE, we can tell that:

f(u0) ⊆ E(M0) = E(R>β) = PO(u).

Given profile u0, construct a majority profile u0(M0) in the following
way.
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Figure 5.1: The transformation from B0 into B1.

• If (ai, aj) ∈ M0 (and consequently (ai, aj) ∈ R>β), then consider the
following two linear orders:

V 1
ij = aiajx−ji V 2

ij = −x−jiaiaj .

If (ai, aj) 6∈ M0 and (aj , ai) 6∈ M0 and (ai, aj) ∈ Λp, then consider the
following two linear orders:

V 1
ij = aiajx−ji V 2

ij = −x−jiaiaj .

We thus have:

u0(M0) =
∑

(ai,aj)∈M0

(V 1
ij + V 2

ij) +
∑

(ai,aj)∈Λp

(V 1
ij + V 2

ij).

We define u1 = u0 + u0(M). Let B1 be the corresponding preference
margins of profile u1. B1 can be obtained from the majority margins B0 of
the profile u0 by shifting to the right the ordered pairs with positive ma-
jority margins (B0

ij > 0), and, consequently, to the left the ordered pairs

with negative majority margins (B0
ij < 0). Furthermore, the pairs such that

B0
ij = 0 and (ai, aj) ∈ Λp are shifted to the right whereas the pairs such that

B0
ij = 0 and (aj , ai) ∈ Λp are shifted to the left. The remaining pairs such

that B0
ij = 0 and (ai, aj) 6∈ Λp and (aj , ai) 6∈ Λp simply do not move. The

transformation from B0 into B1 is schematically illustrated in Figure 5.1.

Furthermore, the strict majority relation of profile u1, denoted by M1,
must contain at least one cycle since M1 = R>β∪Λp = R≥β and by definition
of the cut value, R≥β is not acyclic. By applying axiom WMPC, we know
that:

f(u1) = f(u0 + u0(M)) ⊆ f(u0) ⊆ PO(u).

Construct a majority profile u1(M1) in the following way.

• If (ai, aj) ∈ M1 (and consequently (ai, aj) ∈ R>β ∪Λp), then consider
the following two linear orders:

V 1
ij = aiajx−ji V 2

ij = −x−jiaiaj .
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Figure 5.2: The transformation from B1 into B2.

• If (ai, aj) 6∈ M1 and (aj , ai) 6∈ M1 and (ai, aj) ∈ Λp−1, then consider
the following two linear orders:

V 1
ij = aiajx−ji V 2

ij = −x−jiaiaj .

We thus have:

u1(M1) =
∑

(ai,aj)∈M1

(V 1
ij + V 2

ij) +
∑

(ai,aj)∈Λp−1

(V 1
ij + V 2

ij).

We define u2 = u1 +u1(M1). Let B2 be the preference margin matrix corre-
sponding to profile u2. The transformation from B1 into B2 is schematically
represented in Figure 5.2.

The strict majority relation of profile u2 is denoted by M2. In fact,
M1 ⊆ M2 and since M1 is not acyclic, M2 is not acyclic. Consequently, we
can reapply axiom WMPC:

f(u2) = f(u1 + u1(M)) ⊆ f(u1) ⊆ f(u0) ⊆ PO(u).

By reapplying this construction p times, we finally get:

f(up) ⊆ f(up−1) ⊆ . . . ⊆ f(u2) ⊆ f(u1) ⊆ f(u0) ⊆ PO(u).

In fact, the linear orders of the profile up can be reordered as follows:

up = u+
∑

(ai,aj)∈Λ1

(V 1
ij +V 2

ji +V 1
ji +V 2

ij)+2
∑

(ai,aj)∈Λ2

(V 1
ij +V 2

ji +V 1
ji +V 2

ij)+ . . .

+p
∑

(ai,aj)∈Λp

(V 1
ij + V 2

ji + V 1
ji + V 2

ij) + p
∑

(ai,aj)∈R>β

(V 1
ij + V 2

ji + V 1
ji + V 2

ij).

Since ∀(ai, aj) ∈ ∪p
i=1Λi ∪ R>β ,

V 1
ij = aiajx−ji V 2

ji = −x−jiajai V 1
ji = ajaix−ji V 2

ij = −x−jiaiaj ,
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up can be rewritten as u + uE , where uE is a profile where all the majority
margins are zero. Using axiom WEI, we thus have that f(u) ⊆ f(u+uE) =
f(up). Consequently:

f(u) ⊆ PO(u).

This completes the proof for even profiles. Let us now suppose that u has
an odd size. We then create an even profile by taking the profile u twice.
Applying the previous result to the even profile u + u and using axiom
WHOP, we get:

f(u) ⊆ f(u + u) ⊆ PO(u + u) = PO(u).

This completes the proof for odd profiles. �

Using stronger axioms, the following theorem fully characterizes the pru-
dent order preference function.

Theorem 5 The prudent order preference function is the only preference
function that verifies Condorcet Extension, E-Invariance, Homogeneity for
Odd Profiles and Majority Profile Consistency.

Proof: We know from Proposition 8 that the prudent order preference
function verifies CE, EI, HOP and MPC.

We suppose that the size of profile u is even. Let B be the majority
margins of this profile. The optimal cut value for this profile is denoted by
β. Hence, PO(u) = E(R>β). If β ≤ 0, this implies that (see Lemma 2) the
strict majority relation is acyclic and consequently axiom CE tells us that
f(u) = E(M) = E(R>β) = PO(u). Let us from now on suppose that the
majority relation contains at least one cycle and consequently β > 0.

As in the proof of Theorem 4, define a profile u0 with majority margins
B0 and an acyclic strict majority relation M0. Applying axiom CE, we have:

f(u0) = E(M0) = E(R>β) = PO(u).

As in the proof of Theorem 4, define a profile u1 by adding a majority profile
u0(M0) to u0: u1 = u0 + u0(M0). Let us denote by M1 the strict majority
relation of profile u1. In fact, M1 = R>β ∪ Λp = R≥β , which must contain
at least one cycle. Hence M1 is not acyclic and we can apply axiom MPC:

f(u1) = f(u0 + u0(M0)) = f(u0) = PO(u).

As in the proof of Theorem 4, define a profile u2 by adding a majority profile
u1(M1) to u1:

f(u2) = f(u1 + u1(M1)) = f(u1) = PO(u).
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By reapplying the same construction p times (as in the proof of Theorem
4), and by using axiom EI, we finally get:

f(u) = f(u + uE) = f(up) = . . . = f(u2) = f(u1) = f(u0) = PO(u).

This completes the proof for even profiles. In case the profile u is odd, we
apply the previous result to the even profile u+u and using axiom HOP we
have:

f(u) = f(u + u) = PO(u + u) = PO(u).

This completes the proof for odd profiles. �

In comparison to Theorem 4, we strengthened Weak Condorcet Exten-
sion by Condorcet Extension, Weak Homogeneity for Odd Profiles by Ho-
mogeneity for Odd Profiles and finally Weak Majority Profile Consistency
by Majority Profile Consistency. In fact, all the inclusions have simply been
replaced by an equality.

5.6 Independence of the axioms

Let us emphasize the independence of the five axioms used in Theorem 5.

1. Condorcet Extension

The preference function that associates to every profile the whole set
of linear orders trivially verifies MPC, EI and HOP but clearly does
not verify CE.

2. E-Invariance

We consider the following six linear orders:

O1 abcd O3 cdab O5 dbca

O2 dabc O4 bcda O6 cadb

We denote u∗ = (O1, O2, O3, O4, O5, O6) the profile that consists of
these six linear orders. The following majority margin matrix B∗ is
associated with this profile u∗:
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B∗ a b c d

a . 2 –2 –2
b –2 . 2 –2
c 2 –2 . 2
d 2 2 –2 .

We now consider any majority profile u(M) relative to this profile u∗.
It is easy to see that the majority margins of any majority profile u(M)
must be the same as the majority margins of profile u∗. Furthermore,
u(M) must contain 12 linear orders corresponding to the 6 ordered
pairs with positive majority margins. We denote by M the set of all
the majority profiles of profile u∗.

We are going to construct a particular class of profiles, denoted by U .
If u ∈ U , then this means that u can be decomposed as follows:

• The first 6 linear orders of profile u corresponds to the first six
linear orders of profile u∗

• These 6 linear orders can possibly be followed by a finite sequence
of profiles taken out of M.

More formally, we have:

U = {u : u = u∗ or ∃u1, u2, . . . , ut ∈ M : u = u∗ +
t∑

i=1

ui}.

Although each profile of U is finite, the size of the set U is infinite.

Below is an example of a profile which belongs to U :

u = (O1, O2, O3, O4, O5, O6,

abcd, dcab, bcda, adbc, cdab, bacd, cabd, dbca, dabc, cbda, dbac, cadb).

We are now going to define a new preference function g2 as follows:

g2(u) =

{
abcd if u ∈ U
PO(u) otherwise

Hence g2 corresponds to the prudent order preference function except
for profiles belonging to U . It is easy to see that g2 verifies CE. In fact,
the strict majority relation of all the profiles belonging to U contains
at least one cycle. Hence, if u is a profile with an acyclic majority
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relation M , then u 6∈ U , and, consequently, g2(u) = PO(u) = E(M).

The function g2 also verifies HOP. If u is an odd profile, then we know
that u 6∈ U since U only contains even profiles. This follows from the
observation that the majority margins of an odd profile must be all odd
(see Section 2.1). We thus have that g2(u) = PO(u). Furthermore we
will show that u+u 6∈ U , which will imply that g2(u+u) = PO(u+u).
If u + u is a profile of U , then this would mean that:

u + u = u∗ or ∃ui ∈ M : u + u = u∗ +
t∑

i=1

ui

It is clearly not possible that u+u = u∗, since, for instance, the linear
order abcd only appears once in u∗. If u + u = u∗ +

∑t
i=1 ui, then the

size of profile u+u will be 6+12t, since the size of profile u∗ is 6 and the
size of any majority profile ui is 12. We know that O1 = O4+6t = abcd

and O2 = O5+6t = dabc. Since O4+6t and O5+6t are not linked in the
way that aiajx−ij is linked with −x−ijaiaj , O5+6t must be linked with
O6+6t. Since O5+6t = O2 = dabc, we must have that O6+6t = cbda.
This is a contradiction, since O3 = O6+6t = cdab.

g2 also verifies MPC. One may check that if u ∈ U , then the set
of majority profiles corresponding to u is equal to the set of ma-
jority profiles M corresponding to profile u∗. Let u(M) be a ma-
jority profile of profile u. If u ∈ U , then u + u(M) ∈ U , and so
g2(u) = g2(u + u(M)) = abcd.

We will now show that, if u 6∈ U , then u + u(M) 6∈ U . In fact, we will
show that if u + u(M) ∈ U , then u ∈ U .

If u + u(M) ∈ U , then this implies that:

u + u(M) = u∗ or ∃ui ∈ M : u + u(M) = u∗ +

t∑

i=1

ui,

We first show that u + u(M) = u∗ is impossible. In fact, this would
mean that O6, the last linear order of profile u∗, must belong to a ma-
jority profile u(M). If O6 = cadb belongs to a majority profile, then
O5 must be dbac, which is not the case.

If u + u(M) = u∗ +
∑t

i=1 ui and if t > 1, then:

u = u∗ +
t−1∑

i=1

ui
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If u + u(M) = u∗ +
∑t

i=1 ui and if t = 1, then:

u = u∗.

In both these last two cases, we have that u ∈ U .

However, g2 does not verify EI: add the two linear orders abcd and dcba

to profile u∗. We then have that g2(u
∗) = abcd but g2(u

∗ + abcd +
dcba) = LO.

3. Homogeneity for Odd Profiles

We consider the preference margin matrix B∗ and the preference mar-
gin matrix B′ defined as follows:

B∗ a b c

a . 3 –1
b –3 . 3
c 1 –3 .

B′ a b c

a . 2 –2
b –2 . 2
c 2 –2 .

We are going to define a new preference function g3 as follows, where
B denotes the majority margin matrix of profile u.

g3(u) =

{
LO if ∃λ ∈ {0, 1, 2, . . .} : B = B∗ + λB′

PO(u) otherwise

Hence g3 corresponds to the prudent order preference function except
for profiles with majority margins B∗ + λB′.

Such a procedure g3 verifies CE and EI. It also verifies MPC. How-
ever, g3 does not verify HOP. Let u be a profile with majority margins
equal to B∗. Consequently, g3(u) = LO. However, g3(u + u) = {abc}.
Although the size of profile u is odd, g3(u) 6= g3(u + u).

4. Majority Profile Consistency

Kemeny orders (see Section 2.2) can be defined as follows:

g4(u) = {OK ∈ LO : ∀O ∈ LO,
∑

(ai,aj)∈OK

Bij ≥
∑

(ai,aj)∈O

Bij}.

Kemeny orders verify CE, EI, HOP but not MPC. Consider a profile
with the following majority margin matrix B.
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B a b c d

a . 1 1 –3
b –1 . 3 3
c –1 –3 . 3
d 3 –3 –3 .

A profile with such a majority margin matrix yields one unique Ke-
meny order: g4(u) = {bcda}. Construct a majority profile u(M). Let
us then compute the Kemeny orders of the profile u+u(M) with pref-
erence margin matrix B′:

B′ a b c d

a . 3 3 –5
b –3 . 5 5
c –3 –5 . 5
d 5 –5 –5 .

We have that g4(u + u(M)) = {abcd}. Hence g4(u + u(M)) 6= g4(u).

5.7 The extended prudent order preference func-

tion

Before introducing a new prudent ranking rule, let us consider the follow-
ing example that can be found in Taylor [103]. There are five alternatives
a, b, c, d and e and the profile consists of 7 linear orders:

O1 abcde O5 cdbae

O2 adbec O6 bcdae

O3 adbec O7 ecdba

O4 cdbea

We have the following majority margin matrix:

a b c d e

a . –1 –1 –1 3
b 1 . 1 –1 5
c 1 –1 . 3 1
d 1 1 –3 . 5
e –3 –5 –1 –5 .

In this case, β = 1, since

• R>1 is acyclic,
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• R≥1 contains a cycle: B(c, d) ≥ 1, B(d, b) ≥ 1 and B(b, c) ≥ 1.

Consequently, the relation

R>β = R>1 = {(a, e), (b, e), (c, d), (d, e)}.

The set of prudent orders corresponds to all the linear extensions of this
relation. These 12 prudent orders are listed below:

PO1 acbde PO7 cadbe

PO2 abcde PO8 bcade

PO3 cabde PO9 cdabe

PO4 acdbe PO10 cbdae

PO5 cbade PO11 cdbae

PO6 bacde PO12 bcdae

Let us now take a look at the strict majority relation of this profile. This
relation can be graphically represented as follows:

b d

c

a

e

This strict majority graph seems to indicate that b, c and d could be put be-
fore a in a compromise ranking. However, the prudent orders PO1−PO9 do
not follow this logic. One reason for this is that the prudent order preference
function does not verify what Truchon [105] calls the extended Condorcet
criterion. Let us introduce this additional criterion.

Given a strict majority relation M , we say that TC(M) is the top-cycle
of M if it is the smallest possible subset of A such that for all ai ∈ TC(M)
and for all aj ∈ A \ TC(M) we have (ai, aj) ∈ M (see also Section 4.5
where we first introduced the top-cycle). We partition A into ordered sub-
sets A1,A2, . . . ,Ap with Ai = TC(M |A \ ∪j<iAj), where M |A \ ∪j<iAj

denotes the strict majority relation of profile u restricted to the set of alter-
natives A \ ∪j<iAj . We call this ordered partition the top-cycle partition
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(see for instance Truchon [105] or Klamler [59] for further comments on this
partition). Saari [96] calls the different classes of the top-cycle partition
“layers”. In Taylor’s example, the top-cycle partition consists of three lay-
ers: A1 = {b, c, d},A2 = {a} and A3 = {e}.

Given a top-cycle partition, we can very naturally define the following
partial order T :

∀ai, aj ∈ A, (ai, aj) ∈ T if ai ∈ Ak and aj ∈ Al and k < l

In order to reconcile the prudent order preference function with the top-cycle
principle, we define the following new preference function XPO, called the
extended prudent order preference function.

Definition 11 The extended prudent order preference function associates
to a profile u the set of linear extensions of the binary relation Rβ ∪ T ,
where R>β is the optimal cut relation used in the prudent order preference
function and T is the partial order induced by the top-cycle partition.

∀u, XPO(u) = E(R>β ∪ T ).

The set of compromise rankings thus corresponds to all the linear extensions
of the relation R>β ∪T . We will show that R>β ∪T is acyclic. Since we can
always extend an acyclic relation into a linear order (see Szpilrajn [100]), the
set E(R>β ∪ T ) is never empty and consequently XPO is a true preference
function.

Proposition 9 The relation R>β ∪ T is acyclic.

Proof: If β < 0, then the strict majority relation M is a linear order
and M = R>β = T . Consequently, R>β ∪ T = R>β is acyclic. Let us
suppose β ≥ 0. By contradiction we assume that R>β ∪ T contains a cycle.
Since this cycle cannot appear inside a layer of the top-cycle-partition (by
definition T is empty inside a layer and R>β is acyclic), there must exist
ai and aj such that ai ∈ Ak, aj ∈ Al, k < l and (aj , ai) ∈ R>β . Hence,
Bji > β ≥ 0 ⇒ (aj , ai) ∈ M ⇒ (ai, aj) 6∈ M . This is impossible since we
supposed that ai belongs to a higher layer in the top-cycle partition than
aj .

�

It is clear that for any profile u, we have that XPO(u) ⊆ PO(u). Hence
XPO is a prudent ranking rule since it refines the set of prudent orders. In
Taylor’s example, the set of extended prudent orders consists of the prudent
orders 10 to 12.
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If the strict majority relation is acyclic, and if a preference function f

verifies WCE, then this implies that ∀ai ∈ Ak, aj ∈ Al such that k < l, we
have that:

∀O ∈ f(u), (ai, aj) ∈ O.

The following axiom says that, also for profiles with a non-acyclic strict
majority relation, the top-cycle partition should not be contradicted by any
solution belonging to the set of compromise rankings.

Axiom 9 Truchon Condorcet(TC):
Let us suppose that the strict majority relation contains at least one cycle.
Let A1,A2, . . . ,Ap be the top-cycle-partition. We say that a preference func-
tion f verifies Truchon Condorcet if ∀ai ∈ Ak, aj ∈ Al such that k < l, we
have that

∀O ∈ f(u), (ai, aj) ∈ O.

Axiom TC simply says that for profiles with a cyclic strict majority re-
lation, we must have that f(u) ⊆ E(T ). It is obvious that the extended
prudent order preference function verifies TC, but, interestingly, it also ver-
ifies the axioms used in Theorem 4.

Proposition 10 The extended prudent order preference function verifies
Weak Condorcet Extension, Weak Majority Profile Consistency, Weak E-
Invariance, Weak Homogeneity for Odd Profiles and Truchon Condorcet.

Proof: WEI, WHOP and TC are easy to check.

Let us show that WCE is verified. If M is acyclic, then R>β = M .
Furthermore, T ⊆ M , which implies that T ⊆ R>β , which implies that
R>β ∪ T = R>β = M . Consequently, XPO(u) = E(R>β ∪ T ) = E(M).

Let us show that WMPC is verified. We denote M the strict majority
relation and T the top-cycle relation of profile u. We denote M∗ the strict
majority relation and T ∗ the top-cycle relation of profile u + u(M). Fur-
thermore, we denote R>λ a cut relation of profile u and R∗

>λ a cut relation
of profile u + u(M). Let β be the optimal cut value for profile u and β∗ be
the optimal cut value for profile u + u(M).

If β < 0, then this means that the strict majority relation of profile u

is a linear order (see Proposition 2 in Section 4.1). Consequently, the strict
majority relation of profile u+u(M) is also a linear order. We are not inter-
ested in this case since we suppose that the strict majority relation of profile
u+u(M) contains at least one cycle. Let us from now on suppose that β ≥ 0.
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We know from the inclusion 5.3 and the inequality 5.4 that

R>β = R′
β+2 ⊆ R∗

>β∗ .

We are now going to show that T ⊆ T ∗, which will prove WMPC since then

PO(u + u(M)) = E(T ∗ ∪ R∗
>β∗) ⊆ E(T ∪ R>β) = XPO(u).

Let us show that if (ai, aj) ∈ T , then (ai, aj) ∈ T ∗. Since (ai, aj) ∈ T ,
there exists two layers in the top-cycle partition Ak and Al such that
ai ∈ Ak, aj ∈ Al and such that k < l. Let A∗

k′ be the layer of the top-cycle
partition of M∗ to which ai belongs and let A∗

l′ be the layer of the top-cycle
partition of M∗ to which aj belongs. We want to show that k′ < l′, which
will prove that (ai, aj) ∈ T ∗. Let us suppose by contradiction that k′ ≥ l′.

If k′ > l′, then this means that (aj , ai) ∈ M∗, since ai is in a lower
layer than aj . This is impossible: the fact that M ⊆ M∗ and the fact that
(ai, aj) ∈ M imply that (ai, aj) ∈ M∗, which implies that (aj , ai) 6∈ M∗.
Hence ai cannot be in a lower layer than aj .

If k′ = l′, then this means that ai and aj belong to the same layer in the
top-cycle partition of M∗. We denote this layer by A∗ = A∗

k′ = A∗
l′ . We con-

sider the following subsets of alternatives: D∗
1 = A∗∩A1, D∗

2 = A∗∩A2, . . . ,
D∗

p = A∗∩Ap. Let D+ = ∪k
r=1D

∗
r and let D− = A\D+. We know that both

D+ and D− are non-empty since {ai} ⊆ D∗
k ⊆ D+ and {aj} ⊆ D∗

l ⊆ D−.
We know that ∀x ∈ D+ and ∀y ∈ D−, (x, y) ∈ M , which implies that
(x, y) ∈ M∗, since M ⊆ M∗. Hence A′ cannot be a layer of the top-cycle
partition of M∗ since D+ is dominating D−.

This proves that T ⊆ T ∗. �

It will now be easy to show that if i) we want to use the axioms Weak
Condorcet Extension, Weak E-Invariance, Weak Homogeneity for Odd Pro-
files, Weak Majority Profile Consistency and Truchon Condorcet and ii) we
want to have a set of compromise solutions as large as possible, then we
must use the extended prudent order preference function.

Theorem 6 The extended prudent order preference function is the largest
preference function (with respect to inclusion) that verifies Weak Condorcet
Extension, Weak E-Invariance, Weak Homogeneity for Odd Profiles, Weak
Majority Profile Consistency and Truchon Condorcet.
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Proof: Either the majority relation is acyclic, or not. In the first case, we
have that M = R>β and T ⊆ M . Consequently,

XPO(u) = E(R>β ∪ T ) = E(M ∪ T ) = E(M).

Axiom WCE implies that

f(u) ⊆ E(M) = XPO(u).

This concludes the proof when the strict majority relation is acyclic. If this
relation is not acyclic, then we know from Theorem 4 that axioms WCE,
WEI, WHOP and WMPC imply that

f(u) ⊆ E(R>β).

Axiom TC implies that

f(u) ⊆ E(T ).

Combining these two inclusions, we get:

f(u) ⊆ E(T ∪ R>β) = XPO(u).

Since the extended prudent order preference function verifies the 5 axioms
(see Proposition 10), it is consequently the largest preference function that
verifies the 5 axioms. This completes the proof. �

We have seen that the prudent order preference function is the largest
preference function with respect to inclusion which satisfies WCE, WEI,
WHOP and WMPC. Although the extended prudent order preference func-
tion also verifies these four axioms, it is not the largest such preference
function. In fact, we need to add axiom TC in order to come up with a
similar characterization result.

Although the proof of Theorem 6 has been rather straightforward, let
us insist again on the fact that it is non-trivial that XPO verifies the first
four axioms. A prudent ranking rule, which by definition always constructs
a subset of the set of prudent orders, does not automatically inherit all the
properties of the prudent order preference function.

Following the correspondence between the results of Theorem 4 and The-
orem 5, the reader probably expects at this point a result which states that
the extended prudent order preference function is the “only” preference func-
tion verifying a particular list of axioms which are preferably similar to the
ones used in Theorem 6. However, we have not been able to come up with
such a result. The following comments can nevertheless be made:
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• It does not make sense to simply replace the four first axioms by their
stronger counterparts CE, EI, HOP and MPC. In fact, we have shown
that these four axioms completely characterize the prudent order pref-
erence function. Since PO does not verify TC, there does not exist
any ranking rule satisfying simultaneously CE, EI, HOP, MPC and
TC.

• Another strategy could be to somehow strengthen axiom TC. This
axiom basically says that, if the strict majority relation contains cycles,
then f(u) ⊆ E(T ). Hence, we may be tempted to replace the inclusion
between f(u) and E(T ) by an equality. This means that for every
profile u where the strict majority relation is not acyclic, we have that
f(u) = E(T ). Unfortunately, since such an axiom completely discards
any impact of R>β on the result, it is not verified by the extended
prudent order preference function.

• In order to characterize the extended prudent order preference func-
tion, we probably have to add another new axiom. However, the task
is not easy, since XPO works on the one hand with T , which only
depends on the strict majority relation, and, on the other hand, with
R>β , which takes into account the values of the majority margins.
Similar to axiom WMPC, we need to find an axiom which reconciles
both types of relations.
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Chapter 6

A characterization of the

Ranked Pairs rule

In this chapter, we characterize the Ranked Pairs rule using the axiomatic
framework built in the previous chapter. This work has been presented
at the FNRS Seminar “Modélisation des préférences” in Brussels in May
2007 and at the Seminar “Mathématiques discrètes et Sciences Sociales” at
ENST, Paris, in June 2007. I would like to thank Marc Pirlot for his valu-
able comments concerning this chapter.

In Section 6.1, we first come back to a particular discrimin-like relation.
In Section 6.2, we then show that the Ranked Pairs rule is equivalent to
finding a set of linear orders which are optimal according to that discrimin
relation. The axioms are introduced in Section 6.3 and the characterizations
are presented in Section 6.4. In Section 6.5, we check the independence of
the axioms. Finally, in Section 6.6, all the results are summarized.

6.1 Discrimin relation

Given a profile u with a majority margin matrix B, two linear orders O and
Õ are compared on the basis of their weakest link. More formally, we build
a binary relation �u

min defined on LO as follows:

∀O, Õ ∈ LO, O �u
min Õ if min

(ai,aj)∈O

ai 6=aj

Bij ≥ min
(ai,aj)∈Õ

ai 6=aj

Bij .

The relation �u
min is transitive and complete, hence a weak order. We recall

that a prudent order is a linear order which maximizes the weakest link (see
Proposition 3 in Section 4.1). That is why the set of maximal elements of
the weak order �u

min corresponds exactly to the set of prudent orders:

PO(u) = {O ∈ LO : ∀Õ ∈ LO, O �u
min Õ}.
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We have already stressed that the set of prudent orders can be rather
large. Intuitively, this can be explained by the “drowning effect” of the min
relation [37, 38]: by maximizing only the weakest link, the majority margins
of the other ordered pairs belonging to the linear order are neglected. This
may lead to large sets of ex aequo’s in the weak order �u

min and consequently
to a large first equivalence class.

A possible refinement of the min relation is the so-called discrimin rela-
tion, which we denote by �u

disc. Given a profile u, two linear orders O and Õ

are compared on the basis of their weakest link, but only considering those
ordered pairs on which they differ:

∀O, Õ ∈ LO O �u
disc Õ if







O = Õ or
min (ai,aj)∈O

(ai,aj) 6∈Õ

Bij ≥ min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij

We refer the reader to Fortemps and Pirlot [45] for other names and
equivalent definitions of the discrimin relation. We denote by ∼u

disc the
symmetric and by ≻u

disc the asymmetric parts of the discrimin relation. It
is clear that the relation �u

disc is complete. However �u
disc is not transitive.

Consider a profile u in which B(b, c) = B(b, d) = B(d, a) = B(d, c) = 2. We
know that a profile u with such majority margins must exist (see Section
2.1). Then

dabc ∼u
disc abcd

since the smallest majority margin of the pairs belonging to dabc and not to
abcd is –2 (consider the minimal value of B(d, a) = 2, B(d, b) = −2, B(d, c) =
2) and the smallest majority margin of the pairs belonging to abcd and not
to dabc is also –2. In the same way, we can check that

abcd ∼u
disc adcb.

However we also have that

dabc ≻u
disc adcb,

which shows that �u
disc is not transitive. Nevertheless, ≻u

disc, the asymmetric
part of �u

disc, is transitive indeed. Hence we can define the set of maximal
linear orders according to the relation �u

disc denoted by D(u):

D(u) = {O ∈ LO : ∀Õ ∈ LO, O �u
disc Õ}.

One may show that ∀O, Õ ∈ LO, if O ≻u
min Õ, then O ≻u

disc Õ. It
follows from this observation that

∀u, D(u) ⊆ PO(u).
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Hence D, being a refinement of the set of prudent orders, is a prudent
ranking rule.

We illustrate the sets PO(u) and D(u) on the following profile with 5
alternatives {x, y, z, v, w}. The example can also be found in Tideman [104].
The number in front of each linear order counts how often this linear order
is repeated in the profile.

7 vwxyz

3 zyvwx

6 yzwxv

3 wxvzy

5 zxvwy

3 yxvwz

The majority margin matrix of this profile is as follows:

v w x y z

v 0 9 –7 3 –1
w –9 0 11 3 –1
x 7 –11 0 3 –1
y –3 –3 –3 0 5
z 1 1 1 –5 0

The reader may check that PO(u) = E(R>7), where R>7 = {(v, w), (w, x)}.
There are in total twenty prudent orders which are enumerated in Table 6.1.
For each prudent order, we listed all the ordered pairs belonging to that pru-
dent order and the majority margin corresponding to each ordered pair. The
smallest majority margin of any prudent order is −7 corresponding to the
pair (v, x). That is why all the linear orders listed in Table 6.1 are equivalent
according to the relation �u

min.

We now analyze the solutions according to the relation �u
disc. We show

that PO20 = vwxyz is the unique discrimin optimal solution, which means
that D(u) = {vwxyz}.

Let us compare for instance PO20 = vwxyz and PO1 = zyvwx. These
two linear orders differ by the following pairs:

{(v, y), (v, z), (w, y), (w, z), (x, y), (x, z), (y, z)} ⊂ PO20

while

{(y, v), (z, v), (y, w), (z, w), (y, x), (z, x), (z, y)} ⊂ PO1.
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When considering these pairs only, the smallest majority margin for PO20

is –1, whereas the smallest majority margin for PO1 is –3. Consequently
PO20 ≻u

disc PO1. In a similar way, the reader may check that

∀i ∈ {1, . . . , 19}, PO20 ≻u
disc POi.

Consequently, PO20 is the only discrimin optimal solution.

6.2 Ranked Pairs rule

Tideman and Zavist [104, 110] proposed the so-called Ranked Pairs ranking
rule. We have introduced this rule already in Section 2.2.1. First, rank the
ordered pairs (ai, aj) according to their values Bij from the largest to the
smallest (1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j). We denote E1, E2, . . . , Er the equiva-
lence classes of this weak order. Take any linear order compatible with this
weak order. Consider the pairs in that order and do the following: if the
selected pair creates a (directed) cycle with the pairs already blocked, skip
this pair. If the selected pair does not create a cycle with the pairs already
blocked, block this pair. This ranking rule leads to possibly more than one
solution, since for each equivalence class Ei (i ∈ {1, . . . , r}) we must con-
sider all the possible orderings (or permutations) of the pairs belonging to
that equivalence class. We recall that RP(u) denotes the set of linear orders
found by the Ranked Pairs ranking rule.

We apply this rule to the profile introduced in the previous section. In
Table 6.2, we have described the weak order on the ordered pairs. In this
example there are 12 equivalence classes. First, we select (w, x) with a ma-
jority margin of 11 and block it. Then we select (v, w) with a majority
margin of 9 and block it. Since (x, v) with a majority margin of 7 would
create a cycle, we skip it and go on to (y, z) with a majority margin of
5. Since no cycle is created with this pair, we block it. We then add the
pairs (v, y), (w, y) and (x, y), all with majority margins of 3. At this stage,
we have blocked a chain which goes from v to w to x to y to z and con-
sequently the only final ranking can be vwxyz. In fact, after equivalence
class E5, we are only allowed to block the pairs (v, z), (w, z), (x, z) (all three
with a majority margin of –1) and pair (v, x) (with a majority margin of –7).

It appears that for this profile the solution obtained by the Ranked Pairs
rule is the discrimin optimal solution computed in the previous section. In
fact, we show that both ranking rules always give identical results.

Proposition 11
∀u, RP(u) = D(u).
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PO1 (v, w) (v, x) (y, v) (z, v) (w, x) (y, w) (z, w) (y, x) (z, x) (z, y)
zyvwx 9 –7 –3 1 11 –3 1 –3 1 –5

PO2 (v, w) (v, x) (y, v) (z, v) (w, x) (y, w) (z, w) (y, x) (z, x) (y, z)
yzvwx 9 –7 –3 1 11 –3 1 –3 1 5

PO3 (v, w) (v, x) (y, v) (v, z) (w, x) (y, w) (z, w) (y, x) (z, x) (y, z)
yvzwx 9 –7 –3 –1 11 –3 1 –3 1 5

PO4 (v, w) (v, x) (y, v) (v, z) (w, x) (y, w) (w, z) (y, x) (z, x) (y, z)
yvwzx 9 –7 –3 –1 11 –3 –1 –3 1 5

PO5 (v, w) (v, x) (y, v) (v, z) (w, x) (y, w) (w, z) (y, x) (x, z) (y, z)
yvwxz 9 –7 –3 –1 11 –3 –1 –3 –1 5

PO6 (v, w) (v, x) (v, y) (z, v) (w, x) (y, w) (z, w) (y, x) (z, x) (z, y)
zvywx 9 –7 3 1 11 –3 1 –3 1 –5

PO7 (v, w) (v, x) (v, y) (v, z) (w, x) (y, w) (z, w) (y, x) (z, x) (z, y)
vzywx 9 –7 3 –1 11 –3 1 –3 1 –5

PO8 (v, w) (v, x) (v, y) (v, z) (w, x) (y, w) (z, w) (y, x) (z, x) (y, z)
vyzwx 9 –7 3 –1 11 –3 1 –3 1 5

PO9 (v, w) (v, x) (v, y) (v, z) (w, x) (y, w) (w, z) (y, x) (z, x) (y, z)
vywzx 9 –7 3 –1 11 –3 –1 –3 1 5

PO10 (v, w) (v, x) (v, y) (v, z) (w, x) (y, w) (w, z) (y, x) (x, z) (y, z)
vywxz 9 –7 3 –1 11 –3 –1 –3 –1 5

PO11 (v, w) (v, x) (v, y) (z, v) (w, x) (w, y) (z, w) (y, x) (z, x) (z, y)
zvwyx 9 –7 3 1 11 3 1 –3 1 –5

PO12 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (z, w) (y, x) (z, x) (z, y)
vzwyx 9 –7 3 –1 11 3 1 –3 1 –5

PO13 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (y, x) (z, x) (z, y)
vwzyx 9 –7 3 –1 11 3 –1 –3 1 –5

PO14 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (y, x) (z, x) (y, z)
vwyzx 9 –7 3 –1 11 3 –1 –3 1 5

PO15 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (y, x) (x, z) (y, z)
vwyxz 9 –7 3 –1 11 3 –1 –3 –1 5

PO16 (v, w) (v, x) (v, y) (z, v) (w, x) (w, y) (z, w) (x, y) (z, x) (z, y)
zvwxy 9 –7 3 1 11 3 1 3 1 –5

PO17 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (z, w) (x, y) (z, x) (z, y)
vzwxy 9 –7 3 –1 11 3 1 3 1 –5

PO18 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (x, y) (z, x) (z, y)
vwzxy 9 –7 3 –1 11 3 –1 3 1 –5

PO19 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (x, y) (x, z) (z, y)
vwxzy 9 –7 3 –1 11 3 –1 3 –1 –5

PO20 (v, w) (v, x) (v, y) (v, z) (w, x) (w, y) (w, z) (x, y) (x, z) (y, z)
vwxyz 9 –7 3 –1 11 3 –1 3 –1 5

Table 6.1: The 20 prudent orders.
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Equiv. class Pair Maj. Margin

E1 (w, x) 11
E2 (v, w) 9
E3 (x, v) 7
E4 (y, z) 5
E5 (v, y), (w, y), (x, y) 3
E6 (z, v)(z, w), (z, x) 1
E7 (v, z)(w, z), (x, z) −1
E8 (y, v), (y, w), (y, x) −3
E9 (z, y) −5
E10 (v, x) −7
E11 (w, v) −9
E12 (x, w) −11

Table 6.2: The ranking of the equivalence classes.

For any linear order O, we denote Et(O) = (E1 ∪ . . . ∪ Et) ∩ O. In the
proof of Proposition 11 we need the following lemma.

Lemma 3 O ∈ RP(u) ⇐⇒ ∀t, Et(O) is maximal with respect to cyclicity:

∀(x, y) ∈ Et \ O, Et(O) ∪ {(x, y)} is not acyclic.

Proof of the lemma.

Proof:

• ⇒
Consider a linear order O ∈ RP(u). Assume by contradiction that
at step t there exists (x, y) ∈ Et \ O such that Et(O) ∪ {(x, y)} is
acyclic. When the Ranked Pairs algorithm arrives at Et, it has al-
ready selected Et−1(O). When it comes to consider (x, y), it may have
already selected a part A of Et ∩ O. In any case, (x, y) can be added
to Et−1(O) ∪ A without creating cycles, since

Et−1(O) ∪ A ∪ {(x, y)} ⊆ Et(O) ∪ {(x, y)}

and we assumed that Et(O)∪{(x, y)} is acyclic. Hence it is not possible
that O does not contain (x, y).

• ⇐
Let ≻∗ be any linear order of the pairs that satisfies the following
constraints:

– all pairs in Ei are ranked before all pairs in Ei+1,∀i.

108



– all pairs in Ei ∩ O are ranked before all pairs in Ei \ O,∀i.

If ∀t, Et(O) is maximal with respect to acyclicity, applying the Ranked
Pairs algorithm to ≻∗ yields O.

�

Proof of the proposition.
Proof:

• We first prove that if O ∈ D(u), then O ∈ RP(u). Let us suppose by
contradiction that O 6∈ RP(u). Then there exists t and (x, y) ∈ Et \O

such that Et(O) ∪ {(x, y)} is acyclic (Lemma 3). Consider an order
≻∗ on the pairs such that all pairs in Ei are ranked before all pairs
in Ei+1,∀i and such that in Et, (x, y) is just ranked after Et ∩ O.
Applying the Ranked Pairs algorithm to such an order ≻∗ will yield
a linear order O′ such that Et(O

′) ⊇ Et(O) ∪ {(x, y)}. It is easy to
see that O′ ≻u

disc O, which is a contradiction, since we assumed that
O ∈ D(u).

• We now prove that if O ∈ RP(u) then O ∈ D(u). Let O′ be any linear
order different from O such that O′ ≻u

disc O. We then have that:

min
(ai,aj)∈O′

(ai,aj) 6∈O

Bij > min
(ai,aj)∈O

(ai,aj) 6∈O′

Bij . (6.1)

Let
t = min{s : Es ∩ (O \ O′) 6= ∅}

and
t′ = min{s : Es ∩ (O′ \ O) 6= ∅}.

According to (6.1), we must have that t > t′. That is why Et′(O
′) \

Et′(O) 6= ∅. Take (x, y) ∈ Et′(O
′) \ Et′(O). Et′(O) ∪ {(x, y)} has no

cycle since
Et′(O) ∪ {(x, y)} ⊆ Et′(O

′)

and Et′(O
′) is acyclic because O′ is a linear order. Consequently Et′(O)

is not maximal with respect to cyclicity. According to Lemma 3, this
means that O 6∈ RP(u), which is a contradiction. Hence there cannot
exist any linear order O′ such that O′ ≻u

disc O.

�

A related result is presented in Tideman [104] (page 201), where the
author claims that the linear orders found by the Ranked Pairs ranking
rule are the maximal elements of a particular relation. Let us present this
relation, denoted by ≻u

t , which is however slightly different from ≻u
disc.
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∀O, Õ ∈ LO, O ≻u
t Õ ⇐⇒







max(ai,aj) 6∈O Bij < max(ai,aj) 6∈Õ Bij or
{

max(ai,aj) 6∈O Bij = max(ai,aj)∈Õ Bij = a∗ and

{(ai, aj) : (ai, aj) 6∈ O and Bij = a∗} ⊂ {(ai, aj) : (ai, aj) 6∈ Õ and Bij = a∗}

Because of the constant-sum property (∀i, j, Bij + Bji = 0) and the
fact that a linear order is asymmetric, this relation ≻u

t can be equivalently
defined as follows:

∀O, Õ ∈ LO, O ≻u
t Õ ⇐⇒







min(ai,aj)∈O,ai 6=aj
Bij > min(ai,aj)∈Õ,ai 6=aj

Bij or
{

min(ai,aj)∈O,ai 6=aj
Bij = min(ai,aj)∈Õ,ai 6=aj

Bij = b∗ and

{(ai, aj) : (ai, aj) ∈ O and Bij = b∗} ⊂ {(ai, aj) : (ai, aj) ∈ Õ and Bij = b∗}

The relation ≻u
disc which we have introduced in the first section of this

chapter is in fact a refinement of the relation ≻u
t used in the paper of Tide-

man. For any two linear orders O and Õ, if

min
(ai,aj)∈O,ai 6=aj

Bij 6= min
(ai,aj)∈Õ,ai 6=aj

Bij ,

then both relations are equivalent: O ≻u
t Õ ⇐⇒ O ≻u

disc Õ. If however

min
(ai,aj)∈O,ai 6=aj

Bij = min
(ai,aj)∈Õ,ai 6=aj

Bij ,

then it is easy to see that if O ≻u
t Õ, then O ≻u

disc Õ. However, the con-
verse is not true, which means it may happen that O ≻u

disc Õ, but O 6 ≻u
t Õ.

Consider for instance the example presented in Figure 6.1. The smallest
majority margin of any prudent order is equal to –7 corresponding to the
pair (v, x). Furthermore, this is the only pair with a majority margin of –7.
Consequently, no prudent order dominates, according to the relation ≻u

t an-
other prudent order. However, we have seen that O20 dominates, according
to the relation ≻u

disc, the remaining 19 prudent orders.

The claim that the Ranked Pairs ranking rule is equivalent to the max-
imal linear orders of the relation ≻u

t is thus false. Instead, we have shown
that the Ranked Pairs ranking rule is equivalent to the maximal linear or-
ders of the relation ≻u

disc. In the example presented in Section 6.1, only one
linear order has been obtained by the Ranked Pairs ranking rule. At the
same time, this linear order also corresponds to the unique non-dominated
linear order according to the relation ≻u

disc. However, according to the rela-
tion ≻u

t , every prudent order is non-dominated.
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Equiv. class Pair Maj. Margin

E1 (d, a) 3
E2 (a, b), (b, c), (c, d), (c, a), (d, b) 1
E3 (b, a), (c, b), (d, c), (a, c), (b, d) −1
E4 (a, d) −3

Table 6.3: The ranking of the equivalence classes.

E1 E2 E3 Solution

(d, a) (b, c), (c, a), (d, b) (b, a), (d, c) dbca

(d, a) (a, b), (b, c), (d, b) (d, c), (a, c) dabc

(d, a) (a, b), (c, d), (c, a), (d, b) (c, b) cdab

(d, a) (b, c), (c, d), (c, a) (b, a), (b, d) bcda

Table 6.4: The solutions obtained by the Ranked Pairs algorithm.

Following Lemma 3, the Ranked Pairs ranking rule constructs a linear
order O such that for any t, Et(O) is maximal with respect to cyclicity. This
does not mean that if two different linear orders O and O′ are obtained, then
the number of pairs selected in Et(O) and the number of pairs selected in
Et(O

′) are the same for every t. Consider the example which has already
been introduced in Section 4.1. There are 4 alternatives and the profile is
given by u = (abcd, bcda, cdab, dabc, dcba). The ranking of the equivalence
classes is presented in Table 6.3.

Given the large equivalence classes E2 and E3, the Ranked Pairs algo-
rithm constructs for this profile four different solutions. They are given in
Table 6.4, as well as the pairs blocked in each equivalence class that yield
these four solutions. It appears that in order to obtain cdab, the Ranked
Pairs algorithm blocks 4 pairs in E2, whereas in order to obtain dbca, the
Ranked Pairs algorithm only blocks 3 pairs in E2. We will come back to this
example in Section 7.1, where we will introduce a new ranking rule which
further refines the Ranked Pairs rule by lexicographically maximizing the
number of pairs blocked in each equivalence class.

6.3 Axioms

In this section, we detail the axioms which we need in the characterization of
the Ranked Pairs ranking rule. In fact, we build on the axiomatic framework
which has been presented in Chapter 5. We recall that we are interested in
characterizing a preference function denoted by f which associates to any
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profile of linear orders u a non-empty set of linear orders f(u) (see Section
4). More particularly, we refer to Section 5.3 for a precise formalization of
the following axioms:

• Weak Condorcet Extension (WCE)

• Weak E-Invariance (WEI)

• Weak Homogeneity for Odd Profiles (WHOP)

• Weak Majority Profile Consistency (WMPC)

Recall that Theorem 4 in Section 5.5 states that the prudent order pref-
erence function is the largest preference function with respect to inclusion
which verifies WCE, WEI, WHOP and WMPC. As we will check in Propo-
sition 12, the Ranked Pairs rule also verifies these four axioms. However,
unlike the prudent order preference function, the Ranked Pairs rule is not
the largest such preference function.

In order to characterize the Ranked Pairs rule as being the largest prefer-
ence function verifying a particular set of axioms, we will need an additional
axiom, which we present now. It says that improving the strength of an
ordered pair that belongs to a compromise ranking will not discard that
particular compromise ranking.

Axiom 10 Monotone Consistency (MC)
Let O ∈ f(u). Then for all (ai, aj) such that ai 6= aj and (ai, aj) ∈ O, we
have:

O ∈ f(u + aiajx−ij + −x−ijaiaj).

This axiom is related to the monotonicity issue, since it imposes a logical
impact on the result when improving the pairwise majority margins between
two alternatives. Unlike most of the monotonicity conditions which have
been studied and proposed in the literature (see for instance Bouyssou [13]),
axiom MC is rather particular in the sense that it does not apply to any
ordered pairs (ai, aj), but only to those which belong already to at least one
compromise ranking in f(u).

To further stress the particular degree of monotonicity implied by axiom
MC, we now present a weaker and a stronger monotonicity condition. Let us
suppose, as in axiom MC, that O ∈ f(u) and that ai is preferred to aj in the
linear order O. A weaker monotonicity condition imposes that there must
exist at least one linear order Õ such that Õ ∈ f(u + aiajx−ij +−x−ijaiaj)
and such that (ai, aj) ∈ Õ. A stronger monotonicity condition requests that
for all Õ ∈ f(u + aiajx−ij + −x−ijaiaj) we have that (ai, aj) ∈ Õ. The
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strong monotonicity condition implies Monotone Consistency, which implies
the weak monotonicity condition.

Both this weak and strong monotonicity conditions are of no use in our
setting. On the one hand, the weaker condition is verified by the prudent
order preference function, and consequently does not allow us to distinguish
the Ranked Pairs rule from the prudent order preference function. On the
other hand, the stronger condition is not verified by the Ranked Pairs rule,
and consequently it is irrelevant for any characterization purposes.

Finally, in order to completely characterize the Ranked Pairs rule, we
will need to strengthen axiom WMPC. In fact, WMPC deals with so-called
majority profiles. We generalize this idea and work with qualified majority
profiles. Let us now formally define this notion.

A qualified majority at level γ (γ ≥ 0) is a binary relation defined as
follows:

∀ai, aj ∈ A, (ai, aj) ∈ Mγ if Bij > γ.

We now consider each pair {ai, aj} in turn:

• If (ai, aj) ∈ Mγ , construct the two linear orders

V 1
ij = aiajx−ij V 2

ij = −x−ijaiaj .

• If Bij = γ, consider one of the following two exclusive possibilities:

– Skip this pair.

– Construct two linear orders V 1
ij and V 2

ij such that:

V 1
ij = aiajx−ij V 2

ij = −x−ijaiaj .

We then construct a new profile, denoted by u(Mλ), which contains all the
linear orders obtained that way.

Definition 12 For every λ ≥ 0, let Mλ be the qualified majority relation of
profile u. We say that u(Mλ) is a qualified majority profile of profile u if
u(Mλ) can be written as follows:

u(Mγ) =
∑

(ai,aj)∈Mγ

(V 1
ij + V 2

ij) +
∑

(ai,aj)∈ζ

(V 1
ij + V 2

ij),

where ζ ⊆ {(ai, aj) : Bij = γ}.

113



The information contained in u(Mγ) confirms the information contained
in Mγ . Furthermore, a qualified majority profile is indeed a generalization
of a majority profile (see Section 5.2 for the definition of a majority profile).
It suffices to set γ = 0 to obtain again the definition of a majority profile.
The next axiom then says that adding a qualified majority profile cannot
create any new compromise rankings.

Axiom 11 Weak Qualified Majority Profile Consistency (WQMPC)
Let u be a profile and let u(Mγ) be a qualified majority profile of u at level
γ, with γ ≥ 0.Then:

f(u + u(Mγ)) ⊆ f(u).

Axiom WQMPC implies axiom WMPC. In fact, by fixing λ = 0, axiom
WQMPC says that if u is a profile and u(M) a majority profile of u, then

f(u + u(M)) ⊆ f(u).

Axiom WMPC exactly states this inclusion, under the condition that profile
u + u(M) contains at least one cycle.

The interpretation of axiom WQMPC is similar to the interpretation of
axiom WMPC. In fact, it suggests that “confirming any qualified majority”
of a profile should not lead to creating new solutions.

6.4 Characterization

In this section we present two main results. Before coming to these results,
we first check that the Ranked Pairs rule verifies the axioms introduced in
the preceding section.

Proposition 12 The Ranked Pairs ranking rule verifies Weak Condorcet
Extension, Weak E-Invariance, Weak Homogeneity for Odd Profiles, Weak
Majority Profile Consistency, Weak Qualified Majority Profile Consistency
and Monotone Consistency.

Proof: WEI, WHOP are obvious. We now prove WCE. Let M be
acyclic. Since PO verifies WCE (see Corollary 5 in Section 5.5), we have
that:

RP(u) ⊆ PO(u) ⊆ E(M).

This shows WCE.
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We now prove WQMPC. Let B denote the majority margins of profile
u and B′ the majority margins of profile u + u(Mγ), where

u(Mγ) =
∑

(ai,aj)∈Mγ

(V 1
ij + V 2

ij) +
∑

(ai,aj)∈ζ

(V 1
ij + V 2

ij),

with ζ ⊆ {(ai, aj) : Bij = γ}. Let E1, E2, . . . , Es, . . . , Et, . . . , Er be the
equivalence classes of the weak order of the ordered pairs relative to pro-
file u, where Es = {(ai, aj) : Bij = γ} and Et = {(ai, aj) : Bij = −γ}.
We recall that, in each equivalence class, the Ranked Pairs rule consid-
ers all the permutations of the ordered pairs belonging to that equivalence
class. For each of these permutations, the ordered pairs are considered one
by one and blocked, if the solutions so far constructed remains acyclic, or
skipped, in case a cycle appears with pairs already blocked. We show that
adding u(Mγ) to u has the effect of not considering all permutations in the
equivalence classes E1, E2, . . . , Es, . . . , Et . . . Er, but only a subset of these
permutations. Consequently, a solution which can be found for u + u(Mγ)
can also be found for u, or, in other words, RP(u + u(Mγ)) ⊆ RP(u).

Note that B and B′ are related as follows:

B′
ij =







Bij + 2 if Bij > γ or (ai, aj) ∈ ζ

Bij − 2 if Bij < −γ or (aj , ai) ∈ ζ

Bij otherwise

That is why the weak order of the ordered pairs relative to profile u+u(Mγ)
can be represented as follows:

E1, E2, . . . , Es−1, ζ, Es \ ζ, . . . , Et \ c(ζ), c(ζ), . . . , Er,

where c(ζ) denotes the converse of the relation ζ:

c(ζ) = {(ai, aj) ∈ A×A : (aj , ai) ∈ ζ}.

This illustrated in Figure 6.1. Hence, at equivalence class Es, we only con-
sider those permutations that start with ordered pairs belonging to ζ, and
at equivalence class Et we only consider those permutations that end with
ordered pairs belonging to c(ζ). This proves WQMPC.

The Ranked Pairs rule also satisfies WMPC since WQMPC implies
WMPC.

We finally prove MC. Let O ∈ RP(u). According to Proposition 11, this
means that

∀Õ ∈ LO, O �u
disc Õ.
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Suppose that (ak, al) ∈ O and denote

u∗ = u + akalx−kl + −x−klakal.

We need to show that O ∈ RP(u∗), which means that, according to Propo-
sition 11:

∀Õ ∈ LO, O �u∗

disc Õ.

Let B denote the majority margins of profile u and B∗ the majority margins
of profile u∗. Let us note that B and B∗ are linked as follows:







B∗
kl = Bkl + 2

B∗
lk = Blk − 2

B∗
ij = Bij ∀(i, j) 6∈ {(k, l), (l, k)}

We supposed that (ak, al) ∈ O. Let Õ be any linear order. We distinguish
the two cases whether (ak, al) ∈ Õ or (al, ak) ∈ Õ.

• (ak, al) ∈ Õ

In that case, we have that

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij = min
(ai,aj)∈O

(ai,aj) 6∈Õ

B∗
ij

and

min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij .

Consequently O �u
disc Õ implies that O �u∗

disc Õ.

• (al, ak) ∈ Õ

In that case, we have that

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij ≤ min
(ai,aj)∈O

(ai,aj) 6∈Õ

B∗
ij

and

min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij ≥ min
(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij .

Consequently O �u
disc Õ implies that O �u∗

disc Õ.

We can conclude that ∀Õ ∈ LO, we have that O �u∗

disc Õ. Hence O ∈
RP(u∗), which proves MC.

�
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0 λ−λ

E8 E7 E5 E4 E2 E1

+2+2+2–2 –2 –2

E6

c(ζ)

E3

ζ

Figure 6.1: The transformation from profile u to profile u + u(Mλ).

The first result says that i) if the preference function should satisfy ax-
ioms WCE, WEI, WHOP, WMPC and MC and ii) the set of compromise
rankings should be as large as possible, then we must use the Ranked Pairs
ranking rule.

Theorem 7 The Ranked Pairs rule is the largest preference function (with
respect to inclusion) that verifies Weak Condorcet Extension, Weak E-Invariance,
Weak Homogeneity for Odd Profiles, Weak Majority Profile Consistency,
and Monotone Consistency.

Proof: We are going to show that any preference function f that
verifies the above mentioned axioms is such such that

f(u) ⊆ RP(u).

Since, by Proposition 12, the Ranked Pairs ranking rule verifies these ax-
ioms, the proof will be complete.

More particularly, we are going to show that, ∀Õ ∈ LO, if there exists
a linear order O ∈ LO such that O ≻u

disc Õ, then Õ 6∈ f(u). In view of
Proposition 11, this will imply that f(u) ⊆ RP(u).

Let B denote the majority margin matrix of profile u. Consider the
following set of ordered pairs

ζ = {(ak, al) : ak 6= al and (ak, al) ∈ O ∩ Õ and Bkl ≤ min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij}.

In fact, ζ consists of those pairs that belong to both O and Õ, but whose
majority margins are less than or equal to min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij . If ζ = ∅, then
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this means that if (ak, al) ∈ O and (ak, al) ∈ Õ, then

Bkl > min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij ≥ min
(ai,aj)∈Õ

Bij .

Since we assume that O ≻u
disc Õ, then we moreover have that if (ak, al) ∈ O

and (ak, al) 6∈ Õ, then:

Bkl ≥ min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij > min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij ≥ min
(ai,aj)∈Õ

Bij .

We learn from the last two lines of inequalities that:

• If (ak, al) ∈ O and (ak, al) ∈ Õ, then Bkl > min(ai,aj)∈Õ Bij .

• If (ak, al) ∈ O and (ak, al) 6∈ Õ, then Bkl > min(ai,aj)∈Õ Bij .

Consequently, we have that

min
(ai,aj)∈O

Bij > min
(ai,aj)∈Õ

Bij .

In other words, this means that O ≻u
min Õ, which implies that Õ 6∈ PO(u).

Theorem 4 in Section 5.5 says that axioms WCE, WEI, WHOP, and WMPC
imply that f(u) ⊆ PO(u). Since Õ 6∈ PO(u), we must have that Õ 6∈ f(u).
This completes the proof if ζ = ∅.

We suppose from now on that ζ 6= ∅.

Assume that Õ ∈ f(u). We compute γkl for each (ak, al) ∈ ζ:

γkl =

min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij + 2 − Bkl

2
.

γkl is an integer since Bkl and min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij have the same parity. It is a

positive integer since Bkl ≤ min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij .

Let us construct the profile u∗, which consists of adding γkl times for each
pair (ak, al) ∈ ζ the two linear orders akalx−kl and −x−klakal to profile u:

u∗ = u +
∑

(ak,al)∈ζ

γkl(akalx−kl + −x−klakal).

Since we supposed that Õ ∈ f(u) and since (ak, al) ∈ Õ, we conclude that
Õ ∈ f(u∗) by applying γkl times axiom MC for each pair (ak, al) ∈ ζ.
Consequently, we have shown that

Õ ∈ f(u) ⇒ Õ ∈ f(u∗). (6.2)
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B∗ denotes the majority margin matrix of profile u∗. In fact, B∗ and B

are linked as follows:
∀ai, aj ∈ A,

B∗
ij =







Bij + 2γij if (ai, aj) ∈ ζ

Bij − 2γij if (aj , ai) ∈ ζ

Bij otherwise
(6.3)

Since ζ only contains ordered pairs belonging to both O and Õ, we have:
∀ai, aj ∈ A,

(ai, aj) ∈ O and(ai, aj) 6∈ Õ

or

(ai, aj) 6∈ O and(ai, aj) ∈ Õ






⇒ Bij = B∗

ij . (6.4)

We are now going to check that:

∀(ak, al) ∈ O, ak 6= al : B∗
kl > min

(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij (6.5)

Let (ak, al) ∈ O. We distinguish two cases: (ak, al) ∈ Õ and (ak, al) 6∈ Õ.

• If (ak, al) ∈ Õ, then we distinguish between (ak, al) ∈ ζ and (ak, al) 6∈
ζ.

– If (ak, al) ∈ ζ, then this means that:

B∗
kl = Bkl + 2γkl > min

(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij .

The first equality comes from (6.3), the second strict inequality
is a consequence of the definition of γkl and the third equality
results from (6.4).

– If (ak, al) 6∈ ζ, then this means that:

B∗
kl = Bkl > min

(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij .

The first equality comes from (6.3), the second strict inequality is
a consequence of the definition of ζ and the third equality results
from (6.4).

• If (ak, al) 6∈ Õ, then we have:

B∗
kl ≥ min

(ai,aj)∈O

(ai,aj) 6∈Õ

B∗
ij = min

(ai,aj)∈O

(ai,aj) 6∈Õ

Bij > min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij .
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The first inequality results from the fact that we assume that (ak, al) ∈
O and (ak, al) 6∈ Õ. The second equality comes from (6.4), the third
strict inequality comes from the fact that O ≻u

disc Õ and the fourth
equality comes again from (6.4).

The last two bullets prove (6.5), which implies that:

min
(ai,aj)∈O

ai 6=aj

B∗
ij > min

(ai,aj)∈Õ

(ai,aj) 6∈O

B∗
ij ≥ min

(ai,aj)∈Õ

ai 6=aj

B∗
ij .

This shows that O ≻u∗

min Õ and consequently Õ 6∈ PO(u∗). Theorem 4 in
Section 5.5 says that axioms WCE, WEI, WHOP, and WMPC imply that
f(u∗) ⊆ PO(u∗). Since Õ 6∈ PO(u∗), we thus also have that Õ 6∈ f(u∗).
Given 6.2, we can conclude that Õ 6∈ f(u). �

We knew already that the largest preference function verifying axioms
WCE, WEI, WHOP and WMPC is the prudent order preference function.
The Ranked Pairs ranking rule also verifies these four axioms, but it is not
the largest such preference function. If we additionally require axiom MC,
then the largest possible preference function is the Ranked Pairs ranking
rule. A consequence of these results is that MC cannot be verified by the
prudent order preference function (see however a very similar property de-
scribed in Proposition 5 (Section 4.3), which is indeed verified by the prudent
order preference function).

The next corollary follows naturally from Theorem 7 and from the con-
vention that the image of a preference function never is the empty set.

Corollary 6 Let f be a preference function which verifies Weak Condorcet
Extension, Weak E-invariance, Weak Homogeneity for Odd Profiles, Weak
Majority Profile Consistency and Monotone Consistency. For a profile u

such that |RP(u)| = 1 we have:

f(u) = RP(u).

We will also need the following lemma:

Lemma 4 Let O and Õ be two linear orders. Let u be a profile of linear
orders with a majority margin matrix B. If

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij ,

then
min

(ai,aj)∈O

(ai,aj) 6∈Õ

Bij ≤ 0.

120



Proof: Suppose by contradiction that

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij > 0.

Hence there exists (ak, al) such that (ak, al) ∈ O and (ak, al) 6∈ Õ and
Bkl > 0. Consequently there exists (al, ak) such that (al, ak) ∈ Õ and
(al, ak) 6∈ O and Blk < 0. Hence

min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij < 0.

Since min (ai,aj)∈O

(ai,aj) 6∈Õ

Bij = min (ai,aj)∈Õ

(ai,aj) 6∈O

Bij , this implies that:

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij < 0.

This is a contradiction since we initially supposed that min (ai,aj)∈O

(ai,aj) 6∈Õ

Bij > 0.

�

By strengthening the Weak Majority Profile Consistency axiom, the
Ranked Pairs ranking rule can be completely characterized.

Theorem 8 The Ranked Pairs ranking rule is the only preference function
that verifies Weak Condorcet Extension, Weak E-invariance, Weak Homo-
geneity for Odd profiles, Weak Qualified Majority Profile Consistency and
Monotone Consistency.

Proof: We have shown in Proposition 12 that the Ranked Pairs rank-
ing rule verifies the axioms stated in the theorem. Let f be a preference
function verifying these axioms.

We know from Theorem 7 that the Ranked Pairs rule is the largest
preference function verifying WCE, WEI, WHOP, WMPC and MC. Since
WQMPC implies WMPC, we already know that:

∀u, f(u) ⊆ RP(u).

We still need to prove that if O ∈ RP(u), then O ∈ f(u). Let us assume
that O ∈ RP(u). Consider the remaining linear orders of RP(u):

Ω(u) = RP(u) \ {O}.

If Ω(u) = ∅, then this means that O is the unique solution found by the
Ranked Pairs rule for profile u. We can thus apply Corollary 6 and conclude
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that f(u) = RP(u). Otherwise, let Õ ∈ Ω(u) be any linear order of that
set. We must have that, according to Proposition 11, O ∼u

disc Õ, and,
consequently:

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = γ,

where γ denotes the common value of the two terms. We know from Lemma
4 that γ ≤ 0. We are going to construct a qualified majority relation at level
−γ:

(ai, aj) ∈ M−γ ⇐⇒ Bij > −γ.

A qualified majority profile will be constructed as follows:

u(M−γ) =
∑

(ai,aj)∈M−γ

V 1
ij + V 2

ij +
∑

(ai,aj)∈ζ

V 1
ij + V 2

ij ,

where ζ = {(ai, aj) : Bij = −γ and (ai, aj) ∈ O}. Let us denote

u1 = u + u(M−γ).

The following three observations can be made:

1. f(u1) ⊆ f(u).

2. O ∈ RP(u1).

3. RP(u1) ⊂ RP(u).

These three observations can be explained as follows:

1. We assumed that f verifies WQMPC.

2. We assumed that O ∈ RP(u). In order to transform profile u into
profile u +

∑

(ai,aj)∈M−γ
V 1

ij + V 2
ij , we add +2 to the majority margins

Bij such that Bij > γ and we substract –2 to the the majority margins
Bij such that Bij < −γ. The order of the equivalence classes of the
ordered pairs is the same in both profiles and that is why we have that:

RP(u) = RP(u +
∑

(ai,aj)∈M−γ

V 1
ij + V 2

ij).

Consequently we have that

O ∈ RP(u +
∑

(ai,aj)∈M−γ

V 1
ij + V 2

ij).

Since the Ranked Pairs rule verifies MC (see Proposition 12) and since
ζ ⊆ O, this last observation implies that:

O ∈ RP(u +
∑

(ai,aj)∈M−γ

V 1
ij + V 2

ij +
∑

(ai,aj)∈ζ

V 1
ij + V 2

ij) = RP(u1).
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3. We showed in Proposition 12 that the Ranked Pairs ranking rule ver-
ifies WQMPC. Hence RP(u1) ⊆ RP(u). We now explain the strict
inclusion. More particularly, we show that O ≻u1

disc Õ, which implies
that on the one hand Õ ∈ RP(u) and on the other hand Õ 6∈ RP(u1).
Recall that, under profile u, we have that:

min
(ai,aj)∈O

(ai,aj) 6∈Õ

Bij = min
(ai,aj)∈Õ

(ai,aj) 6∈O

Bij = γ.

The majority margin matrix of profile u1 is denoted by B1. Adding
the linear orders

∑

(ai,aj)∈M−γ

V 1
ij + V 2

ij +
∑

(ai,aj)∈ζ

V 1
ij + V 2

ij

to profile u where

ζ = {(ai, aj) : Bji = λ and (aj , ai) 6∈ O}

has the following consequences. If Bij = λ and (ai, aj) ∈ O, then
B1

ij = Bij . If Bij = λ and (ai, aj) 6∈ O, then B1
ij = Bij − 2. This

implies that:

min
(ai,aj)∈O

(ai,aj) 6∈Õ

B1
ij = min

(ai,aj)∈O

(ai,aj) 6∈Õ

Bij = γ.

min
(ai,aj)∈Õ

(ai,aj) 6∈O

B1
ij = ( min

(ai,aj)∈Õ

(ai,aj) 6∈O

Bij) − 2 = γ − 2.

It follows from the last two lines that O ≻u1

disc Õ.

We can now compute the new set Ω(u1) = RP(u1) \ {O}. We will
iteratively construct that way a sequence of t profiles u1, u2, . . . , ut, until
profile ut is such that Ω(ut) = ∅, which means that RP(ut) = {O}. We
know that such a t exists since observation 2 tells us that the set RP(ui)
(i = 1, . . . , t) always contains the linear order O and observation 3 tells us
that at each step the cardinality of this (finite) set strictly decreases. We
can furthermore conclude from observation 1 that:

f(ut) ⊆ ... ⊆ f(u).

Since RP(ut) = {O}, we can apply Corollary 6. This means that f(ut) =
{O}, and consequently O ∈ f(u), which proves the theorem. �

123



6.5 Independence of the axioms

Let us now check the independence of the axioms used in Theorem 8.

• Weak Condorcet Extension

The preference function that associates to every profile the whole set
of linear orders verifies WEI, WHOP, WQMPC, MC but not WCE.

• Weak E-invariance
We consider a profile u∗ which contains 5 times the linear order O1 =
abc, 4 times the linear order O2 = cab and 3 times the linear order
O3 = bca.

u∗ = (O1, O1, O1, O1, O1, O2, O2, O2, O2, O3, O3, O3).

This profile yields the following majority margin matrix:

a b c

a 0 6 –2
b –6 0 4
c 2 –4 0

Let us consider the following set of profiles:

U = {u : ∃t ∈ {0, 1, 2, . . .} such that u = u∗ + t(abc + cab)}.

We are going to define a preference function f as follows:

f(u) =

{
{abc, cab} if u ∈ U
RP(u) otherwise

Hence f corresponds to the Ranked Pairs rule, except for profiles be-
longing to U . Let us note that if u ∈ U , then

RP(u) = {abc} ⊆ {abc, cab} = f(u).

Consequently we have that ∀u,RP(u) ⊆ f(u).

It is easy to see that f verifies WCE. If u is a profile with an acyclic
majority relation M , then u 6∈ U , and, consequently, f(u) = RP(u) =
E(M).

The preference function f also verifies WHOP. If u is odd then u 6∈ U .
This follows from the observation that the majority margins of an odd
profile must be all odd (see Section 2.1). Hence:

f(u) = RP(u) = RP(u + u) ⊆ f(u + u).
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f also verifies WQMPC. Let u be a profile and let u(Mγ) be a qualified
majority profile corresponding to u. Either u ∈ U or u 6∈ U .

In the first situation, either u + u(Mγ) ∈ U , in which case f(u) =
f(u + u(Mγ)), or u + u(Mγ) 6∈ U , in which case

f(u + u(Mγ)) = RP(u + u(Mγ)) ⊆ RP(u) ⊆ f(u).

In the second situation, if u 6∈ U , then u+u(Mγ) 6∈ U . Let us suppose
by contradiction that u + u(Mγ) ∈ U . We would then have that there
exists t ∈ {0, 1, 2, . . .} such that

u + u(Mγ) = u∗ + t(abc + cab).

In fact, this is only possible, due to the structure of u∗, if u(Mγ) =
(abc, cab) and t = 1. Consequently, u = u∗, and so u ∈ U , which is a
contradiction. Since u 6∈ U implies that u + u(Mγ) 6∈ U , we have:

f(u + u(Mγ)) = RP(u + u(Mγ)) ⊆ RP(u) = f(u).

f also verifies MC. Either u ∈ U or u 6∈ U . In the first situation, we
have that f(u) = {abc, cab}. The following cases have to be considered,
where in the first column we indicate the ordered pair which we will
improve.

(a, b) f(u + abc + cab) = {abc, cab} (since u + abc + cab ∈ U)
(b, c) f(u + bca + abc) = {abc}
(a, c) f(u + acb + bac) = {abc}
(c, a) f(u + cab + bca) = {abc, cab}
(c, b) f(u + cba + acb) = {abc, cab}

The reader can check that MC is verified in all these cases. In the
second situation, if u 6∈ U , then u+aiajx−ij +−x−ijaiaj 6∈ U . In fact,
if u + aiajx−ij +−x−ijaiaj ∈ U , we would then have that there exists
t ∈ {0, 1, 2, . . .} such that

u + aiajx−ij + −x−ijaiaj = u∗ + t(abc + cab).

This is only possible, due to the structure of u∗, if

(aiajx−ij ,−x−ijaiaj) = (abc, cba).

Consequently, u = u∗ + (t − 1)(abc + cab), and so u ∈ U , which is a
contradiction since we supposed that u 6∈ U . Hence we have that if
O ∈ f(u) = RP(u), then

O ∈ f(u+u+aiajx−ij+−x−ijaiaj) = RP(u+u+aiajx−ij+−x−ijaiaj).

However, f does not verify WEI. For instance, f(u∗) = {abc, cab}, but
f(u∗ + abc + cba) = RP(u∗ + abc + cba) = {abc}. Hence we have that
f(u∗) 6⊆ f(u∗ + uE).
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• Weak Homogeneity for Odd Profiles

We have defined the set of Slater orders S(u) in Section 2.2.2. Let us
now consider the following preference function f :

f(u) =

{
RP(u) if u is even
S(u) if u is odd

Hence f corresponds to the Ranked Pairs ranking rule for even profiles
and to Slater’s rule for odd profiles. This ranking rule verifies WCE,
WEI, MC since both the Ranked Pairs rule and Slater’s rule verify
these axioms and the modifications of the profiles involved in the ax-
ioms do not change their parity.

We also know that the Ranked Pairs ranking rule verifies WQMPC.
This axiom is also verified for Slater’s rule when the profile is odd. In
fact, there cannot be any preference margins with value 0 since the
profile is odd. That is why, the majority margin of any ordered pairs
is either positive or negative. It is then easy to see that the strict
majority relation of the profile u and the strict majority relation of
profile u + u(Mγ) are the same. Consequently, the set of Slater orders
for these two profiles will be the same.

However, WHOP is not verified. Consider a profile u with the following
majority margin matrix:

a b c

a . 5 –1
b –5 . 3
c 1 –3 .

These majority margins correspond to an odd profile u and that is why
f(u) = S(u) = {abc, bca, cab}. On the other hand, u + u is an even
profile and so f(u+u) = RP(u+u) = {abc}. Hence, f(u) 6⊆ f(u+u).

• Weak Qualified Majority Consistency

The lexicographic prudent order preference function LPO will be in-
troduced in depth in Chapter 7. We now give the definition of this
ranking rule. Let O be any linear order. For k ∈ {1, . . . ,

n(n−1)
2 }, we

denote B(k)(O) the kth smallest majority margin of the ordered pairs
(ai, aj) belonging to O, with ai 6= aj .
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The relation �u
lex is a binary relation defined on LO as follows:

∀O, Õ ∈ LO, O �u
lex Õ ⇐⇒

∀i ≤ n(n−1)
2 , B(i)(O) = B(i)(Õ)

or ∃t ≤ n(n−1)
2 :

{
∀i < t, B(i)(O) = B(i)(Õ)

B(t)(O) > B(t)(Õ)

The maximal elements of that weak order �u
lex correspond to the set

of lexicographic prudent orders.

LPO(u) = {O ∈ LO : ∀Õ ∈ LO, O �u
lex Õ}.

LPO verifies WCE, WEI, WHOP, MC but not WQMPC, as shown by
the following counter-example. Let us consider the majority margin
matrix:

a b c d

a 0 2 2 –2
b –2 0 2 –2
c –2 –2 0 2
d 2 2 –2 0

For any profile u with such majority margins, we have that LPO(u) =
{dabc}. Let us consider the following qualified majority profile at level
γ = 2:

u(Mγ) = (cdab, bacd).

In fact, we just add two linear orders corresponding to the ordered
pair (c, d). This leads to the following majority margin matrix:

a b c d

a 0 2 2 –2
b –2 0 2 –2
c –2 –2 0 4
d 2 2 –4 0

We now have that LPO(u + u(Mγ)) = {cdab, acdb, abcd}. Hence
LPO(u + u(Mλ)) 6⊆ LPO(u).

• Monotone Consistency

The prudent order preference function verifies WCE, WEI, WHOP,
WQMPC but not MC.
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6.6 An axiomatic framework for prudent ranking

rules

We are now ready to summarize the axiomatic results which we have pre-
sented in the last two chapters. Let us recall that we have studied three
prudent ranking rules:

• The prudent order preference function PO.

• The extended prudent order preference function XPO.

• The Ranked Pairs ranking rule RP.

The set of compromise rankings obtained with these three rules are encap-
sulated.

∀u, RP(u) ⊆ XPO(u) ⊆ PO(u).

We will see in Chapter 7 how the lexicographic prudent order preference
function further refines the set of rankings obtained by the Ranked Pairs
rule.

The axiomatic results obtained so far are recapitulated in Table 6.5. We
developed two types of characterization results. Either, we showed that a
particular prudent ranking rule is the largest preference function verifying a
set of axioms. Axioms relative to this type of results are marked by a “X” in
the column “Largest”. Or, we showed that a particular prudent ranking rule
is the only preference function verifying a set of axioms. Axioms relative
to this type of results are marked by a “X” in the column “Only”. Finally,
axioms which are simply verified by a particular prudent ranking rule are
marked with a “X” in the column “Verifies”.

The axioms CE, EI and HOP (and their weaker versions) are rather
standard conditions which are verified by most reasonable ranking rules,
including the three ranking rules listed in this table. Consequently, these
axioms do not allow us to distinguish between the ranking rules. That is
why the most interesting information comes from the remaining axioms.

First of all it is worth noticing that WMPC is verified by all three rank-
ing rules. Such an axiom thus seems to be particular for this kind of prudent
ranking rules. In fact, we have shown that the largest preference function
verifying WMPC (together with the three basic axioms WCE, WEI and
WHOP) is the prudent order preference function. The Ranked Pairs rule
is the largest preference function verifying these four axioms together with
axiom MC, whereas the extended prudent order preference function is the
largest preference function verifying these four axioms together with axiom
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TC.

We have also proposed complete characterizations of the prudent order
preference function and of the Ranked Pairs Rule. For the first ranking rule,
axiom WMPC has been strengthened into MPC by replacing the inclusion
by an equality, whereas for the second ranking rule, axiom WMPC has been
strengthened into WQMPC by replacing the idea of a majority profile by
the idea of a qualified majority profile.

Of course, this framework is not complete yet. Let us mention two
important future research problems.

• We always presented two types of characterization results. The first
one claims that a particular preference function is the largest function
and the second one claims that a particular preference function is the
only function verifying a set of axioms. For the extended prudent or-
der preference function, we have only been able to prove a result of
the first type. A result of the second type still needs to be done.

• We proposed a characterization of the prudent order preference func-
tion and of the Ranked Pairs rule. The missing link in this axiomatic
framework is a characterization of the lexicographic prudent order pref-
erence function, which we will introduce in Chapter 7. This would
bring together the three ranking rules based respectively on the min,
the discrimin and the leximin. Although we have not been successful
in developing such results, it still remains a feasible objective.
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PO RP XPO
Axiom Largest Only Verifies Largest Only Verifies Largest Verifies

Condorcet Extension X X X X
implies Weak Condorcet Extension X X X X X X X

E-Invariance X X X X
implies Weak E-Invariance X X X X X X X

Homog. for Odd Profiles X X X X
implies Weak Homog. for Odd Profiles X X X X X X X

Majority Profile Consistency X X
Weak Qualified Majority Profile Consistency X X X X
both imply Weak Majority Profile Consistency X X X X X X

Monotone Consistency X X X

Truchon Condorcet X X X

Table 6.5: An axiomatic framework for prudent ranking rules.
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Chapter 7

Lexicographic prudent orders

In this chapter, we introduce a new prudent ranking rule based on an under-
lying leximin relation. As a first attempt to understand this ranking rule,
we focus on comparing the results to Kemeny orders, both theoretically and
empirically. These results have been presented at the OSDA conference in
Gent during June 2007.

The chapter is organized as follows. First, in Section 7.1, the ranking
rule is formalized. We position in Section 7.2 the ranking rule in the pru-
dent axiomatic framework introduced in the previous chapters. Section 7.3
compares the ranking rule with Kemeny orders. In Section 7.4, we present
how lexicographic prudent orders can be computed. The results of some
empirical simulations can be found in Section 7.5. Finally, we point out in
Section 7.6 some future directions of research.

7.1 Definition

We have seen in Chapter 5 that prudent orders are the linear orders which
are maximal according to an underlying “min” relation. The Ranked Pairs
rule presented in Chapter 6 outputs those linear orders which are maximal
according to an underlying “discrimin” relation. Often, the min relation
and the discrimin relation are presented together with the leximin relation
(see for instance [3, 45]), since the leximin relation refines the discrimin re-
lation, which refines the min relation. That is why it seems natural to also
define in our context a ranking rule based on an underlying leximin relation.

Intuitively, lexicographic prudent orders can be described as follows.
Among all the linear orders, prudent orders are those that maximize the
weakest link. Among all the prudent orders, select the ones that maximize
the second weakest link. Among these, select the ones that maximize the
third weakest link. Repeat that procedure n(n−1)

2 times, which is the num-
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ber of non-reflexive pairs.

More formally, let u = (O1, O2, . . . , Oq) be a profile with a majority

margin matrix B. Let O be any linear order. For k ∈ {1, . . . ,
n(n−1)

2 }, we

denote B(k)(O) the kth smallest majority margin of the ordered pairs (ai, aj)
belonging to O, with ai 6= aj .

The relation �u
lex is a binary relation defined on LO as follows:

∀O, Õ ∈ LO, O �u
lex Õ ⇐⇒

∀i ≤ n(n−1)
2 , B(i)(O) = B(i)(Õ)

or ∃t ≤ n(n−1)
2 :

{
∀i < t, B(i)(O) = B(i)(Õ)

B(t)(O) > B(t)(Õ)

We denote ≻u
lex and ∼u

lex the asymmetric and symmetric parts of relation
�lex. The relation �u

lex is transitive and complete, hence a weak order. By
definition, the maximal elements of that weak order correspond to the set
of lexicographic prudent orders.

Definition 13 The set of lexicographic prudent orders of a profile u, de-
noted by LPO(u), corresponds to the maximal linear orders of �lex.

LPO(u) = {O ∈ LO : ∀Õ ∈ LO, O �u
lex Õ}.

One may show that ∀O, Õ ∈ LO, if O ≻u
disc Õ, then O ≻u

lex Õ. Consequently,
the set of lexicographic prudent orders further refines the linear orders found
by the Ranked Pairs rule. Since the Ranked Pairs rule refines the set of
prudent orders, we have:

∀u, LPO(u) ⊆ RP(u) ⊆ PO(u).

With respect to the Ranked Pairs rule presented in Chapter 6, LPO
consists in lexicographically maximizing the number of pairs blocked in
each equivalence class. Following the algorithm presented by Dubois and
Fortemps [38], lexicographic prudent orders can be obtained the following
way:

• Rank the ordered pairs according to their majority margins from the
largest to the smallest into equivalence classes E1, E2, . . . , Er.

• From i = 1 : r, do the following. Block in equivalence class Ei the
maximal number of pairs such that no cycle is created with the pairs
already blocked. In case of multiple optimal solutions, start to branch.
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PO RP LPO

dcba

dcab

dbca X
dacb

dbac

dabc X
cdba

cdab X X
bdca

bdac

cbda

bcda X

Table 7.1: The results of the prudent ranking rules PO,RP and LPO.

Among all the linear orders obtained that way, a final screening deter-
mines those which are leximin-optimal. In practice this approach means
that for each equivalence class, an optimization problem has to be solved.
In Section 7.4, we present another approach of computing lexicographic pru-
dent orders.

Let us now illustrate LPO on an example with four alternatives. Let
u = (abcd, bcda, cdab, dabc, dcba). In Section 4.1, we have already computed
the set of prudent orders for this profile. In fact, this set consists of the lin-
ear extensions of the relation R>1 = {(d, a)}. There are in total 12 prudent
orders which are listed in the first column of Table 7.1. An ”X” in the sec-
ond column of that table indicates that the prudent order is also discrimin
optimal.

There are 4 out of the 12 prudent orders which are discrimin optimal.
These 4 linear orders are analyzed in Table 7.2. The majority margins of
the ordered pairs belonging to these linear orders can be found in the second
column of that table. For instance, for linear order dbca, we have that

B(d, b) = 1 B(d, c) = −1 B(d, a) = 3 B(b, c) = 1 B(b, a) = −1 B(c, a) = 1.

In the third column of that table, these majority margins are ordered from
the smallest to the largest. It is then easy to see that:

cdab ≻u
lex dbca ∼u

lex dabc ∼u
lex bcda.

Consequently, cdab is the unique lexicographic prudent order of profile u.
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dbca (1,–1,3,1,–1,1) (–1,–1,1,1,1,3)
dabc (3,1,–1,1,–1,1) (–1,–1,1,1,1,3)
cdab (1,–1,1,3,1,1) (–1,1,1,1,1,3)
bcda (1,–1,–1,1,1,3) (–1,–1,1,1,1,3)

Table 7.2: Analysis of the four discrimin optimal linear orders.

7.2 Positioning in the prudent axiomatic frame-

work

The lexicographic prudent order preference function satisfies most of the
axioms used in the characterizations presented in the previous chapters.
More particularly, the reader can check that LPO verifies:

• Condorcet Extension

• Weak Condorcet Extension

• E-Invariance

• Weak E-Invariance

• Homogeneity for Odd Profiles

• Weak Homogeneity for Odd Profiles

• Weak Majority Profile Consistency

• Monotone Consistency

• Truchon Condorcet

We refer to Chapters 5 and 6 for a precise formulation of these axioms. It
is worth highlighting that LPO verifies Weak Majority Profile Consistency.
This axiom seems to be a crucial ingredient since it is verified by all the
prudent ranking rules and by no non-prudent ranking we have so far inves-
tigated.

The only two axioms of our axiomatic framework which are not satisfied
by the lexicographic prudent order preference function are:

• Majority Profile Consistency (which is used in the characterization of
the prudent order preference function).

• Weak Qualified Majority Profile Consistency (which is used in the
characterization of the Ranked Pairs rule).
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This suggests that Majority Profile Consistency seems to be particular
about the prudent order preference function, whereas Weak Qualified Major-
ity Profile Consistency seems to be particular about the Ranked Pairs rule.
Both these axioms are stronger versions of Weak Majority Profile Consis-
tency, which is verified by LPO. Although we have not been able so far to
come up with a characterization for LPO, the key for success lies probably
in “adapting” the Weak Majority Profile Consistency axiom in some smart
way.

We first present a counter example of Majority Profile Consistency.
We assume that u is a profile with the following majority margins. According
to Proposition 1 (see Section 2.1), we know that a profile of linear orders
corresponding to these majority margins must exist.

a b c d

a 0 0 2 –2
b 0 0 2 –2
c –2 –2 0 2
d 2 2 –2 0

It appears that LPO(u) = {dabc, dbac}. We are now going to construct
a majority profile uM relative to u. For instance, one can consider the
following linear orders:

uM = (abcd, dcab, acdb, bdac, bcad, dabc, cdab, bacd, dabc, cbda, dbac, cadb).

In fact, we decided to break the indifference between a and b by adding the
two linear orders abcd and dcab. Furthermore, the preference strength of
any two alternatives whose majority margins are strictly positive in u has
been improved. The profile u+uM has then the following majority margins:

a b c d

a 0 2 4 –4
b –2 0 4 –4
c –4 –4 0 4
d 4 4 –4 0

We now have that LPO(u) = {dabc}. Although the profile u+uM contains
a majority cycle (there is a strict majority of a over b, of b over c, of c over
d and of d over a), we do not have that LPO(u + uM ) = LPO(u). Conse-
quently, axiom Majority Profile Consistency is violated.

We now present a counter example of Weak Qualified Majority Pro-
file Consistency. We assume that u is a profile with the following majority
margins. According to Proposition 1 (see Section 2.1), we know that a profile
of linear orders corresponding to these majority margins must exist.
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a b c d

a 0 2 2 –2
b –2 0 2 –2
c –2 –2 0 2
d 2 2 –2 0

We can compute that LPO(u) = {dabc}. We are now going to construct a
qualified majority profile uMλ

at level λ = 2. In fact, we are only improving
the strength of c over d by considering the following two linear orders:

uMλ
= (cdab, bacd)

This is in line with the definition of a qualified majority profile which allows
to improve the strength of some (and not necessarily all) ordered pairs whose
majority margins lie exactly on the chosen λ frontier. The profile u + uMλ

has then the following majority margins:

a b c d

a 0 2 2 –2
b –2 0 2 –2
c –2 –2 0 4
d 2 2 –4 0

After computation, we can conclude that LPO(u+uMλ
) = {cdab, acdb, abcd}.

Consequently it is not true that LPO(u + uMλ
) ⊆ LPO(u), which shows

that the lexicographic prudent order preference function can violate the
Weak Qualified Majority Profile Consistency axiom.

7.3 Comparison with Kemeny orders

In this section, we analyze to what extend lexicographic prudent orders are
linked with Kemeny orders. We refer to Section 2.2.2 for the definition of
Kemeny’s rule. In fact, both the lexicographic preference function and Ke-
meny’s rule are intuitively rather similar ranking rules. Let K(u) denote the
set of Kemeny orders of profile u.

It is interesting to note that for profiles with 3 alternatives, both rules
give identical results.

Proposition 13 If n = 3, then LPO(u) = K(u).

Proof: Let us consider the strict majority relation M . In case M

is acyclic, we can show that the set of Kemeny orders and lexicographic
prudent orders all consist of all the linear extensions of M . Hence,

K(u) = LPO(u) = {O ∈ LO : M ⊆ O}.
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Let us now suppose that M contains a cycle. Let us suppose that the
alternatives are labeled such that B12 > 0, B23 > 0 and B31 > 0. Let us
denote by p1 the pair with the largest, p2 with the second largest and p3

with the third largest majority margin. We denote this as follows: B(p1) ≥
B(p2) ≥ B(p3) > 0. We denote by −p1,−p2,−p3 the reversed pairs. Every
linear order can be seen as a triplet of pairs. Let us also recall that Saari
and Merlin [96] mention that for profiles with three alternatives, no ties
and with a cycle in the majority relation, the Kemeny order is obtained by
reversing the pair in the cycle with the smallest majority margin. If this
can be done in more than one way, we consider all the possibilities. We can
thus easily compute the Kemeny orders and lexicographic prudent orders in
the following four possible cases:

B(p1) > B(p2) > B(p3) B(p1) > B(p2) = B(p3)

K(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)

LPO(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)

B(p1) = B(p2) > B(p3) B(p1) = B(p2) = B(p3)

K(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)
(−p1, p2, p3)

LPO(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)
(−p1, p2, p3)

It is easy to see that in all situations we have that both rules give identical
results.

�

The next proposition highlights a very close relationship between these
two ranking rules, even for profiles with more than 3 alternatives.

Proposition 14 ∀u, either LPO(u) ∩ K(u) = ∅ or LPO(u) ⊆ K(u).

Proof: Let u be a profile. If LPO(u) ∩ K(u) = ∅, then the proof is
complete. If LPO(u)∩K(u) 6= ∅, then let OLK ∈ LPO(u)∩K(u). We need
to show that for any lexicographic prudent order O of profile u, O is also a
Kemeny order. Since OLK ∈ K(u), we know that

∀Õ ∈ LO,
∑

(ai,aj)∈OLK

Bij ≥
∑

(ai,aj)∈Õ

Bij .

Since O ∈ LPO(u) and OLK ∈ LPO(u), we also know that O ∼u
lex OLK . It

follows from this that ∀i ∈ {1, . . . ,
n(n−1)

2 }, B(i)(O) = B(i)(OLK). Hence we
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have that
∑

(ai,aj)∈OLK

Bij =
∑

(ai,aj)∈O

Bij .

We can thus conclude that:

∀Õ ∈ LO,
∑

(ai,aj)∈O

Bij ≥
∑

(ai,aj)∈Õ

Bij .

Hence O is also a Kemeny order. This completes the proof. �

Proposition 14 tells us that for any profile, either all lexicographic pru-
dent orders are as well Kemeny orders or none of them is a Kemeny order. In
the first situation, the number of lexicographic prudent orders must be less
or equal to the number of Kemeny orders. To illustrate this, let us consider
the following majority margins of a profile with 6 alternatives {a, b, c, d, e, f}.

a b c d e f

a 0 4 –4 0 –4 –4
b 4 0 2 –4 –4 0
c 4 –2 0 –4 –2 4
d 0 4 4 0 –2 4
e 4 4 2 2 0 –4
f 4 0 –4 –4 4 0

For such a profile, the unique lexicographic prudent order is dcfeab,
whereas there are three Kemeny orders: dcfeab, edcfab and edbcfa. For
an illustration of the situation where the intersection is empty, we refer the
reader to Section 8.4, where we will show that the unique lexicographic pru-
dent order can be “contradictory” to the unique Kemeny order.

7.4 Computation

In this section we build a 0-1 linear program which models the lexico-
graphic prudent order preference function. This program is then solved
using CPLEX 8, a popular optimization solver. More particularly, we adapt
the formulation used to find Kemeny orders (see for instance Hudry [50]) to
cope with lexicographic prudent orders. Let us recall that the problem of
finding Kemeny orders is NP-complete (see Bartholdi & al. [5]).

A linear order can be modeled by means of n2 binary variables xij

(1 ≤ i ≤ n, 1 ≤ j ≤ n). More particularly, the variable xij takes value
1 if the ordered pair (ai, aj) belongs to the linear order, and 0 if the or-
dered pair does not belong to the linear order. We denote x a n times n
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dimensional matrix where the entry of row i and column j corresponds to xij .

In order to define the coefficients of the objective function of the opti-
mization problem, we will need to do the following. First, let us order the
pairs (ai, aj) with respect to their majority margins Bij , with 1 ≤ i ≤ n, 1 ≤
j ≤ n, i 6= j, from the largest to the smallest. As in Section 6.2, we denote
E1 the set of ordered pairs for which the majority margins are the largest,
E2 the set of ordered pairs for which the majority margins are the second
largest and so on. Let us suppose that there are in total r such equivalence
classes on the ordered pairs E1, E2, . . . , Er. We define “new” majority mar-
gins as follows:
∀ai, aj ∈ A, ai 6= aj , if (ai, aj) ∈ Et, then

Bnew
ij = (

n(n − 1)

2
+ 1)(r−t).

We then solve the following 0-1 linear program:

min

n∑

i=1

n∑

j=1

Bnew
ij xij (7.1)

s.t. ∀i, j, k xij + xjk ≤ xik + 1 (7.2)

∀i, j xij + xji = 1 (7.3)

∀i xii = 0 (7.4)

∀i, j xij ∈ {0, 1} (7.5)

In this formulation, constraints (7.2) guarantee the transitivity and con-
straints (7.3) the completeness of the linear order. Constraints (7.4) model
the fact that the reflexive pairs do not matter. Let us note that an optimal
solution of this linear program can be seen as a Kemeny order of a fictitious
profile with a majority margin matrix Bnew. We now show that an optimal
solution of this program corresponds in fact to a lexicographic prudent order
of profile u.

The constraints (7.2), (7.3), (7.4) and (7.5) define a set of feasible so-
lutions denoted by T . Let x∗ ∈ T be an optimal solution of this program.
Burkard and Rendl [22] showed that (see Theorem 1, page 304):
∀x ∈ T,

∑

(i,j):x∗
ij=1

Bnew
ij ≥

∑

(i,j):xij=1

Bnew
ij

⇐⇒ ∀x ∈ T,

(Bij : x∗
ij = 1) ≥lex (Bij : xij = 1),
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where (Bij : x∗
ij = 1) is a vector containing all the values Bij such that

x∗
ij = 1, (Bij : xij = 1) is a vector containing all the values Bij such that

xij = 1 and ≥lex is the usual leximin relation defined between these two
vectors. In fact, if x∗ models the linear order O∗ and x models the linear
order O, then this is equivalent to stating that

∀O ∈ LO, O∗ �u
lex O.

Consequently, the optimal solutions of the linear program correspond to the
lexicographic prudent orders of profile u.

Furthermore, we can easily compute the relation R>β of profile u by
applying Kohler’s algorithm on the majority margin matrix B (see Section
4.1). Since every prudent order, and consequently every lexicographic pru-
dent order, must contain this relation, we can directly fix some variables.
That is why we add the following constraints to simplify our program:

∀i, j : (ai, aj) ∈ R>β , xij = 1 (7.6)

In case we are looking for all the lexicographic prudent orders, we use the
following strategy. First, we solve the linear program and find one optimal
linear order denoted by O. The following constraint depending on O will
then be added to the program:

∑

(ai,aj)∈O

i6=j

xij ≤
n(n − 1)

2
− 1 (7.7)

Let O∗ be an optimal solution of the program with this additional constraint.
If O ∼u

lex O∗, then this means that O∗ is also a lexicographic prudent order.
Constraint (7.7) relative to O∗ will be added and the search for other lexi-
cographic prudent order continues by resolving the linear program with this
new constraint. If O ≻u

lex O∗, then O∗ is not a lexicographic prudent order.
In fact, this means that all the lexicographic prudent order have been found.

There are two major difficulties with solving this linear program. On
the one hand, the value of the objective function (7.1) can get very large.
This may lead to numerical problems. On the other hand, working with
discrete instead of continuous variables further complicates the search for
the optimum. Although other algorithmic solutions should be studied in the
future, this approach seems however adequate for our purposes.

7.5 Empirical results

In this section, we present and discuss the results obtained in some empirical
simulations. In Section 7.5.1, the random profile generation on which the
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n q observed frequency Gehrlein’s frequency

5 5 0.78 0.8
5 7 0.77 0.78
5 15 0.79 0.76
7 5 0.69 0.7
7 7 0.69 0.68
7 15 0.67 0.66
15 5 0.5 0.46
15 7 0.47 0.46
15 15 0.42 0.42

Table 7.3: Comparing the observed frequencies with Gehrlein’s frequencies
of a Condorcet winner under the IC assumption.

simulations are based is introduced. In Section 7.5.2, we analyze the num-
ber of lexicographic prudent orders. In Section 7.5.3, we check how often a
lexicographic prudent order is at the same time a Kemeny order.

7.5.1 Random profile generation

In this section, we focus on the random generation of profiles. Often, in em-
pirical research in social choice theory, the impartial culture (IC) is assumed.
This means that each linear order has equal probability to be chosen. Pro-
files with different values for the number of alternatives and the number of
linear orders are generated that way and can subsequently be analyzed with
respect to some particular property.

First, we verify that our random profile generator behaves sufficiently
close to the impartial culture assumption. To test this indirectly, we gener-
ate profiles with 5, 7 and 15 alternatives and with 5, 7 and 15 linear orders.
For each profile, we check if a Condorcet winner exists. Let us recall that
a Condorcet winner is an alternative ai ∈ A such that ∀aj ∈ A, aj 6= ai, we
have (ai, aj) ∈ M . The observed frequency of the existence of a Condorcet
winner can then be compared to the known frequency of a Condorcet winner
under the IC assumption computed by Gehrlein [47]. For each combination
of number of alternatives and number of linear orders, 1000 repetitions where
performed. The results can be found in Table 7.3.

Working under the IC assumption is a defensible choice. However, the IC
assumption is not fully satisfactory when we want to empirically study Con-
dorcet ranking consistent (CRC) rules (see Section 2.3), such as for instance
Kemeny’s rule or the lexicographic prudent order preference function. It
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still happens relatively frequently for small profiles generated under the IC
assumption that the majority relation contains few cycles (see already the
relatively high frequencies of the existence of a Condorcet winner shown in
Table 7.3). Consequently a lexicographic prudent order will be very close to
this majority relation. For such profiles, the result is not very specific of the
lexicographic prudent order preference function, since it is almost equal to
that majority relation. This can be uninspiring, especially since we want to
compare the result obtained by this rule to Kemeny’s rule. Since a Kemeny
order will also be very close to this majority relation, both the Kemeny and
lexicographic prudent order will trivially be very close or even coincide.

In order to generate profiles which are more difficult to tackle for CRC
rules, we chose to develop another profile generation model which makes
profiles more cyclic. More particularly, we will add to a profile generated
under the IC assumption a list of linear orders obtained by rotation. For
instance, if a1a2 . . . an is the first linear order added, then a2a3 . . . ana1 will
be the second linear order added, and so. In all, n linear orders can be
constructed with this rotation procedure.

We now formalize our “IC spiced up” model:

• Generate q linear orders of n alternatives under the IC assumption.

• Generate one linear order uniformly.

• Compute the corresponding n − 1 linear orders by rotation.

• Consider every linear order obtained by rotation twice.

A profile constructed this way consists of q + 2n linear orders. It is
strongly inspired by Saari’s profile decomposition (see for instance [96]),
and more particularly by the so-called Condorcet portion of this profile de-
composition.

We chose to work with profiles with a number of alternatives n equal to
5, 6, 7, 10, 15 and 20 and with a number of linear orders q equal to 5, 6,
7, 10, 15 and 20. For each combination (n, q), we generated 1000 profiles
under the IC assumption with n alternatives and q linear orders and 1000
profiles under the IC spiced up assumption presented in the previous section
with n alternatives and q + 2n linear orders.

7.5.2 Number of lexicographic prudent orders

Given a profile, we enumerate all the corresponding lexicographic prudent
orders. For practical reasons, we have decided to stop the enumeration after
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q = 5 q = 6 q = 7 q = 10 q = 15 q = 20 All q

n = 5 1 3 1 3 1 2 1
n = 6 1 6 1 3 1 2 2
n = 7 1 9 1 5 1 3 2
n = 10 2 ≥11 2 8 1 4 3
n = 15 2 ≥11 2 8 1 3 3
n = 20 2 ≥ 11 2 1 1 2 2

Table 7.4: The median of the number of lexicographic prudent orders for
profiles generated under the IC assumption.

q = 5 q = 6 q = 7 q = 10 q = 15 q = 20 All q

n = 5 1 2 1 1 1 1 1
n = 6 1 3 1 2 1 2 1
n = 7 1 2 1 2 1 2 1
n = 10 1 2 1 2 1 2 1
n = 15 1 2 1 2 1 2 1
n = 20 1 2 1 3 3 4 2

Table 7.5: The median of the number of lexicographic prudent orders for
profiles generated under the IC spiced up assumption.

at most 11 lexicographic prudent orders have been found.

The results are summarized, using the median, in Table 7.4 (for profiles
generated under the IC assumption) and in Table 7.5 (for profiles gener-
ated under the IC spiced up assumption). The column “All q” contains
the median of the number of lexicographic prudent orders over 6000 profiles
generated for a given value n and for the 6 different values for q.

The following observations can be made:

• If the number of alternatives n increases, the number of lexicographic
prudent orders usually increases as well. This seems natural since in-
creasing the number of alternatives dramatically increases the size of
the set of linear orders. Let us however note the drop from 8 (in the
case n = 15, q = 10) to 1 (in the case n = 20, q = 10) for profiles
generated under the IC assumption.

• The impact of increasing the number of linear orders q in the profile
remains unclear in both tables. However, one may notice that the
number of lexicographic prudent orders seems to be higher for even
profiles than for odd profiles. This is most striking for profiles with 6
linear orders generated under the IC assumption. In fact, even pro-
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q = 5 q = 6 q = 7 q = 10 q = 15 q = 20 All q

n = 5 100.00% 100.00% 100.00% 100.00% 99.90% 99.90% 99.97%
n = 6 100.00% 100.00% 99.90% 100.00% 100.00% 99.90% 99.97%
n = 7 100.00% 100.00% 99.70% 100.00% 99.50% 99.30% 99.75%
n = 10 100.00% 100.00% 98.40% 99.90% 96.40% 97.50% 98.70%
n = 15 97.20% 100.00% 92.30% 97.70% 86.60% 87.50% 93.55%
n = 20 94.60% 99.60% 81.60% 91.40% 71.00% 70.60% 84.80%

Table 7.6: The frequency of a profile u generated under the IC assumption
with LPO(u) ⊆ K(u).

files can lead to pairs with majority margins equal to zero, which may
increase the number of equivalent (according to the leximin relation)
optimal solutions.

• There is some evidence that the number of lexicographic prudent or-
ders seems to be higher for profiles generated under the IC assumption
than for profiles generated under the IC spiced up assumption. Our
intuitive interpretation of this observation is that, since profiles gen-
erated under the IC spiced up assumption are more “cyclic”, hence
more complicated, the ranking rule can more easily discriminate and
determine a “best” linear order.

In both tables, the number of lexicographic prudent orders remains rea-
sonably low. Our aim with this empirical study is to show that the lexico-
graphic prudent order preference function is useful in situations where the
goal is to construct only a few solution rankings. This is in sharp contrast to
the prudent order preference function, which may output a very large num-
ber of solution rankings (see the result of Debord’s simulations presented in
the appendix).

7.5.3 Intersection with Kemeny orders

Following the result stated in Proposition 14, we study in this section the
frequency of the situation where LPO(u) ⊆ K(u) for a given combination
(n, q), both under the IC assumption and under the IC spiced up assump-
tion. The results can be found in Tables 7.6 and 7.7.

The following observations can be made:

• If the number of alternatives increases, the frequency decreases. This
can be explained by the fact that increasing the number of alternatives
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q = 5 q = 6 q = 7 q = 10 q = 15 q = 20 All q

n = 5 99.50% 99.40% 98.40% 98.80% 99.10% 98.90% 99.02%
n = 6 96.10% 97.50% 95.50% 98.10% 96.80% 97.20% 96.87%
n = 7 88.60% 91.90% 89.40% 95.10% 93.30% 94.10% 92.07%
n = 10 71.30% 76.30% 71.10% 77.40% 74.50% 81.10% 75.28%
n = 15 33.80% 38.60% 34.30% 36.60% 34.70% 42.20% 36.70%
n = 20 12.10% 14.10% 10.20% 13.50% 10.60% 15.00% 12.58%

Table 7.7: The frequency of a profile u generated under the IC spiced up
assumption with LPO(u) ⊆ K(u).

dramatically increases the number of linear orders, which may increase
the likelihood that two ranking rules will lead to two different results.

• The frequencies for profiles generated under the IC assumption are con-
siderably higher than the frequencies generated under the IC spiced
up assumption. This is due to the fact that under the IC spiced up
assumption we deliberately increase the cyclic part of a profile. As
formalized by Saari [96] in his profile decomposition, it is precisely
this part which is responsible for the differences between CRC rules.

• For profiles up to 10 alternatives generated under the IC assumption,
the frequency is astonishingly close to 100 %. For profiles with 20 al-
ternatives generated under the IC spiced up assumption, the frequency
drops down to almost 10 %.

These simulations confirm our idea that the lexicographic prudent order
preference function and Kemeny’s rule are in general rather similar ranking
rules.

7.6 Future directions of research

In this chapter we have introduced lexicographic prudent orders as a natural
refinement of the linear orders obtained by the Ranked Pairs rule. We will
come back to lexicographic prudent orders in Chapter 10 where we will ar-
gue that the use of weights is more transparent in the lexicographic prudent
order preference function than in Kemeny’s rule. Apart from this issue of
weights, there are many interesting open questions about these lexicographic
prudent orders which still deserve further investigation:

• The lexicographic prudent order preference function satisfies most of
the axioms used in the characterizations presented in Chapter 5 and
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Chapter 6. That is why, it should be realistic to characterize lexico-
graphic prudent orders in this same axiomatic framework. This would
be a significant step forward in building an axiomatic theory of pru-
dent ranking rules.

• Kemeny’s rule is one of the most widely studied and understood pair-
wise based ranking rules. That is why, it is important that the re-
lationship between lexicographic prudent orders and the well known
Kemeny orders should be further clarified. We believe that the lexi-
cographic prudent order preference function can become a very tough
competitor for Kemeny’s rule.

• So far we computed lexicographic prudent orders by solving a partic-
ular linear optimization problem. This formulation is not ideal from
a numerical point of view, since it has to handle very large numbers.
More research should be spent on developing and testing more efficient
algorithmic solutions. The complexity of the ranking rule could also
be investigated.

146



Chapter 8

Paradoxical results compared

to non-prudent ranking rules

The aim of this chapter is to compare prudent orders to the solutions ob-
tained by four well-known ranking rules: Borda’s rule, Copeland’s rule,
Slater’s rule and Kemeny’s rule. In fact, we show that the prudence prin-
ciple is not compatible, at least not for all profiles, with these non-prudent
ranking rules. The content of this chapter has been presented at the 8th
International Conference of the Society for Social Choice and Welfare in
Istanbul during July 2006 and will be published in [66]. I would like to
thank Denis Bouyssou and Christian Klamler for their help and comments
concerning this chapter.

The chapter is organized as follows. Section 8.1 contains some references
to similar type of studies. In Section 8.2, we present some preliminaries
which will be useful in the proofs later on. Section 8.3 is devoted to the
comparison with Borda’s and Copeland’s rule, whereas Section 8.4 contains
the comparisons with Slater’s and Kemeny’s rule. All the results are sum-
marized in Section 8.5

8.1 Literature review

Comparing ranking rules can be done in a variety of ways. Often, two rules
are compared using a set of properties that are each verified either for both
rules or for one of the two rules. For instance, Lansdowne [69] compared the
properties of prudent orders to other ranking rules, including Borda’s rule.
In this chapter however, we concentrate on the existence of profiles which
give “contradictory” results. Although the ranking rules all seem, a priori,
reasonable, their results may be rather different.
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Rules nmin Type of result Reference

Dodgson and Kemeny 4 W/P [90]

Copeland and Dodgson 4 W/P [57]

Kemeny and Slater 4 W/L [58]

Kemeny and Dodgson 3 W/L [59]
Slater and Dodgson 3 W/L

Borda and Dodgson 4 W. Opp. [60]

Borda and Maximin 4 W. Opp. [61]
Copeland and Maximin 4 W. Opp.

Table 8.1: Overview of some papers dealing with paradoxical results between
two ranking rules.

This approach has already been adopted to compare various pairs of
ranking rules. We say that the weak order O1 is weakly opposite to the
weak order O2 if:
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n,

(ai, aj) ∈ O1 ⇐⇒ (aj , ai) ∈ O2

and there exists at least one pair (ak, al) such that

(ak, al) 6∈ O1 ⇐⇒ (al, ak) 6∈ O2.

In Table 8.1, we list several of such results valid for profiles with a min-
imum number of nmin alternatives. ”W. Opp.” means that the ranking
obtained with one rule can be weakly opposite to the ranking obtained with
the second rule. ”W/L” stands for the fact that there exists a profile for
which the unique winner of one rule is the unique loser of the other rule.
More generally, ”W/P” means that there exists a profile for which the win-
ner of one rule can be found at any position in the ranking of the other rule.

This chapter can be seen as a contribution to this type of comparisons
between ranking rules. Although paradoxes related to prudent orders have
been studied by Durand [39], the particular issue of comparing contradictory
results has not been addressed yet.

8.2 Preliminaries

In this section, we make some preliminary remarks concerning the ranking
rules which we will be addressing in this chapter. These remarks are useful
in order to simplify the proofs.
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We are mainly concerned with profiles such that the prudent order is
unique, i.e. profiles u such that |PO(u)| = 1. That is why, the following
lemma dealing with a unique prudent order will be of help.

Lemma 5 Let u be a profile of linear orders on n alternatives and let Bij

(1 ≤ i ≤ n, 1 ≤ j ≤ n) denote the majority margin between alternative ai

and aj. If

min{B12, B23, . . . , Bn−1n} > max
i,j:
i>j

Bij ,

then a1a2a3 . . . an is the unique prudent order.

Proof: Let us define a relation T as follows:

T = {(a1, a2), (a2, a3), . . . , (an−1, an)}.

Let γ be defined as follows:

γ = min{B12, B23, . . . , Bn−1n} − 2.

Then T ⊆ R>γ . Furthermore, R>γ is acyclic, since it contains only pairs
(ai, aj) with i < j. In fact all the pairs (ai, aj) with i > j have majority
margins which are less or equal to γ:

γ = min{B12, B23, . . . , Bn−1n} − 2 ≥ max
i,j:
i>j

Bij .

This implies that β ≤ γ. Hence R>γ ⊆ R>β . If O is a prudent order, then
we must have that R>β ⊆ O ⇒ R>γ ⊆ O ⇒ T ⊆ O ⇒ t(T ) ⊆ O, where t(.)
denotes the transitive closure of a relation. Since the transitive closure of T

is the linear order a1a2a3 . . . an, this must be the unique prudent order.
�

We define a prudent order winner (resp. loser) as an alternative which
is ranked first (resp. last) in at least one linear order in PO(u).

According to definition 8 (see Section 2.2.1), a prudent ranking rule is a
preference function such that ∀u, f(u) ⊆ PO(u). We have presented several
prudent ranking rules in the last chapters. However, if the prudent order is
unique, every prudent ranking rule must coincide and must exhibit exactly
this unique prudent order. That is why we can replace in Theorems 9, 10,
11 and in Proposition 15 “... the unique prudent order ...” by “... the unique
linear order found by any prudent ranking rule ...” and in Proposition 16,
17 and in Theorem 11 “... the unique prudent order winner ...” by “...the
unique winner of any prudent ranking rule...”. With this respect, our results
can be applied to any prudent ranking rule.
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In Section 2.2.2, we have presented Borda’s rule, Copeland’s rule, Slater’s
rule and Kemeny’s rule. We will denote �B and �C the weak order obtained
with Borda’s rule or with Copeland’s rule. A Borda or Copeland winner
(resp. loser) is an alternative ranked first (resp. last) in the weak order
�B or in the weak order �C . Furthermore, we denote S(u) the set of Slater
orders and K(u) the set of Kemeny orders of a profile u. A Slater or Kemeny
winner (resp. loser) is an alternative ranked first (resp. last) in at least one
linear order of S(u) or K(u).

In order to simplify the proofs, we rely in this chapter on different from
the original but still equivalent definitions of Borda’s and Kemeny’s rule.
Let us now present these two definitions.

First, we do not use the original Borda scores but rather compute a score
based on the majority margins (see for instance Young [108]). This score,
denoted by bi, is defined for an alternative ai as follows:
∀i : 1 ≤ i ≤ n,

bi =
n∑

k=1

Bik.

The Borda ranking is then the weak order �B defined as follows:
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n,

(ai, aj) ∈�B ⇐⇒ bi ≥ bj .

Second, we use a definition proposed by Saari and Merlin [96] to define
a Kemeny order. Let us evaluate a linear order O as follows:

g(O) =
∑

(ai,aj)∈O:Bij<0

|Bij |.

Then OK is a linear order found by Kemeny’s rule if and only if g(OK) is
minimal.

When computing Slater orders, we often rely on the following lemma
dealing with two three-cycles which have an ordered pair in common.

Lemma 6 Let M be the strict majority relation of a profile u with at least
four alternatives x, y, z and w. If

(z, x) ∈ M (y, z) ∈ M (w, x) ∈ M (y, w) ∈ M,

then ∀O ∈ LO with (x, y) ∈ O, we have that δ(O, M) ≥ 2.
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Proof: If (x, y) ∈ O, then:

((x, z) ∈ O or (z, y) ∈ O) and ((x, w) ∈ O or (w, y) ∈ O).

Hence O must differ from M by at least two ordered pairs.

In the same line, the following lemma deals with the function g(.) used
to determine Kemeny orders.

Lemma 7 Let us consider a profile with at least four alternatives x, y, z and
w. Let r and s be two positive integers. Let us suppose that the majority
margins of the profile are such that:

By,z ∈ {r, s} Bz,x ∈ {r, s} By,w ∈ {r, s} Bw,x ∈ {r, s}.

Then ∀O ∈ LO : (x, y) ∈ O, we have that

g(O) ≥ min{s + r, 2s, 2r}.

The proof of this lemma directly follows from the result recalled in
Lemma 6. In fact, we know that any linear order O such that (x, y) ∈ O

will differ from the majority relation by at least two ordered pairs. Since
the majority margin of these two ordered pairs is either r or s, g(O) must
at least be greater or equal to the minimum of 2s, 2r and r + s.

Finally, we will often refer to Proposition 1 introduced in Section 2.1.

8.3 Prudent order vs. Borda’s rule and Copeland’s

rule

We say that a linear order O1 is the opposite of the linear order O2 if:
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n,

(ai, aj) ∈ O1 ⇐⇒ (aj , ai) ∈ O2.

We are interested to construct profiles where the unique prudent order is
the opposite of the ranking obtained with another ranking rule. To illustrate
this idea, let us consider a profile with 46 linear orders and 4 alternatives
which can be found in Table 8.2. The number in front of each linear order
stands for the number of times that this particular linear order appears in
the profile. The majority margins for this profile are depicted in Table 8.3.

Since the scores used to compute the Borda ranking for this example are
–4 for a, –2 for b, 2 for c and 4 for d, the Borda ranking will be the linear
order dcba. On the other hand,

min{Ba,b, Bb,c, Bc,d}
︸ ︷︷ ︸

=8

> max{Bb,a, Bc,a, Bc,b, Bd,a, Bd,b, Bd,c}
︸ ︷︷ ︸

=6

.
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8 abcd 3 cabd

4 dcab 6 dbca

9 bcda 3 dacb

6 adbc 3 acdb

4 cdba

Table 8.2: The profile.

B a b c d

a . 8 –6 –6
b –8 . 12 –6
c 6 –12 . 8
d 6 6 –8 .

Table 8.3: The majority margins.

According to Lemma 5, the unique prudent order of this example is abcd.
Consequently, we have found an example with four alternatives where the
ranking found by Borda’s rule and the prudent order are opposite.

In this section, we prove that, also when n is larger than four, there exists
a profile such that the unique prudent order of this profile is the opposite of
Borda’s ranking. The same result holds for Copeland’s rule for profiles with
at least five alternatives.

Theorem 9 If n ≥ 5, then there exists a profile of linear orders for which
the unique prudent order is the opposite of the ranking obtained with Copeland’s
rule. If n ≥ 4, then there exists a profile of linear orders for which the unique
prudent order is the opposite of the ranking obtained with Borda’s rule.

Proof: The case for n = 4 for Borda’s rule has been proved in the
introductory example. Let us suppose from now on that n ≥ 5. Let r > 0
and s > 0 be even numbers such that 2s > r > s. It is of course possible
to chose r and s such that these conditions are verified. Let the majority
margins be defined as follows:
∀i, j : 1 ≤ i ≤ n, i < j ≤ n,

Bij =







r if j = i + 1
0 if i = 2 and j = n − 1
−s otherwise
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According to Proposition 1, there exists a profile u of linear orders such that
B is the majority margin matrix of this profile.

Let us compute the Copeland scores for this profile.

c1 = 2
c2 = 3

2 < i < n − 1: ci = 2(i − 1) = 2i − 2
cn−1 = 2(n − 3) + 1 = 2n − 5

cn = 2(n − 2) = 2n − 4

It is clear that c1 < c2 and cn−1 < cn. Furthermore c2 = 3 < c3 = 4 and
cn−2 = 2n − 6 < cn−1 = 2n − 5. Finally, ci < ci+1 (2 < i < n − 1) since
i > 0. We can thus conclude that the Copeland ranking is the linear order
anan−1 . . . a2a1.

Let us now consider the scores used to compute the Borda ranking for
this same profile .

b1 = r − (n − 2)s
b2 = (4 − n)s

2 < i < n − 1: bi = (2i − 1 − n)s
bn−1 = (n − 4)s

bn = (n − 2)s − r

b1 < b2 and bn−1 < bn since we supposed that r < 2s. Furthermore, b2 < b3

and bn−2 < bn−1 since s > 0. Finally, bi < bi+1 (2 < i < n − 1) since
s > 0. We can thus conclude that the Borda ranking is the linear order
anan−1 . . . a2a1.

Using Lemma 5, we know that a1a2 . . . an is the unique prudent order.
This prudent order is the opposite of the ranking found by Copeland’s rule
or by Borda’s rule. �

Let us comment on this theorem. A similar result has already been
obtained by Klamler [61] who showed that the maximin ranking can be op-
posite to the ranking found by Borda’s rule and by Copeland’s rule. Let us
recall that the maximin ranking rule outputs the weak order �MM defined
as follows:
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n,

(ai, aj) ∈�MM ⇐⇒ min
k 6=i

Bik ≥ min
k 6=j

Bjk.

Although Kohler’s rule and the maximin rule are two different ranking rules,
Kohler’s rule is closely related to the maximin rule in the sense that it simply
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applies the maximin choice function sequentially on the set of alternatives
that have not been ranked yet (see Section 2.2.1). However, our result is
stronger than Klamler’s result since we consider linear orders that are op-
posite and not weak orders that are weakly opposite.

Moreover, let us also refer to the profile decomposition of Saari and Mer-
lin (see Theorem 5 in [96]), which gives a further insight into discrepancies
between the ranking obtained with Borda’s rule and any ranking rule based
on pairwise comparisons, such as for instance a prudent ranking rule.

Finally, one can show that this result of opposite linear orders cannot
be obtained for profiles with n ≤ 4 alternatives (for Copeland’s rule) and
n ≤ 3 (for Borda’s rule).

Proposition 15 If n ≤ 4, then the Copeland ranking cannot be the opposite
of the unique prudent order.

Proof: Let us suppose that a1a2a3a4 is the unique prudent order of
a profile u. Then the majority margins of this profile u must be such that
B12 > 0, B23 > 0 and B34 > 0. Consequently B21 < 0, B32 < 0 and B43 < 0.
This implies that ∀i ∈ {1, 2, 3} ci ≥ 2 and that c4 ≤ 4. Let us suppose by
contradiction that the linear order a4a3a2a1 is the Copeland ranking. Then
we must have that c1 < c2 < c3 < c4. Since c1 ≥ 2, this implies that c2 ≥ 3,
which implies that c3 ≥ 4, which implies that c4 ≥ 5. This is not possible,
since c4 ≤ 4. This proves that the Copeland ranking cannot be the opposite
of the unique prudent order for profiles with 4 alternatives. Similarly, let
us suppose that a1a2a3 is the unique prudent order of a profile u. Then the
majority margins of this profile u must be such that B12 > 0 and B23 > 0.
Consequently B21 < 0 and B32 < 0. This implies that c1 ≥ 2, c2 ≥ 2 and
c3 ≤ 2. Let us suppose by contradiction that the linear order a3a2a1 is the
Copeland ranking. Then we must have that c1 < c2 < c3. Since c1 ≥ 2, this
implies that c2 ≥ 3, which implies that c3 ≥ 4. This is not possible, since
c3 ≤ 2. This proves that the Copeland ranking cannot be the opposite of
the unique prudent order for profiles with 3 alternatives.

�

Proposition 16 For n = 4, the unique prudent order winner can be the
unique Copeland loser.

Proof: Let us consider the following majority margins, where s and r

are positive even integers such that r > s:
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B a1 a2 a3 a4

a1 . r –s –s
a2 –r . r 0
a3 s –r . r
a4 s 0 –r .

According to Proposition 1, there exists a profile u of linear orders such that
B is the majority margin matrix of this profile. Using Lemma 5 we know
that a1a2a3a4 is the unique prudent order. Since c1 = 2, c2 = 3, c3 = 4 and
c4 = 3, a1 is the unique Copeland loser. Consequently, we have constructed
a profile where the unique prudent order winner is the unique Copeland
loser. �

Proposition 17 If n = 3, then the unique prudent order winner cannot be
a Borda loser.

Proof: Let us suppose that a1a2a3 is the unique prudent order of a
profile u. Then the majority margins of this profile u must be such that:

B12 > max{B21, B32, B31} and B23 > max{B21, B32, B31}.

The first inequality implies that B12 > B31 and the second inequality implies
that B23 > B31. Because of the constant-sum property, this last inequality
implies that B32 < B13. We now have that:

b1 = B12 + B13 > B31 + B32 = b3.

Consequently, a1, the alternative ranked first in the unique prudent order,
cannot be ranked last in the Borda ranking. �

8.4 Prudent order vs. Slater’s rule and Kemeny’s

rule

Before focusing on possible inconsistencies between the prudent order pref-
erence function and Slater’s rule and Kemeny’s rule, let us note that it is
not possible for any order found by Slater’s rule or by Kemeny’s rule to be
opposite to the unique prudent order. More generally, it is not possible for
any ranking rule that verifies a certain Condorcet property to be opposite
to the unique prudent order.

Following Young and Levenglick’s terminology [109], we say that a rank-
ing rule f , which associates to a profile of linear orders u a set of linear
orders f(u), verifies the Young-Condorcet property if the following holds: if
Bij > 0, then aj cannot directly precede ai in any linear order O ∈ f(u),
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i.e. it is not possible that (aj , ai) ∈ O with no ak such that (aj , ak) ∈ O and
(ak, ai) ∈ O. In particular, both Kemeny’s rule and Slater’s rule verify this
Young-Condorcet property. Indeed, if aj directly precedes ai and Bij > 0,
permuting the two alternatives aj and ai would yield a ranking that is closer
to the initial profile both in the Kemeny and Slater sense.

In order to prove the impossibility of a ranking obtained by a rule that
verifies the Young-Condorcet property to be the exact opposite of the unique
prudent order, we need the following lemma.

Lemma 8 If OP is the unique prudent order, then ∀(ai, aj) ∈ OP with ai

directly precedes aj, we must have Bij > 0.

Proof: Let us suppose that a1a2 . . . an is the unique prudent order.
Then this means that t(R>β) must be equal to this linear order, where t(.)
still denotes the transitive closure operator. Consequently, the chain

(a1, a2), (a2, a3), . . . , (an−1, an)

must be contained in R>β . Let us suppose that there exists a pair (ai, ai+1)
(1 ≤ i ≤ n − 1) belonging to this chain with Bi,i+1 ≤ 0. Consequently
Bi+1i ≥ 0 since Bii+1 + Bi+1i = 0. Since in such a case β < Bii+1 ≤ Bi+1i,
both pairs (ai, ai+1) and (ai+1, ai) belong to R>β , which is impossible since
R>β is an acyclic relation. That is why we must have that Bii+1 > 0. �

Theorem 10 There does not exist a profile of linear orders with a unique
prudent order such that this unique prudent order is the opposite of the result
of a ranking rule that verifies the Young-Condorcet property.

Proof: Let us suppose that a1a2 . . . an is the unique prudent order.
Following Lemma 8:

∀i ∈ {1, . . . , n − 1} Bii+1 > 0.

Let us now suppose that anan−1 . . . a2a1 is the result obtained with a rank-
ing rule that verifies the Young-Condorcet property. This would however
contradict the Young-Condorcet property since, for instance, Bn−1n > 0
and an−1 precedes an directly. �

Nevertheless, Arrow and Raynaud [2] (page 96) noticed already that the
order found by Kemeny’s rule is not necessarily a prudent order. In fact,
the prudent order preference function and Slater’s and Kemeny’s rule are
not connected in the following sense:

Theorem 11 Let n ≥ 4. Then there exists a profile of linear orders such
that:
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• the unique prudent order winner can be found at any position in the
corresponding unique order found by Slater’s rule and in the corre-
sponding unique order found by Kemeny’s rule.

• the unique Slater winner and the unique Kemeny winner can be found
at any position in the corresponding unique prudent order.

Proof: Let r and s be two even integers with 0 < s < r < 2s.

First we show that if a1 is the unique prudent order winner then we can
always construct a profile u of linear orders such that a1 can be found at
any position in the corresponding unique order found by Slater’s rule and
by Kemeny’s rule. Let us denote by ρ the rank of the alternative a1 in the
order found by Slater’s rule and by Kemeny’s rule. We will consider four
cases, according to the value of ρ.

• ρ = 1
Let us consider a profile with one unique linear order O. Trivially,
PO(u) = S(u) = K(u) = {O}, and so the unique prudent order winner
is also the unique Slater winner and the unique Kemeny winner.

• ρ = 2
Let us consider the following majority margins:
∀i, j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n:

Bij =

{
−s if i = 1, j = 3 or i = 2, j = 4
r otherwise.

According to Proposition 1, there exists a profile u of linear orders
such that B is the majority margin matrix of this profile. In fact,
the majority margins are such that ∀i ∈ {1, . . . , n − 1}, Bii+1 = r,
and maxi,j:i>j Bij = s. Since s < r, according to Lemma 5, a1a2 . . . an

is the unique prudent order and a1 is the unique prudent order winner.

We show that OS = a3a1a4a2a5 . . . an is the unique order found by
Slater’s rule. Let M denote the strict majority relation of u. Then
δ(M, OS) = 1 : (a3, a2) ∈ OS and (a3, a2) 6∈ M . Any linear order O

where (a3, a2) ∈ O and O 6= OS is thus at least at distance 2 from
M . Since there are two three-cycles (see Figure 8.1), using Lemma 6,
the same holds for any linear order O where (a2, a3) ∈ O. Similarly,
we show that OK = a3a1a4a2a5 . . . an is the unique order found by
Kemeny’s rule: g(OK) = r. Any linear order O where (a3, a2) ∈ O

and O 6= OK has a larger value g(O) since r or s will be added. Using
Lemma 7 (see Figure 8.1), any linear order O such that (a2, a3) ∈ O is
such that g(O) ≥ min{2s, 2r, r + s}. Since we supposed that r < 2s,
we must have that g(OK) = r < min{2s, 2r, r + s} ≤ g(O).
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Figure 8.1: Two three-cycles in the case ρ = 2.

• ρ = 3
Let us consider the following majority margins:
∀i, j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n,

Bij =

{
−s if i = 1, j = 3 or i = 1, j = 4 or i = 2, j = 4
r otherwise.

According to Proposition 1, there exists a profile u of linear orders such
that B is the majority margin matrix of this profile. Similarly to case
ρ = 2, we can show that a1a2 . . . an is the unique prudent order and
consequently a1 is the unique prudent order winner. Using the same
strategy as in case ρ = 2, we can show that a3a4a1a2a5a6 . . . an−1an is
the unique order found by Slater’s rule and the unique order found by
Kemeny’s rule.

• ρ ≥ 4
Let us consider the following majority margins:
∀i, j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n,

Bij =

{
−s if i = 1 and j ∈ {3...ρ}
r otherwise.

According to Proposition 1, there exists a profile u of linear orders
such that B is the majority margin matrix of this profile. Similarly to
case ρ = 2, we can show that a1a2 . . . an is the unique prudent order
and consequently a1 is the unique prudent order winner. Using the
same strategy as in case ρ = 2, we can show that a2a3a4 . . . a1 . . . an

is the unique order found by Slater’s rule and the unique order found
by Kemeny’s rule.

We now show that then we can construct a profile u of linear orders such
that a1a2a3 . . . an is the unique prudent order and at (t ∈ {1, . . . , n}) is the
unique Slater winner or the unique Kemeny winner. This will prove that
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the unique Slater or Kemeny winner can be found at any position in the
corresponding unique prudent order. We will consider four cases, according
to the value of t.

• t = 1
Let us consider a profile with one unique linear order O. Trivially,
PO(u) = S(u) = K(u) = {O}, and so the unique Slater and Kemeny
winner a1 is ranked first in the unique prudent order.

• t = 2
Let us consider the majority margins treated previously in this proof
under case ρ ≥ 4. We arbitrarily fix ρ = 4. We have shown that
a1a2 . . . an is the unique prudent order and a2a3a4a1 . . . an is the unique
order found by Slater’s rule and by Kemeny’s rule. Hence a2 is the
unique Slater winner and the unique Kemeny winner.

• t = 3
Let us consider the majority margins treated previously in this proof
under case ρ = 3. We have shown that a1a2 . . . an is the unique pru-
dent order and a3a4a1a2 . . . an is the unique order found by Slaters’
rule and by Kemeny’s rule. Hence a3 is the unique Slater winner and
the unique Kemeny winner.

• t ≥ 4
Let us consider the following majority margins:
∀i, j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n,

Bij =

{
−s if i ∈ {1, ..., t − 2} and j = t

r otherwise.

According to Proposition 1, there exists a profile u of linear orders such
that B is the majority margin matrix of this profile. Similarly to case
ρ = 2, we can show that a1a2 . . . an is the unique prudent order and
consequently a1 is the unique prudent order winner. Using the same
strategy as in case ρ = 2, we can show that ata1a2a3 . . . at−1at+1 . . . an

is the unique order found by Slater’s rule and the unique order found
by Kemeny’s rule.

A particular case of this result is that, for n ≥ 4, there exists a profile
such that the unique prudent order winner is the unique Slater loser or the
unique Kemeny loser. Similarly, there exists a profile such that the unique
Kemeny winner or the unique Slater winner is the unique prudent order loser.

159



Let us now analyze in further details the more general situation where
the prudent order is not necessarily unique, which means that the set of
prudent orders can possibly contain more than one linear order. First of
all, for profiles defined on 3 alternatives, the sets PO(u),S(u) and K(u) are
closely linked.

Proposition 18 For every profile u defined on 3 alternatives, we have:

S(u) ∩ PO(u) 6= ∅

and

K(u) ⊆ PO(u).

Proof: Let us consider the strict majority relation M . In case M

is acyclic, we can show that the set of Kemeny orders, Slater orders and
prudent orders all consist of all the linear extensions of M . Hence K(u) =
S(u) = PO(u) = {O ∈ LO : M ⊆ O}.

Let us now suppose that M contains a cycle. Let us suppose that the
alternatives are labelled such that B12 > 0, B23 > 0 and B31 > 0. Then
S(u) = {a1a2a3, a2a3a1, a3a1a2}. Let us denote by p1 the pair with the
largest, p2 with the second largest and p3 with the third largest majority
margin. We denote this as follows: B(p1) ≥ B(p2) ≥ B(p3) > 0. We
denote by −p1,−p2,−p3 the reversed pairs. Every linear order can be seen
as a triplet of pairs. For instance, the set of Slater orders can always be
rewritten as follows: S(u) = {(−p1, p2, p3), (p1,−p2, p3), (p1, p2,−p3)}. Let
us also recall that [96] mention that for profiles with three alternatives, no
ties and with a cycle in the majority relation, the Kemeny order is obtained
by reversing the pair in the cycle with the smallest majority margin. If this
can be done in more than one way, we consider all the possibilities. We can
thus easily compute the Kemeny orders and prudent orders in the following
four possible cases:

B(p1) > B(p2) > B(p3) B(p1) > B(p2) = B(p3)

K(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)

PO(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)

(p1,−p2,−p3)

B(p1) = B(p2) > B(p3) B(p1) = B(p2) = B(p3)

K(u) (p1, p2,−p3) (p1, p2,−p3)
(p1,−p2, p3)
(−p1, p2, p3)

PO(u) (p1, p2,−p3) every lin. order with 3 alt.
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The reader can check that the set relations stated in the proposition are
all verified in this table.

�

Let us highlight that for profiles with three alternatives, the set of pru-
dent order winners and Kemeny winners is always the same. The situation
with respect to Slater’s rule is more ambiguous. One may notice that for
profiles with preference margins such that B12 > B23 = B31 > 0, a1a3a2 is a
prudent order and a2a3a1 is an order found using Slater’s rule. Hence, if the
prudent order is not unique, then there can be profiles where one order found
by Slater’s rule is the opposite of one prudent order. A similar situation
arises for profiles with preference margins such that B12 = B23 = B31 > 0.
On the one hand, every linear order is a prudent order. Consequently a3a2a1

is a prudent order. On the other hand, there are three linear orders found
by Slater’s rule and by Kemeny’s rule, among which the linear order a1a2a3.

We show in the next theorem that we can find profiles with at least 4
alternatives where the unique order found by Slater’s rule or the unique
order found by Kemeny’s rule is the exact opposite of one prudent order.

Theorem 12 Let n ≥ 4. Then there exists a profile of linear orders such
that the unique order found by Slater’s rule or by Kemeny’s rule is the
opposite of a prudent order.

Proof: Let r and s are two positive integers such that s < r < 2s. It
is always possible to choose r and s such that these conditions are satisfied.
Let us consider the following majority margins:
∀i, j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n,

Bij =

{
−r if i = 1 and j = n

s otherwise.

According to Proposition 1, there exists a profile u of linear orders such
that B is the majority margin matrix of this profile. For such a profile,
β = s, since R>s = {(an, a1)} is an acyclic relation, whereas ∀λ < s, R>λ

contains a cycle since {(a1, a2), (a2, an), (an, a1)} ⊆ R>λ. The set of prudent
orders thus consists of all the linear extensions of the relation {(an, a1)}. In
particular anan−1 . . . a2a1 is a prudent order. Using the same strategy as
in the proof of Theorem 11 (case ρ = 2), we can show that a1a2a3 . . . an is
the unique order found by Slater’s rule and the unique order found by Ke-
meny’s rule. We thus have found a profile u where the unique order found
by Slater’s or Kemeny’s rule is the exact opposite of one prudent order.

�
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n = 3 n = 4 n ≥ 5

Borda NOT(W/L) opp. opp.

Copeland NOT(opp.) W/L opp.
NOT(opp.)

Slater S(u) ∩ PO(u) 6= ∅ W/L W/L
one opp. one opp.
NOT(opp.) NOT(opp.)

Kemeny K(u) ⊆ PO(u) W/L W/L
one opp. one opp.
NOT(opp.) NOT(opp.)

Table 8.4: Summary of paradoxical results.

It is not possible to state a corresponding theorem where the roles of Ke-
meny and Slater’s rule have been switched with the prudent order preference
function. In fact, we know already from Theorem 10 that a similar paradox
cannot occur for profiles where the prudent order is unique but Slater’s rule
and Kemeny’s rule lead to more than one linear order.

8.5 Summary

We now summarize the results that have been presented in this chapter in
Table 8.5, where we use the following notation:

• W/L: the unique prudent order winner can be the unique loser of the
other ranking rule.

• opp.: the unique prudent order can be the opposite of the unique order
of the other ranking rule.

• one opp.: one prudent order can be the opposite of the unique order
of the other ranking rule.

If paradox “opp.” is possible, then paradox “W/L” and paradox “one opp.”
are also possible. We use the notation NOT(*) to state that the given
paradox cannot occur.
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Part III

Prudent ranking rules:

applications
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Chapter 9

The group ranking problem

In this chapter, we consider the problem of supporting a group in agreeing
on a common compromise ranking. More particularly, we suggest to use
the concept of robustness in order to manage the diversity of prudent or-
ders. The content of this chapter has been presented at the Meeting of the
EURO Working Group on Multicriteria Decision Aid held in Porto, Por-
tugal, during March 2006 and has been published in [67]. I would like to
thank Luis Dias for his help and comments concerning this part of the thesis.

The chapter is organized as follows. Motivations for the group ranking
problem are given in Section 9.1. The methodological framework of our ap-
proach is motivated more in depth in Section 9.2. In Section 9.3, we compute
robust conclusions on prudent orders. The strength of these robust conclu-
sions is analyzed in Section 9.4, using simulations. In Section 9.5, we briefly
address the issue of mutual preference probabilities and rank frequencies.
We discuss an adaptation step in Section 9.6. The concepts introduced are
illustrated on an example in Section 9.7.

9.1 Introduction to the group ranking problem

A group decision happens when a group of people have a common problem
and they want to work together to reach a solution for this problem. In gen-
eral, the members of this group are experts or decision makers belonging to
the same organization (e.g. the same company). Despite the fact that they
all have a common goal, finding a solution for their organization or their
company, each individual has his own perception about the way to tackle
the problem. Inevitably, conflicting preferences will emerge.

Bui [21] defines such a co-operative group decision-making situation as
a process in which (i) there are two or more persons, each characterized
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by his or her own perceptions, attitudes, and personalities, (ii), who have
recognized the existence of a common problem, and (iii), who attempt to
use a system to reach a collective decision. In order to build this collective
decision, Jelassi [51] notes that a crucial part of a group decision problem
is the reduction of different individual preferences into a single collective
preference.

Although involving multiple decision makers increases the complexity of
a decision problem, it can contribute to enrich the decision process. For
instance, the combined knowledge and experience of several people usually
outranks the knowledge and experience of a unique decision maker. The in-
teraction between the group members can also help to discover new points of
view and arguments which a unique decision maker may not have thought of.

The group ranking problem can be approached in a variety of ways,
ranging from a simple ranking solely based on, let’s say, cost to complex
multicriteria group ranking techniques. De Keyser & al. [56] differentiate
between different types of multicriteria multidecision maker models. We
follow here their taxonomy by presenting three distinct architectures:

1. In the first architecture, the group needs to agree on a multicriteria
decision aid (MCDA) method, on the data (i.e. the evaluations of
the alternatives on the criteria) and on the parameters of the selected
MCDA method (weights, thresholds,...). The multicriteria problem is
simply solved as in the single decision maker case by considering the
group as one entity.

Dias and Cl̀ımaco [36] also refer to this scheme as “input aggregation”.
One drawback of this approach is that some group members may feel
that there opinion is badly represented by the model. They may also
be skeptical with respect to the MCDA method selected by the group.

2. In the second architecture, the group has also to agree on a MCDA
method but each group member now defines his own multicriteria
model by individually fixing the data and the parameters of the se-
lected MCDA method. The MCDA method is applied separately for
each group member up to a given stage where the results obtained (e.g.
the net flows, a valued outranking relation ...) are aggregated into a
common multicriteria group model which is subsequentially solved un-
der the selected MCDA method. The fact that all the group members
use the same method is thus crucial, since the combination of the in-
dividual models into a collective group model is specifically based on
the particular MCDA method. In fact, it is very hard to combine in a
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meaningful way preferential information obtained with distinct MCDA
methods.

Dias and Cl̀ımaco [36] also refer to this scheme as “output aggrega-
tion”. This way, many multicriteria methods have been extended to
handle group situations. This approach is for instance advocated in
[74] for a group extension of the PROMETHEE method or in [72] for
a group extension of the ELECTRE III method.

Although this second architecture values the individual opinions more
than the first architecture, some group members may still not feel at
ease by being confined to a particular MCDA method. Furthermore,
the way the individual models are aggregated into a group model can
sometimes be intransparent.

3. In the third architecture, no assumptions are made with respect to
a particular MCDA method. In fact, every group member is free to
use the MCDA method of his choice with the data of his choice. The
only thing that matters is the final result, i.e. the ranking of the al-
ternatives, that each group member will eventually obtain. In fact, a
group member can use no MCDA method at all and simply randomly
rank the alternatives, if he wishes to do so. In a second stage of the
decision process, the individual rankings have then to be aggregated
into a common group ranking.

We are going to adopt the last view, i.e. we suppose that each group
member explicitly and honestly states his individual ranking. To support
the group to reach a decision, we then suggest to use an ordinal ranking
rule.

• An ordinal ranking rule, by opposition to simple informal group dis-
cussion, can avoid that in the end, it is not always the opinion of the
hierarchical superior or simply of the one with the strongest personality
that prevails. In fact, by relying on a formal aggregation mechanism,
the preferences of each group member are somehow taken into account.

• An ordinal ranking rule can also reduce the time spent until a final
decision has been taken, which in the end can also help reducing costs
(see for instance the study of [82]).
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The solving of a group ranking problem can take place in the framework
of a Group Decision Support System (GDSS). As defined by Desanctis and
Gallupe [97], a GDSS combines communication, computing and decision
support technologies to facilitate formulation and solution of unstructured
problems by a group of people working together. Hence, the whole system
can be found at the intersection of computer supports (hardware), decision
aid techniques and group-collaborative tools (software).

As soon as the group working in a GDSS environment has

1. clearly defined the set of alternatives,

2. agreed on the fact that a ranking of these alternatives should be ob-
tained,

3. agreed on the fact that every one has to submit a complete ranking,
despite the cognitive effort that this may put on some group members,

the use of an ordinal ranking rule can be considered. When working in such
a computerized environment, apart from the choice of a particular rule, the
following considerations, which have been discussed by Gavish and Gerdes
[46], can influence the result:

• It is often possible that group members submit their preferences in an
anonymous way. In some situations, this can be useful since it reduces
people influencing each other and encourage them stating more hon-
estly their preferences.

• Although traditionally the group meets in a specially designed confer-
ence room, meetings can nowadays be distributed both in time and in
space. This means that the group members do not necessarily meet
physically, but interact with other despite being in different locations
or working at different moments.

• A group member’s ranking could be annotated with some comments.
This may help clarify his position or can be useful when interpreting
results.

• Intermediate results can be made available to all or to only some group
members at various moments during the decision process. By reacting
to such an insight, the group ranking may be pushed into a particular
direction.
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Throughout this chapter, we assume that the input data provided by the
group members consists of linear orders. This can be criticized, especially
from an operational point of view. However, in the theoretical research in
Part II of this thesis, we always assumed that the profile consists of linear
orders. Moreover, the approach presented in the next sections can also be
seen as a first step toward designing a similar decision aid tool which would
allow for more complex preference structures.

9.2 A robust framework for using prudent orders

The basic assumption in this work is that the group agrees on the fact that
the solution should be a prudent order. Although prudent orders are, in
general, not unique, they depict however a whole range of possible, poten-
tially interesting, compromise solutions. In case a group actually accepts
to use such a preference function, we feel that there is a need to actually
exploit the existence of multiple compromise rankings and to support the
group in selecting the “right” compromise ranking.

More particularly, we suggest that the possible diversity of prudent or-
ders should be handled by computing so-called robust conclusions, which,
in the end, will support the group to select one prudent order. Following
the terminology of Roy [92], a robust conclusion is an assertion valid for all
the prudent orders.

Initially, the concept of robustness has been presented as a way to handle
decision problems with imprecise or uncertain parameters (see Bisdorff [10]
and Dias and Cl̀ımaco [34, 35, 36]). In our setting however, the robustness
issue arises conceptually because of the non-uniqueness of a compromise
ranking, which can be seen as a consequence of the difficulty and ambiguity
of aggregating ordinal data.

More generally, Dias [33] distinguishes between three roles of robustness
in decision aid. A first approach sees robustness as an ex-ante concern, where
a robustness criterion, such as for instance the maximin criterion, has to be
optimized, or where a robustness condition has to be satisfied (see Kaläı and
Lamboray [52] for two examples of such conditions). In a second approach,
robustness is seen as an ex-post concern, where the various solutions that
can be obtained from the various versions of the decision aid problem are
analyzed, but not aggregated anymore. This is in line with the ideas of
robust conclusions of Bernard Roy. Finally, in a third approach, robustness
is used as a tool to progress in a decision aid process, for instance by helping
to refine some parameters of the decision model. This work can be seen as

169



a contribution that combines the last two roles and uses robustness both as
an ex-post exploitation procedure and as a refinement tool in a decision aid
process.

Concerning the ex-post exploitation, we compute the intersection of the
prudent orders, the best and worst rank that an alternative can occupy in all
the prudent orders and the maximal (or minimal) rank differences between
any two alternatives.

One potential benefit of this approach relies in the fact that the infor-
mation contained in the set of prudent orders is captured while reducing the
cognitive load. The solutions are explicitly delimited, which can help the
group to better understand the possibilities of comprise.

Furthermore, the fact that different prudent orders can be contradictory
is not perceived as a problem anymore. The quality of the robust conclusions
obtained are inversely proportional to the degree of contradictions contained
in the initial profile. Incomparabilities in the intersection, different best and
worst ranks and large maximal rank differences point out problematic al-
ternatives or parts of the compromise ranking. Hence, the group has to
concentrate on these parts in order to reach a final compromise ranking.

Following the ideas of Dias [33], the robustness concept is also used as a
tool to progressively refine a decision model. In fact, by agreeing on some
parts and by adapting accordingly their individual rankings, the group grad-
ually moves toward a compromise ranking. The following four steps can thus
be considered:

1. Data collection step
First every group member proposes his individual ranking. This rank-
ing can be obtained, for instance, by a multicriteria method of his
choice.

2. Aggregation step
The rankings provided by the group define a set of prudent orders.
If requested, within this set of rankings, an automatic procedure can
select the “best” one, according to some predefined criterion, such
as for instance a lexicographic prudent order. This ranking is then
proposed to the group. Either the group accepts this solution, and the
procedure stops, or the group proceeds to the next step.

3. Analysis and discussion step
The set of prudent orders can be described and analyzed by various ro-
bust conclusions. Such information will help the group to understand
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Figure 9.1: Computing robust conclusions.

the current possible compromise solutions.

4. Adaptation step
Through the information learned from the previous step, each decision
maker has the possibility to adapt his individual ranking in order to
converge toward one compromise ranking. The group then proceeds
back to step 1.

It is important to note that during the whole process, no solution is im-
posed to the group. The robust conclusions that are presented to the group
can be considered as a guidance.

9.3 Computing robust conclusions

Instead of explicitly considering all the prudent orders belonging to PO(u),
we are going to describe them by their intersection (Section 9.3.1), by the
possible ranks that an alternative can occupy (Section 9.3.2) and by the
maximal rank differences between two alternatives (Section 9.3.3). Although
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rank ranges and rank differences can be easily understood by a group, their
cardinal character should be handled with care, especially in view of the
ordinal character of the prudent order model.

Since the number of prudent orders can increase dramatically as the
number of alternatives increases and as the contradictions in the profile in-
creases, complete enumeration soon becomes infeasible from a computational
point of view. Fortunately, for all the conclusions that we will consider in
this section, no complete enumeration of all the prudent orders is necessary.
This means that the robust conclusions can be directly deduced from the
profile (see Figure 9.1). In fact, the computations are solely based on the
equivalence between prudent orders and linear extensions.

9.3.1 Intersection

A natural robust conclusion is to state that an alternative ai is preferred to
an alternative aj in all the prudent orders of PO(u):

∀O ∈ PO(u), (ai, aj) ∈ O.

This is equivalent to stating that (ai, aj) belongs to the intersection of
all the prudent orders. We know from Proposition 3 (see Section 4.1) that
the set PO(u) is equivalent to all the linear extensions of the partial order
t(R>β). Since the intersection of all the linear extensions of a partial order
is the partial order itself (see Dushnik and Miller [40]), we have :

⋂

O∈PO(u)

O = t(R>β) = P

Hence, we do not need to explicitly enumerate all the prudent orders of
PO(u) in order to know their intersection. Instead it suffices to compute
one transitive closure. The transitive closure can be computed by using for
example Roy and Warschall’s algorithm [107].

Moreover, the P relation can be interpreted as the minimal compromise
that can be reached with a given profile. The richness or strength of this
relation will be further analyzed in Section 9.4. In case, the group members
are willing to achieve a stronger compromise, they should bring closer their
individual rankings with this P relation. This idea will be further formalized
in Section 9.6.

9.3.2 Rank range

We now concentrate on the possible ranks that an alternative can occupy
in the compromise ranking. By convention, if an alternative is ranked first
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in a linear order O, it has rank 1, if it is ranked second, it has rank 2 and
so on. We denote by ρO(ai) the rank of alternative ai in the linear order
O. Let ρ+

i and ρ−i be the best and the worst rank a given alternative ai oc-
cupies: ρ+

i = minO∈PO(u) ρO(ai) and ρ−i = maxO∈PO(u) ρO(ai). Computing
maximal and minimal ranks that an alternative occupies in the solutions of
a preference function has already been suggested by Guénoche [48] in the
context of determining median orders of difficult valued tournaments. How-
ever his motivation was rather algorithmic.

Since the set PO(u) consists of all the linear extensions of the partial
order t(R>β), one can show (see for instance Bruggemann [19]) that the best
rank and the worst rank can be computed as follows:
∀ai ∈ A,

ρ+
i = |N+

i | + 1 where N+
i = {aj ∈ A : (aj , ai) ∈ t(R>β)} (9.1)

ρ−i = n − |N−
i | where N−

i = {aj ∈ A : (ai, aj) ∈ t(R>β)}. (9.2)

Once ρ+
i and ρ−i are computed, a robust conclusion would be to state

that the rank of alternative ai is higher or equal than ρ+
i and smaller or

equal than ρ−i . Furthermore, for each r such that ρ+
i ≤ r ≤ ρ−i , we know

that there exists at least one prudent order where alternative ai has rank
r. Hence, apart from extreme rank values, the whole rank range is covered.
The difference ρ−i − ρ+

i , which is called the variability of ai by Bruggemann
[19], gives an indication about the degree of contradictions or uncertainties
concerning the alternative ai. In fact, the bigger this difference is, the more
unclear it is assigning a rank in the compromise ranking to ai.

9.3.3 Maximal rank differences

We are interested in the largest possible rank difference between alternative
aj and alternative ai. This difference quantifies the possible advantage of
an alternative ai over an alternative aj . Formally, we compute the following
quantity.
∀ai, aj ∈ A,

∆max
ij = max

O∈PO(u)
(ρO(aj) − ρO(ai)).

More precisely, if ∆max
ij ≥ 0, then this means that, at best, alternative

ai is ranked ∆max
ij positions ahead of alternative aj . If ∆max

ij < 0, then this
means that ai will always be at least ∆max

ij ranks below aj .

These quantities can be computed as follows:
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Proposition 19 ∀ai, aj ∈ A,

∆max
ij =

{
n − 1 − (|N−

j | + |N+
i |) if (aj , ai) 6∈ t(R>β)

|N−
i ∩ N+

j | + 1 if (aj , ai) ∈ t(R>β)

Proof:

• (aj , ai) 6∈ t(R>β)

Since n − 1 − (|N−
j | + |N+

i |) = ρ−j − ρ+
i , we know that

∆max
ij ≤ n − 1 − (|N−

j | + |N+
i |).

We prove that there exists one linear order O ∈ PO(u) (i.e. one linear
extension of t(R>β)) such that this upper bound can be reached.

A linear extension of a partial order can be constructed sequentially as
follows: remove any maximal element from the partial order and rank
it below the already ranked alternatives in the linear extension; stop
the procedure when all the alternatives have been ranked. In our case,
this procedure can be applied to the partial order t(R>β). Let N+

i

and N−
j be defined as in (9.1) and (9.2) and let N̄ij = A\ (N+

i ∪N−
j ).

First, we rank all the alternatives belonging to N+
i , then we rank

all the alternatives from N̄ij (ranking ai first and ranking aj last)
and finally we rank all the alternatives belonging to N−

j . One can
check that at each step it is possible to find a maximal element in
the relevant subset of alternatives. Let us also note that N+

i ∩ N−
j =

∅, because otherwise there would exist an alternative at such that
(at, ai) ∈ t(R>β) and (aj , at) ∈ t(R>β), which contradicts the fact
that (aj , ai) 6∈ t(R>β). Consequently, the rank of ai in this order is
|N+

i |+1, the rank of aj is n−|N−
j | and so the rank difference between

ai and aj is n − 1 − (|N−
j | + |N+

i |).

• (aj , ai) ∈ t(R>β)

Since (aj , ai) ∈ t(R>β), this implies that aj is always above ai in
all the prudent orders of PO(u). In order to maximize the quantity
ρO(aj)− ρO(ai), we want ai to be as close as possible to aj . Since the
alternatives of N−

i ∩N+
j have to be anyway between aj and ai, we must

have that ∆max
ij ≤ |N−

i ∩N+
j |+1. We prove that there exists one linear

order O ∈ PO(u) (i.e. one linear extension of t(R>β)) such that this
upper bound can be reached by using the procedure described in the
previous paragraph. First, we rank the alternatives belonging to N+

j \

N−
i , then we rank aj , then we rank the alternatives belonging to N−

i ∩
N+

j , then we rank ai and finally we rank the remaining alternatives.
�
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9.4 Strength of the conclusions obtained

We have seen that all the robust conclusions introduced in the preceding
section depend on the relation P = t(R>β). On the one hand, this relation
should only be as rich as the ordinal data contained in the profile allows it
to be since the strength of this relation should reflect the level of difficulty
to construct a compromise ranking. On the other hand, we do not want
this relation to be too empty, otherwise the decision aid resulting from the
robust conclusions is too weak. In fact, the poorer this relation, the more
undetermined the robust conclusions will be.

In order to evaluate the strength of this P relation, we adopt an empirical
simulation approach. We chose to evaluate the solution of a profile u as
follows:

µ(u) =
|t(R>β)|

n(n−1)
n

.

An ordered pair that belongs to t(R>β) actually belongs to all the pru-
dent orders. For such a pair (ai, aj), the aggregation problem has been
solved, since all the prudent orders agree on the preference direction be-
tween ai and aj . The size of the relation t(R>β) is thus equal to the number
of pairs for which the aggregation problem has been solved. We divide this
by n(n−1)

n
, which is the number of pairs of a linear order with n alternatives.

If, on the one hand t(R>β) is a linear order, then this is the unique pru-
dent order. In that case, the aggregation problem has been unambiguously
solved and µ(u) = 1. If, on the other hand, t(R>β) is empty, then every
linear order is a prudent order. In that case, no decision aid (with respect
to aggregating) has been provided and µ(u) = 0. Hence µ is an indicator
between 0 and 1: the closer it is to 0, the poorer the result is, and the closer
it is to 1 the richer the result is.

Let us note that µ(u) measures more accurately the determinateness of
the prudent order model than for instance |PO(u)|, the number of prudent
orders of profile u. In fact, the number of prudent orders does not tell us
anything about how these prudent orders are correlated.

As in Chapter 7, we chose to perform tests with n (the number of alter-
natives) being equal to 5, 6, 7, 10, 15 and 20 and q (the number of linear
orders or group members) being equal to 5, 6, 7, 10, 15 and 20. Such values
for q and n seem reasonable in the context of the group ranking problem.
For each combination n and q, 10000 simulations have been performed under
the Impartial Culture. The results can be found in Table 9.1.

The following observations can be made:
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q = 5 q = 6 q = 7 q = 10 q = 15 q = 20

n = 5 0.72 0.73 0.75 0.77 0.82 0.81
n = 6 0.62 0.73 0.66 0.74 0.76 0.78
n = 7 0.54 0.71 0.60 0.70 0.72 0.74
n = 10 0.43 0.61 0.54 0.56 0.64 0.64
n = 15 0.44 0.39 0.56 0.44 0.51 0.56
n = 20 0.46 0.27 0.56 0.44 0.42 0.48

Table 9.1: The average µ-value for profiles with n alternatives and q linear
orders.

• For q fixed, in general, if the number of alternatives n goes up, then
there is a tendency that µ goes down. However, for q = 5, the quality
goes down until profiles with 10 alternatives before increasing again
thereafter.

• For n fixed, if the number of linear orders q goes up, then there is a
tendency that µ usually goes up as well.

• Following the last two remarks, the best quality is obtained for the
case n = 5 and q = 20 (average µ = 0.81), whereas the worst quality
is obtained with n = 20 and q = 6 (average µ = 0.27).

• 27 out of the 36 possible combinations of cases have an average quality
larger than 0.5. This means that, in average, such profiles give a result
that is at least as rich as the information contained in “half” a linear
order.

9.5 Mutual preference probabilities and rank fre-

quencies

A set of linear extensions can be described with mutual preference probabili-
ties or with rank frequencies. Such computations could also be considered in
our framework if one wishes to enrich the robust information obtained so far.

Instead of simply knowing that ai is not preferred to aj in all the pru-
dent orders, a richer information consists in actually knowing in how many
prudent orders ai is nevertheless preferred to aj . Formally, the mutual pref-
erence probability πij between ai and aj is defined as follows:

∀ai, aj ∈ A, πij =
|{O ∈ PO(u) : (ai, aj) ∈ O}|

|PO(u)|
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In a similar way, the rank frequency fir indicates how often an alternative
ai actually occupies a given rank r.

∀ai ∈ A,∀r ∈ {1, . . . , n}, fir =
|{O ∈ PO(u) : ρO(ai) = r}|

|PO(u)|

An interesting property concerning rank frequencies is that they are log-
concave (see Daykin & al [27]). This means that the rank frequencies for
“extreme” ranks (e.g. for ρ+

i and ρ−i ) are smaller than the rank frequencies
for the ranks in between ρ+

i and ρ−i . Hence we might want to tighten the
rank range by ignoring some extreme rank possibilities.

Although it looks tempting to use such statistics in order to further dis-
criminate between the prudent orders, these results should however handled
with care and their interpretation can be ambiguous.

First of all, mutual preference probabilities should not be confused with
preference intensities, which are given by the majority margin matrix B.
Usually the information contained in B is different from the information
given by the mutual preference probabilities.

Furthermore, mutual preference probabilities can create new intransitiv-
ities. For instance, it can happen that the mutual preference probability
between a1 and a2, a2 and a3, and a3 and a1 is always strictly larger than
1
2 (see Fishburn [43] for such an example). This is especially disturbing,
since the aim of prudent orders is exactly to achieve a transitive result from
a profile that can contains intransitivities.

Another problem related to these statistics concerns their practical com-
putation. Counting linear extensions of a partial order is shown by Brightwell
and Winkler [18] to be a #P-complete problem. If explicit enumeration, us-
ing for instance the algorithm of Pruesse and Ruskey [89], becomes out of
reach, other strategies have to be considered. For instance, De Loof & al
[73] proposed an approach that does not explicitly enumerate all the linear
extensions, but achieves to count linear extensions, mutual preference prob-
abilities and rank frequencies by exploiting the lattice of ideals. This is more
efficient than complete enumeration since the number of ideals is less than
the number of linear extensions. Nevertheless, the number of ideals can still
be exponential.

An alternative approach to enumeration is to consider randomized ap-
proximation algorithms. For instance, Bubley and Dyer [20] proposed a
polynomial time algorithm that approximates the number of linear exten-
sions within a given tolerance. Let us also mention Lerche and Sorensen
[71], who proposed to compute the rank frequencies by randomly generating
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linear extensions.

9.6 Adaptation step

Let us suppose that the profile u = (O1, O2, . . . , Oq) provided by the group
members have been aggregated into the set of prudent orders PO(u). We
now assume that a unique final compromise ranking has not been reached so
far. The robust information introduced in the previous section should help
the group to understand the current possibilities of compromise. We then
consider the following two possibilities:

1. Several or all the group members agree to adapt their rankings. This
new profile leads to a new set of prudent orders. The analysis explained
in the previous section can then be reapplied to that new set of prudent
orders.

2. The group agrees on an ordered block partition of the alternatives.
For instance, the group agrees on the fact that a and b occupy the
first two positions of the compromise ranking, whereas the remaining
alternatives have at least rank 3. This is an example of a 2-block parti-
tion, but, more generally, we can consider any ordered block partition
C1, C2, . . . Cr of A. Each block can then be reexamined separately.

We analyze now the possible convergence of the set of prudent orders
in these two possibilities. Let us recall that P is the intersection of all the
prudent orders of the initial profile u. This relation P will be crucial when
analyzing the possible convergence of the compromise.

We denote unew = (Onew
1 , Onew

2 , . . . , Onew
q ) the new rankings of the group

members.

Definition 14 We say that the adaptation from Ok into Onew
k (k ∈ {1, . . . , q})

is not against the compromise if:

∀ai, aj : (ai, aj) ∈ Onew
k ∧ (ai, aj) 6∈ Ok ⇒ (ai, aj) ∈ P.

Proposition 20 If ∀k ∈ {1, . . . , q} the adaptation from Ok into Onew
k is

not against the compromise, then PO(unew) ⊆ PO(u).

Proof:

Let R>λ be the cut-relation at level λ and β be the optimal cut-value for
profile u. Let Rnew

>λ be the cut-relation at level λ and βnew be the optimal
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cut-value for profile unew. Since the transformation ∀k from Ok into Onew
k

is not against the compromise, we have that:

R>β ⊆ Rnew
>β ⊆ R>β ∪ {(ai, aj) : ∃k with (ai, aj) ∈ Onew

k and (ai, aj) 6∈ Ok}

⇒ R>β ⊆ Rnew
>β ⊆ R>β ∪ {(ai, aj) : (ai, aj) ∈ t(R>β)}

⇒ R>β ⊆ Rnew
>β ⊆ t(R>β).

Since t(R>β) is acyclic, Rnew
>β is acyclic, which implies that βnew ≤ β. Hence:

R>β ⊆ Rnew
>β ⊆ Rnew

>βnew .

This means that PO(unew) ⊆ PO(u). �

Hence if the adaptations of all the group members are in favor of the
compromise, then convergence is ensured. It is thus reasonable to encourage
the group to agree with P as much as possible. However, the group should
not be obliged to stick to this type of adaptations and the possibility should
be given to slightly shift the focus of the set of prudent orders. Hence, it
may happen that, after adapting individually, the new rankings in unew may
yield new contradictions and cycles, avoiding thus a clear convergence.

Second, let us suppose that the group applies the ordered block partition
approach. Let C1, . . . , Cr be an ordered block partition of the alternatives.

Definition 15 We say that this partition is compatible with the compromise
if:

∀ai, aj ∈ A with ai ∈ Ck and aj ∈ Cl and k < l ⇒ (aj , ai) 6∈ P.

When examining the blocks separately, the next proposition says that
the set of compromise rankings can possibly converge. Let uCi

be the profile
restricted to the alternatives belonging to a block Ci. PO(uCi

) thus cor-
responds to the prudent orders of that restricted profile. Furthermore, let
(PO(u))Ci

be the set of prudent orders of the profile u, but restricted to the
alternatives of block Ci.

Proposition 21 Let C1, C2, . . . , Cr be an ordered block partition compatible
with the compromise. Then

∀Cl (l ∈ {1, . . . , r}), PO(uCl
) ⊆ (PO(u))Cl

.

Proof: We show that a block Cl is P -compatible, according to the
definition introduced in Section 4.4. Let us suppose that ai ∈ Cl and aj ∈ Cl,
and there exists ak such that (ai, ak) ∈ Cl and (ak, aj) ∈ Cl. We are going
to show that ak must also belong to Cl. Suppose (by contradiction) that
ak belongs to higher block C<l. This contradicts the fact that the block
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partition is compatible with the compromise since (ai, ak) ∈ P , but ai is
in a lower block than ak. Suppose that ak belongs to lower block C>l.
This contradicts the fact that the block partition is compatible with the
compromise since (ak, aj) ∈ P , but aj is in a higher block than ak. Hence
ak must belong to bloc Cl. Consequently, we can apply Proposition 6 (see
Section 4.4) and conclude that PO(uCl

) ⊆ (PO(u))Cl
.

�

Apart from these theoretical convergence results, more efforts should be
spend in developing tools which support the group members during this
adaption step. For instance, a tool may be needed that supports the group
members in adapting their rankings in an efficient way or that suggest to
the group “good” block partitions.

9.7 Illustration: Ranking FNR research domains

In order to illustrate our approach, we present an example where a group of
junior researchers, mainly working in the field of information technologies
in various research institutions in Luxembourg, were asked to rank a set of
research domains. The problem took place in the framework of the Fore-
sight exercise [29] organized by the Luxembourg FNR (Fonds National de la
Recherche). The aim of this project is to identify socio-economic needs in or-
der to decide on scientific research domains for Luxembourg in the medium
and long term.

To achieve this goal, stakeholders were involved and, in particular, a one
day workshop was organized for a group of junior researchers. During that
day, 40 different research domains were put forward, amongst which 11 were
finally selected as the most pertinent by the group of participants. They are
listed in Figure 9.2. The actual workshop ended at this stage.

The participants were asked after the workshop to rank these research
domains. This ranking should represent their view on the prioritization of
the different research domains. Let us stress that this is not an application,
but only an illustration of the methodology presented in this chapter. After
having submitted their individual rankings, the researchers were not con-
fronted with the results presented in this section.

Since it can be difficult for a participant of the workshop to quantify the
difference of importance between two research domains, it is reasonable to
use an ordinal scale. Furthermore, working with rankings as input avoids to
fix a common evaluation method for the whole group.
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a1 Knowledge management technology
a2 E-Government
a3 IT security
a4 Electronic cooperation networks
a5 Mobile communications
a6 Innovative materials and techniques in construction
a7 Finance and banking sector
a8 Business improvement research
a9 Image processing
a10 Human-Machine interface
a11 Artificial intelligence, multi-agent systems

Table 9.2: The 11 research domains.

uni1 a4a5a3a2a8a7a1a11a10a9a6

uni2 a3a9a4a5a2a1a6a11a7a8a10

uni3 a4a5a2a3a1a6a7a8a11a10a9

uni4 a1a6a8a7a11a10a3a2a5a9a4

uni5 a11a1a9a5a7a10a6a4a3a2a8

iee a6a5a7a4a2a3a8a1a9a11a10

cvce a1a10a3a4a5a2a8a7a11a9a6

tud1 a1a4a5a8a7a3a2a9a10a11a6

tud2 a7a8a1a4a3a9a10a11a5a6a2

lip a4a1a2a5a6a7a10a9a3a11a8

Table 9.3: The rankings of the 10 researchers.
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a10a11a9

Figure 9.2: The intersection of all the prudent orders.

The rankings of the 10 researchers are represented in Table 9.3. This
profile of 10 linear orders with 11 alternatives leads to 1350 prudent orders,
which means that 1350

11! = 0.0034% of all the linear orders on 11 alternatives
are prudent orders. A straightforward choice of one prudent order seems
to be practically impossible. In order to go on with the decision process,
several robust informations are computed.

First of all, the intersection of all the prudent orders is represented in
Figure 9.2 (the transitivity arcs are omitted). We can learn from this figure
that, for instance, a4 (Electronic cooperation networks) is preferred to a7

(Finance and banking sector) in all the prudent orders.

The rank ranges are depicted in Table 9.4. For instance the rank of a4

(Electronic cooperation networks) will be either 1 or 2. On the other hand,
the rank of a6 (Innovative materials) seems to be unclear since, at best this
alternative has rank 4 but at worst it is ranked last.

Finally, the maximal rank differences are depicted in Table 9.5. For in-
stance, at best, a1 (Knowledge management technology) can be six ranks
ahead of a2 (E-Government), whereas a2 can only be, at best, one rank
ahead of a1. There are also negative maximal rank differences. For in-
stance, a11(Artificial intelligence) will always be at least 3 ranks below a1.
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alt. ρ+ ρ−

a1 1 7
a2 3 7
a3 2 6
a4 1 2
a5 2 4
a6 4 11
a7 4 5
a8 6 9
a9 7 11
a10 7 11
a11 7 11

Table 9.4: The rank ranges of the prudent orders.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

a1 0 6 5 1 3 10 7 7 10 10 10
a2 1 0 −1 −3 −1 7 4 4 7 7 7
a3 3 5 0 −1 2 9 6 6 9 9 9
a4 4 6 5 0 3 10 7 7 10 10 10
a5 3 5 4 −1 0 9 6 6 9 9 9
a6 −1 3 2 −2 −1 0 4 4 7 7 7
a7 −1 3 2 −2 −1 7 0 4 7 7 7
a8 −1 −1 −2 −4 −2 5 2 0 5 5 5
a9 −3 −2 −3 −6 −4 3 −1 −1 0 3 3
a10 −3 −2 −3 −6 −4 3 −1 −1 3 0 3
a11 −3 −2 −3 −6 −4 3 −1 −1 3 3 0

Table 9.5: Maximal rank differences.

Among the 1350 prudent orders, there are 18 lexicographic prudent or-
ders. One of these rankings, could be automatically proposed to the group.
Another possibility is to perform robust conclusions on these 18 rankings.
For instance, the best and worst rank of each alternative in all these lexi-
cographic prudent orders are indicated in Table 9.6. This information is of
course consistent with the information in Table 9.4, since lexicographic or-
ders are a refinement of prudent orders. However, unlike for prudent orders,
the extreme ranks of lexicographic prudent orders do not determine rank
ranges: for instance, we know that there exists at least one lexicographic
prudent order where a6 has rank 7 and at least one where a6 has rank 11,
but we do not have any guarantee that there also exists at least one lexico-
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alt. ρ+ ρ−

a1 1 2
a2 6 6
a3 5 5
a4 1 2
a5 3 3
a6 7 11
a7 4 4
a8 7 8
a9 8 11
a10 9 11
a11 8 10

Table 9.6: Best and worst rank of the lexicographic prudent orders.

graphic prudent order where a6 has rank 8, 9 or 10.

When analyzing the rank ranges of prudent orders, apart from the more
problematic alternative a6 (Innovative materials), let us assume that the
group agrees to adopt the block partition approach in order to move toward
a compromise. Let us suppose that three blocks are identified. A first block
could contain a1, a3, a4 and a5, a second block could contain a2, a7 and a8

and a third block could contain a9, a10 and a11.

Furthermore, let us assume that the group agrees on the fact that the
more problematic alternative a6 belongs to the middle block. Since the best
rank of a6 is 4, a6 does not really belong to the first block. Taking a closer
look at the rank differences, the ability of a6 to be much higher ranked than
a9, a10 and a11 does not make it a very bad alternative neither. Conse-
quently, a6 fits best in the middle part of the global ranking. Let us note
that this 3 block partition is compatible with the P relation.

Given the 3 block partition, the new rankings of the 10 participants can
be found in Table 9.7. We then compute the set of prudent orders sepa-
rately in each block. Given this new data, the intersection of all the prudent
orders can be found in Figure 9.3 (the transitivity arcs are omitted). The
final ranking is now almost complete. In fact, the still incomparable pairs
are pairs such that there are always five group members who prefer the first
over the second alternative and five group members who prefer the second
over the first alternative. In order to achieve a complete ranking, the group
now has to concentrate on these pairs.

As a conclusion, the 10 group members can agree on the following com-
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a1, a3, a4, a5 a2, a6, a7, a8 a9, a10a11

uni1 a4a5a3a1 a2a8a7a6 a11a10a9

uni2 a3a4a5a1 a2a6a7a8 a9a11a10

uni3 a4a5a3a1 a2a6a7a8 a11a10a9

uni4 a1a3a5a4 a6a8a7a2 a11a10a9

uni5 a1a5a4a3 a7a6a2a8 a11a9a10

iee a5a4a3a1 a6a7a2a8 a9a11a10

cvce a1a3a4a5 a2a8a7a6 a10a11a9

tud1 a1a4a5a3 a8a7a2a6 a9a10a11

tud2 a1a4a3a5 a7a8a6a2 a9a10a11

lip a4a1a5a3 a2a6a7a8 a10a9a11

Table 9.7: The adapted rankings of the 10 researchers.

a4

a3

a2

a6

a8

a11

a10

a5

a9

a1

a7

Figure 9.3: The intersection of all the prudent orders after the adaptation.
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promise ranking. The most important research domains are Knowledge
management technologies and Electronic cooperation networks. These two
domains are then followed by Mobile communications and IT security. Al-
though E-Government is perceived as more important than Innovative ma-
terials, the precise rank of Finance remains unclear in the middle of the
ranking. It follows Business improvement research. Finally, Artificial intel-
ligence followed by Human-Machine interface research can be found at the
bottom of the compromise ranking. The final position of Image processing
has still to be discussed in this last part of the ranking.
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Chapter 10

The composite indicator

problem

This chapter presents another possible application of prudent ranking rules,
namely the problem of aggregating sub-indicators. The chapter will be or-
ganized as follows. In Section 10.1, we introduce the composite indicator
problem in order to highlight the motivations for using ordinal aggregation
techniques in such a context. Section 10.2 deals with the formalization of
the model, whereas in Section 10.3 the model is illustrated on real data.

10.1 Introduction to the composite indicator prob-

lem

Socio-economic composite indicators have become a popular tool to evaluate
complex objects such as countries, companies, universities etc. with respect
to some particular issue. They are nowadays built and used by many orga-
nizations and governments, covering almost every topic of life. In Section
1.2.2, we presented already two examples of such indicators.

The aim of an indicator is to measure a certain reality or idea, such as
for instance the state of development of a country or the quality of an uni-
versity. Such an approach can be interesting from various points of view.

First of all, some indicators have a pedagogical role of translating a com-
plex reality into a single figure. More ambitiously, some indicators are used
by decision makers, such as governments or companies, to assist them in
making the right choices. For instance, some economic indicators may in-
fluence an investment decision of a company. Finally, since indicators are
often computed at regular intervals, they are also useful in monitoring the
evolution over time. They can for instance tell if the quality of an university
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has improved or not over the last couple of years.

A composite indicator is usually a combination of various sub-indicators
which all capture a particular aspect of the reality which we would like
to evaluate. However, combining different sub-indicators will inevitably
lead to the delicate question of how to aggregate them. Often, the non-
commensurability of the different sub-indicators is overcome by means of a
particular rescaling technique. The final indicator is then obtained by either
a simple average, assuming equal weights for all the sub-indicators, or by
means of a weighted sum, interpreting weights as trade-offs. Eventually a
score is obtained for each object.

Let us note that the choice of a particular rescaling technique or a set of
weights is far from trivial and can dramatically affect the outcome. These,
and other issues such as monotonicity or meaningfulness are discussed more
in depth in Chapter 4 in [15].

Since the designers of an indicator have to select i) a set of formally
defined sub-indicators and ii) a particular aggregation method that com-
bines these sub-indicators, a composite indicator cannot be designed in an
objective way. The reality that it tries to reflect is thus only the reality as
perceived by the designers. Paradoxically, those who use the indicators to
make a decision will not necessarily be the designers, and they consequently
do not have the same preferences as the designers. This makes indicators at
least a controversial matter.

Let us mention the following remark that can be found in a working paper
of the OECD: “...it is hard to imagine that the debate on the use of compos-
ite indicators will ever be settled. Official statisticians may tend to resent
composite indicators, whereby a lot of work in data collection and editing
is wasted or hidden behind a single number of dubious significance. On the
other hand, the temptation of stakeholders and practitioners to summarize
complex and sometime elusive process (e.g. sustainability, single market
policies, etc.) into a single figure to benchmark country performance for
policy consumption seems likewise irresistible.”1

Another approach to combine sub-indicators consists in ignoring the
evaluations of the objects on each sub-indicator and considering only the
underlying order. These sub-indicator rankings have then to be combined
into a global ranking by means of a ranking rule. In Section 1.3, we argued

1M. Nardo, M. Saisana, A. Saltelli, S. Tarantola, A. Hoffman and E. Giovannini (2005),
Handbook on constructing composite indicators: methodology and user guide, OECD Work-
ing Paper.
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that the nature of the scale of a dimension and the non-commensurability
between the dimensions can be two motivations to only work with ordinal
data as input. In fact, these two reasons are relevant in a composite indicator
context:

• The nature of the scale of each sub-indicator is far from obvious. A
sub-indicator often consists of a combination of various input variables,
and often the result is further normalized. In order to avoid making
exaggerated interpretations of differences of evaluations between two
objects on a sub-indicator and to avoid the use of hazardous rescaling
techniques, assuming an ordinal scale makes perfect sense.

• We have also highlighted that working with ordinal data as input is
useful when the various dimensions which need to be combined are
non-commensurable. This is precisely the case in the composite indi-
cator problem. Since it is already difficult to assess the meaning of
the numerical value of an object on one sub-indicator, it seems out of
reach to correctly combine the numerical values of an object on two
different sub-indicators.

That is why we propose in this chapter to only assume an ordinal scale
on each sub-indicator. The different sub-indicators are then aggregated by
means of an ordinal ranking rule. There are also some drawbacks associated
with such an ordinal approach.

• Most composite indicators construct a global score for each object.
This implicitly defines a weak order, which ranks the objects from
the best to the worst. When using an ordinal ranking rule, we do
not obtain such a score, but we can solely propose one (or several)
rankings instead.

• The choice of a particular ranking rule often seems rather suspicious.
As we have seen in this thesis that choice is crucial and can tremen-
dously influence the result. Taking the average of the sub-indicators
appears to be much more familiar, simple and reliable.

Despite these difficulties, ordinal aggregation techniques in a composite
indicator context have been suggested for instance by Munda and Nardo
[81] or by Patil & al [83]. In Munda and Nardo’s methodological argu-
mentation, the authors moreover concluded that the ordinal ranking rule
should be what we called in Section 2.3 “Condorcet ranking consistent”.
More particularly, they proposed to use in a composite indicator framework
a “weighted” extension of Kemeny’s ranking rule (see Section 2.2.2 for a
definition of Kemeny’s rule).
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Munda and Nardo [81] highlight the fact that, in their model, weights
have to be interpreted as importance coefficients, in opposition to the weighted
average aggregation model, where weights have to be interpreted as trade-
offs. Working with trade-offs implies that a poor performance on one sub-
indicator can be compensated by a good performance on another sub-indicator.
However, such an interpretation is not always desirable. Consider for in-
stance the example of an environmental indicator where fresh air can com-
pensate polluted water. Furthermore, fixing properly trade-offs assumes
a proper understanding of the scales of the sub-indicators since trade-offs
should be fixed by answering questions such as “how many units on sub-
indicator x are you willing to lose to gain one unit on sub-indicator y ?”.

Although we encourage the use of weights as importance coefficients, the
elicitation of these weights in Munda and Nardo’s model remains difficult.
One may also criticize the fact that the authors did not take into account
the possible multiplicity of Kemeny-optimal solutions. We will show in the
next section we can avoid these two limitations.

10.2 A prudent composite indicator

We suppose that a set A = {a1, a2, . . . , an} of n objects (countries, uni-
versities,...) has been evaluated on q sub-indicators, where sk(ai) denotes
the evaluation of object ai on the sub indicator k, with i ∈ {1, . . . , n} and
k ∈ {1, . . . , q}. Without any loss of generalization, we suppose that all the
sub-indicators have to be maximized. We will only exploit the underlying
order of the sub-indicators. Formally, we are going to construct q rankings,
denoted by O1, O2, . . . , Oq defined as follows:

∀k ∈ {1, . . . , q},∀ai, aj ∈ A, (ai, aj) ∈ Ok if sk(ai) ≥ sk(aj).

We suppose in this chapter that these rankings are linear orders, which im-
plies that on any sub-indicator no two objects have the same evaluation.
This will be for instance the case in the example of the competitivity indica-
tor which we will introduce in the next section. As in the previous chapters,
we denote u = (O1, O2, . . . , Oq) the ordered list containing the q linear or-
ders.

It may happen that the designers of a composite indicator would like
to assign different importances to the sub-indicators. In our setting, ∀k ∈
{1, . . . , q}, we denote wk ∈ N the importance coefficients of sub-indicator k.
Let w = (w1, . . . , wq) be a weight vector. As in Munda and Nardo [81], we
shall interpret these weights as importance coefficients. Given the profile
u = (O1, . . . , Oq) containing the underlying order of the sub-indicators and
given a weight vector w = (w1, . . . , wq), we define a weighted profile, denoted
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by uw, as a profile containing wi times the linear order Oi ∀i ∈ {1, . . . , q}.

A weighted profile uw can then be aggregated into the set of prudent
orders PO(uw) and the set of lexicographic prudent orders LPO(uw). It
is clear that with equal weights, we have that PO(uw) = PO(u) and
LPO(uw) = LPO(u).

The idea behind using two prudent ranking rules is that LPO can be
used to establish an almost complete ranking of the alternatives from the
best to the worst, whereas PO can be used to assess the quality of that
ranking. In fact, we know that the sets PO(uw) and LPO(uw) may contain
more than one linear order. Whereas the number of prudent orders can be
rather high, we concluded in Section 7.5.2 that the number of lexicographic
prudent orders is significantly smaller.

Instead of looking at all these solution rankings one by one, we propose
to represent the information contained in these sets by looking at the best
and at the worst rank that an object can occupy in any prudent ranking.
More formally we denote ∀ai ∈ A:

ρ+
i = min{ρO(ai) : O ∈ PO(uw)} ρ−i = max{ρO(ai) : O ∈ PO(uw)}.

ρ̃+
i = min{ρO(ai) : O ∈ LPO(uw)} ρ̃−i = max{ρO(ai) : O ∈ LPO(uw)}.

In fact, such rank information can be conveniently represented. Further-
more, it is easily understood by the users of composite indicators. One can
argue that most people who refer to a composite indicator rather look at the
rank obtained by a country, a company or a university than at the precise
numerical score.

Despite the absence of final scores, our ordinal model outputs that way
a richer information than solely a ranking. In fact, the difference ρ−i − ρ+

i ,
which can be rather large due to the high number of prudent orders, is an
indication for the difficulty and ambiguity of assigning a precise rank to
object ai. Since the difference ρ̃−i − ρ̃+

i is usually small, the lexicographic
prudent order model can be used to rank the objects from the best to the
worst, which is our main goal.

Furthermore, since LPO(uw) ⊆ PO(uw), all these maximal and minimal
ranks remain consistent.

Proposition 22 ∀ai ∈ A,

ρ+
i ≤ ρ̃+

i ≤ ρ̃−i ≤ ρ−i .
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Because of the constant-sum property, the ranks ρ+
i and ρ−i can be com-

puted without enumerating the whole set PO(uw). It suffices to apply
Kohler’s algorithm to find the optimal strict cut value, compute the transi-
tive closure of the corresponding strict cut relation and apply the formulas
presented in Section 9.3.2. The ranks ρ̃+

i and ρ̃−i are more cumbersome to
obtain since we have to rely, as in Section 7.4, on complete enumeration.

Another particularity of these two models with respect to the model
presented by Munda and Nardo [81] is that only the order of the importance
of coalitions of sub-indicators matters, and not the precise numerical values
of the importance coefficients.

Proposition 23 Let w = (w1, . . . , wq) and w̃ = (w̃1, . . . , w̃q) be two weight
vectors. If, for every coalition of sub-indicators K ⊆ {1, . . . , q} and K ′ ⊆
{1, . . . , q}, we have

∑

i∈K

wi >
∑

i∈K′

wi ⇐⇒
∑

i∈K

w̃i >
∑

i∈K′

w̃i

∑

i∈K

wi =
∑

i∈K′

wi ⇐⇒
∑

i∈K

w̃i =
∑

i∈K′

w̃i,

then
PO(uw) = PO(uw̃)

and
LPO(uw) = LPO(uw̃).

This result further clarifies the meaning and elicitation of the weights. In
fact, the designers of a composite indicator have rather to agree on a rank-
ing of the coalitions than on precise numerical values for the importance
coefficients. We refer for instance to [42] for a practical elicitation technique
of such preferences.

In the ranking model proposed by Munda and Nardo [81], weights are
also interpreted as importance coefficients and not as trade-offs. However,
their model does not verify this invariance property since the precise numer-
ical value of the importance coefficients do matter in the computation of the
final ranking.

In order to illustrate Proposition 23, we suppose that there are three
sub-indicators. In the first scenario, the weight vector is (5, 4, 2), whereas in
the second scenario the weight vector is (8, 5, 4). Let us note that in both
scenarios, the order of the importance of the coalitions is the same:

Coalition {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}

Scenario 1 11 > 9 > 7 > 6 > 5 > 4 > 2
Scenario 2 17 > 13 > 12 > 9 > 8 > 5 > 4
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We suppose that there are 6 objects {a, b, c, d, e, f} and the ranking for
the first sub-indicator is ebfadc, for the second sub-indicator is dbefac and
for the third sub-indicator is acedfb. We obtain the following results:

Kemeny Lex-prudent

Scenario 1 edbfac ebfadc

Scenario 2 ebfadc ebfadc

Hence the ranking under the Kemeny model as suggested by Munda and
Nardo is different, depending on the precise choice for the weights, whereas
the result in the lexicographic prudent order model remains invariant.

10.3 Illustration: Building a competitivity indica-

tor

In this section, we illustrate the application of the prudent model on real
data. The Observatoire de la compétitivité of the Luxembourg government
was interested in evaluating the competitivity of European countries with re-
spect to the agenda set by the Lisbon strategy. To do so, they constructed a
composite indicator consisting of 10 sub-indicators. These 10 sub-indicators,
inspired both from the goals defined in the Lisbon agenda and from a recent
external report delivered by Professor Fontagné, are listed below:

1. Macro-economic performance

2. Employment

3. Productivity and cost of employment

4. Market operations

5. Institutional context

6. Entrepreneurship

7. Education

8. Knowledge Economy

9. Social Cohesion

10. Environment

For a detailed description of these indicators, we refer to the official report
[28]. Each of the 25 countries of the European Union has been evaluated
according to these 10 sub-indicators. The final indicator was then obtained
by summing the 10 sub-indicators together, hence assuming equal weights
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Germany 25 10 14 23 25 19 12 6 10 5
Austria 15 7 9 1 24 17 13 9 5 1
Belgium 19 18 15 17 23 21 11 8 1 20
Cyprus 12 5 22 25 22 8 16 25 19 16
Denmark 6 2 2 5 21 22 4 3 3 2
Spain 5 13 20 16 20 9 23 12 18 12
Estonia 4 15 1 2 19 15 10 14 25 23
Finland 10 9 23 13 18 24 6 2 2 13
France 18 17 13 18 17 18 14 11 8 14
Greece 20 23 17 9 16 2 24 21 17 15
Hungary 21 21 6 22 15 6 20 18 12 4
Ireland 2 4 19 24 14 4 21 17 21 6
Italy 23 22 24 20 13 5 22 13 13 11
Latvia 11 14 5 6 12 1 8 24 20 7
Lithuania 3 19 11 8 11 13 7 23 16 24
Luxembourg 1 11 4 11 10 11 2 5 9 8
Malta 17 20 7 21 9 16 17 19 7 19
Netherlands 14 1 18 3 8 23 5 4 6 17
Poland 16 25 16 14 7 7 18 22 14 21
Portugal 22 8 25 19 6 3 25 20 24 22
Slovakia 24 24 21 10 5 10 19 15 22 18
Czech Republic 7 12 3 12 4 12 15 16 15 25
UK 13 6 10 4 3 14 9 7 23 10
Slovenia 8 16 12 15 2 20 3 10 11 9
Sweden 9 3 8 7 1 25 1 1 4 3

Table 10.1: The ranks of the 25 countries on the 10 sub-indicators.

in the trade-off sense.

Instead of working with the numerical evaluations of the countries on
each sub-indicator, we are going to simply take into account the underlying
order. The rank of each country on these 10 sub-indicators can be found in
Table 10.1.

We shall aggregate these 10 linear orders into the set of prudent orders
and into the set of lexicographic prudent orders by assuming also equal
weights. In fact, we are mostly interested in computing for each country the
best and worst ranks ρ+, ρ−, ρ̃+ and ρ̃−. The results obtained can be found
in the first four columns in Table 10.2. We listed the countries in the order
provided by the best rank ρ̃+ obtained by the lexicographic prudent orders.
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Country ρ̃+ ρ̃− ρ+ ρ− CI Best Kemeny Worst Kemeny

Denmark 1 1 1 1 2 1 1
Sweden 2 2 2 2 1 2 2
Luxembourg 3 3 3 5 3 3 3
UK 4 4 4 13 6 4 4
Austria 5 5 3 12 5 5 5
Slovenia 6 6 5 14 8 6 6
Netherlands 7 7 3 11 4 7 7
Czech Republic 8 8 4 18 10 8 8
Latvia 9 10 4 15 7 9 10
Lithuania 9 14 5 21 14 9 14
Ireland 10 11 5 21 11 10 11
Finland 11 12 4 15 9 11 12
Estonia 12 13 5 18 13 12 13
Malta 13 16 12 21 18 13 16
France 14 15 10 20 17 14 15
Belgium 15 16 11 23 16 15 16
Hungary 17 17 9 21 15 17 17
Germany 18 18 8 25 12 18 18
Poland 19 21 11 25 22 19 21
Italy 19 21 13 25 23 19 21
Spain 20 22 9 22 19 20 22
Greece 20 22 16 22 20 20 22
Cyprus 23 23 19 25 21 23 23
Slovakia 24 24 19 24 24 24 24
Portugal 25 25 21 25 25 25 25

Table 10.2: The results of the competitivity indicator.

For comparative purposes, we give in the fifth column of Table 10.2 the
ranking of the composite indicator presented in the report. Since this rank-
ing has been obtained by summing the values of the ten sub-indicators, it
cannot be obtained with a ranking rule, but requires the knowledge of the
exact values of the 10 sub-indicators. Finally, in the sixth and seventh col-
umn, we list the best and worst rank obtained in all the Kemeny orders.
This is in fact the ranking which would have been obtained in the model
proposed by Munda and Nardo. Let us however stress again that Munda
and Nardo did not explicitly take into account the multiplicity of optimal
solutions. In this example for instance, there have been 96 different Kemeny
orders, only one of which would have been randomly chosen in Munda and
Nardo’s model.

Let us now comment on these results:
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• According to lexicographic prudent orders, apart from Lithuania (ρ̃+ =
9, ρ̃− = 14) and Malta (ρ̃+ = 13, ρ̃− = 16), the difference between
ρ̃− and ρ̃− is never more than 2. For 12 out of 25 countries, the
best and the worst rank are even equal. This confirms the idea that
the lexicographic prudent orders are useful when objects have to be
completely ranked from the best to the worst.

• According to the prudent orders, the smallest differences between the
worst rank and the best rank is achieved by Sweden and Denmark.
In fact, for both countries there is no ambiguity in assigning a rank:
Denmark is always put in the first position and Sweden is always put
in the second position. This is also confirmed by the Kemeny orders.

• According to prudent orders, the largest difference between the worst
rank and the best rank is achieved by Germany. In fact there are in
total 18 different ranks which we could assign to this country. This
indicates that Germany is a country difficult to rank since in 5 out of
the 10 indicators they are ranked in the upper half (i.e. below rank
12.5) and in 5 out of the 10 indicators they are ranked in the lower
half (i.e. above rank 12.5).

• For 9 out of the 25 countries, the original composite indicator is com-
patible with the rank ranges provided by the lexicographic prudent
orders. The largest discrepancy is obtained for Germany, which was
ranked in the composite indicator on the 12th position, whereas lexico-
graphic prudent orders unambiguously rank this country on the 18th
position. This confirms again the lesson learned from the prudent
orders (rank difference of 18) which suggest that establishing a clear
position for Germany is difficult.

• The rank ranges of the set of prudent orders is compatible with the
original composite indicator, except for Denmark (CI=2, ρ+ = 1, ρ− =
1) and Sweden (CI=1, ρ+ = 2, ρ− = 2). Let us however emphasize
that Denmark is preferred to Sweden in 7 out of the 10 indicators.
From a pairwise comparison perspective, there are thus good reasons
to put Denmark before Sweden.

• For this data, both Kemeny’s rule and the lexicographic prudent order
preference function give identical results, and that is why both ranking
rules lead to the same best rank and to the same worst rank for all
countries. Since the ranks of the lexicographic prudent orders are al-
ways compatible with the ranks of the prudent orders (see Proposition
22), it is worth noticing that in this example the ranks of the Kemeny
orders are also compatible with the ranks of the prudent orders. We
refer the reader to Section 7.3 for a more detailed discussion on the
link between lexicographic prudent orders and Kemeny orders. Let us

196



also recall that in some situations, Kemeny orders and lexicographic
prudent orders can nevertheless be very contradictory (see Section 8.4).

This example illustrates the applicability of prudent ranking rules to
the composite indicator problem. Compared to the model introduced by
Munda and Nardo, our model outputs a richer result, taking explicitly into
account the multiplicity of prudent orders in order to assess the quality of
the rank of an object. Furthermore, lexicographic prudent orders can be
used to discriminate between the objects while always remaining consistent
with the results obtained by the prudent order preference function. Finally,
our model can handle importance coefficients in a more transparent way in
the sense that only the ranking of the importance coefficients matter and
not the precise numerical values of these coefficients.
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Conclusion

At the beginning of this thesis we have postulated that the prudence princi-
ple can be an appropriate concept in a decision aid context. We have chosen
to illustrate this on the group ranking problem and on the composite indi-
cator problem.

Following these motivations, we mainly focused on gaining a better un-
derstanding of the family of prudent ranking rules. Studying such a complex
mechanism as an ordinal ranking rule, and, more particularly, its implica-
tions on profiles in all kinds of different situations is however far from trivial.
It is particularly tricky since as soon as you think you get a grip on the rank-
ing rule, an even more perplexing situation pops up which may turn things
around all over again. Although no easy answer can be provided, it is pre-
cisely this complexity that fascinates many researchers.

First of all, it seems important to us that we could delimit prudent rank-
ing rules from non-prudent ranking rules. The “paradoxical” results which
we have established clearly show that the prudence principle may lead to
very different solutions than those obtained by more traditional approaches.

In order to push these ideas further and to distinguish between the dif-
ferent prudent ranking rules, we chose to spend a lot of efforts on axiomatic
characterizations. This choice can be criticized and some may not be fully
convinced because of the technical nature of the results. This being said, we
still believe that these results give a first insight into the behavior of prudent
ranking rules and may help an analyst to be more comfortable next time he
decides to use such a tool. Moreover, the differences between these prudent
ranking rules can more easily be recognized since we characterized the rules
in a common axiomatic framework.

Finally, in our research we discovered a new prudent ranking rule, namely
the lexicographic prudent order preference function. It is surprising how
close this ranking rule is linked to Kemeny’s rule which is much more known
and popular than prudent ranking rules.
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However, there are still many open questions or problems which deserve
further attention. For instance, the prudent axiomatic framework which we
have built in this thesis should be further enriched by characterizing other
prudent ranking rules. More time should also be spent on studying the
lexicographic prudent order preference function, especially in comparison to
Kemeny’s rule.

Besides, we would like to stress the following, more general, directions
of future research:

• Saari suggests to analyze a ranking rule by relying on geometric repre-
sentations. The main benefit of such an approach relies in its simplicity
to identify all the profiles that will lead to a certain result. Such an
insight into a ranking rule can help to better understand its proper-
ties, anomalies and paradoxes. Although we have not had time to
pursue this idea, we strongly believe that analyzing prudent ranking
rules from a geometric point of view will be enlightening.

• The models which we analyzed can be generalized. In multicriteria
decision aid, the so-called outranking methods usually consist of two
steps. First, the alternatives are compared pairwise in order to build a
valued outranking relation. This outranking relation is then exploited
in order to come up with a ranking for the decision maker. Some re-
search should deal with extending and applying the prudence principle
to the problem of exploiting such valued outranking relations.

• We concentrated on prudent ranking rules. A promising line of re-
search is to take on the problem of prudent choice rules. A unifying
framework for such prudent choice rules has not been established yet.
There is a large potential for choice problems and one of the challenges
could be to discuss the appropriateness of a prudent choice for multi-
criteria decision aid problems.

We hope that we have convinced the reader that research on prudent
decision models is stimulating and we encourage anyone to work on one of
the problems that we have just mentioned.
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Appendix

The number of prudent orders

Debord [30] randomly generated profiles of q linear orders and n alterna-
tives under the IC assumption, with q ranging from 3 to 17 and n ranging
from 3 to 7. For each combination (n, q), 1000 repetitions were performed.
The average number of prudent orders for odd profiles can be found in the
following table:

(n, q) 3 5 7 9 11 13 15 17

3 1.305 1.301 1.297 1.255 1.207 1.193 1.153 1.187
4 3.635 3.232 2.704 2.478 2.508 2.038 1.943 1.961
5 20.190 14.345 10.280 7.955 5.968 6.155 5.556 4.800
6 107.141 57.855 37.053 26.026 20.057 19.470 19.190 15.699
7 581.456 237.815 119.454 80.346 74.214 79.803 76.753 65.460

The average number of prudent orders for even profiles can be found in
the following table:

(n, q) 4 6 8 10 12 14 16

3 2.211 1.903 1.801 1.765 1.664 1.635 1.592
4 3.855 3.353 3.080 2.727 2.630 2.478 1.418
5 7.846 7.641 6.424 7.738 7.539 5.908 5.644
6 19.502 30.651 30.442 25.821 26.035 18.977 16.620
7 56.571 190.166 176.312 134.336 109.803 77.326 67.123
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111:61–71, 1990.

[80] H. Moulin. Axioms of cooperative decision making. Econometric So-
ciety monographs, 1988.

208



[81] G. Munda and M. Nardo. Non-compensatory composite indicators
for ranking countries: A defensible setting. Technical Report EUR
21833 EN, European Commission, Directorate-General Joint Research
Centre, Institute for the Protection and Security of the Citizen, 2005.

[82] J. Nunamaker, D. Vogel, A. Heminger, B. Martz, R. Grohowski, and
C. McGoff. Experience at IBM with Group Support Systems: A Field
Study. Decision Support Systems, 5:183–196, 1989.

[83] G.P. Patil and C. Taillie. Multiple indicators, partially ordered sets
and linear extensions: Multi-criterion ranking and prioritization. En-
vironmental and Ecological Statistics, 11:199–228, 2004.

[84] J. Perez. Theoretical elements of comparison among ordinal discrete
multicriteria methods. Journal of Multi-Criteria Decision Analysis,
3:157–176, 1994.

[85] J. Perez and S. Barba-Romero. Three practical criteria of compari-
son among ordinal preference aggregating rules. European Journal of
Operational Research, 85:473–487, 1995.

[86] P. Perny. Modélisation, agrégation et exploitation des préférences
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cas. Economica, 1993.

209



[94] D.G. Saari. Consistency of decision processes. Annals of Operations
Research, 23:103–137, 1990.

[95] D.G. Saari. Decisions and Elections. Cambridge University Press,
2001.

[96] D.G. Saari and V.R. Merlin. A geometric examination of Kemeny’s
rule. Social Choice and Welfare, 17:403–438, 2000.

[97] G. De Sanctis and R.B. Gallupe. A foundation for the study of group
decision support systems. Management Science, 33:589–609, 1987.

[98] P.B. Simpson. On defining areas of voter choice: Professor Tullock on
stable voting. Quarterly Journal of Economics, 83:478–490, 1969.

[99] P. Slater. Inconsistencies in a schedule of paired comparisons.
Biometrika, 48:303–312, 1961.

[100] E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathe-
matica, 16:386–389, 1930.

[101] M. Tavana. CROSS: A multicriteria group-decision-making model for
evaluating and prioritizing advanced-technology projects at NASA.
Interfaces-INFORMS, 33:40–56, 2003.

[102] M. Tavana, DT. Kennedy, and P. Joglekar. A Group Decision Sup-
port framework for consensus ranking of technical manager candidates.
Omega, 24:523–538, 1996.

[103] A.D. Taylor. Social Choice and the mathematics of manipulation. Out-
looks, 2005.

[104] T.N. Tideman. Independence of clones as criterion for voting rules.
Social Choice and Welfare, 4:185–206, 1987.

[105] M. Truchon. An extension of the Condorcet criterion and Kemeny
orders. Technical report, Université Laval, 1998. Cahier 98-15 du
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