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Preface

Helping to make the right decision, studying human behaviours when confronted
to a decision problem, formalising their preferences, coping with a plurality of
points of view in a decision process, ... All these topics, and many more, are the
bread and butter of researchers active in the field of Multiple Criteria Decision
Analysis (MCDA).

Roughly speaking, MCDA aims at helping a decision maker (DM), guided
by an analyst, to prepare and make a decision where more than one point
of view has to be considered. Research activities around MCDA have devel-
oped quite rapidly over the past years, and have resulted in various streams
of thought and methodological formulations for the resolution of such decision
problems.

Since the beginning of our research, we have always been interested in dif-
ferent MCDA problems, originating from the two major methodological trends,
namely the Furopean and the American schools. Quite regularly, we have been
concerned with methods putting the DM in the centre of the decision process,
aiming at determining his preferences in a holistic way, and providing him with
results tending to make him happy enough.

Recently, we have been interested in quite specific decision processes, allow-
ing to obtain the final decision recommendation via intermediate stages. Such
methods, further called progressive MCDA methods, are iterative procedures
which present partial conclusions to the DM, which can be refined at further
steps of the analysis. This enables a DM, who is not completely satisfied with
a recommendation, to further investigate the problem until a satisfactory so-
lution can be found.

As we will show in this work, such methods allow to deal with multiple crite-
ria decision problems involving impreciseness, missing information and limited
economical resources. Indeed, progressiveness in MCDA permits to undertake a
prudent construction of the output. As the ultimate recommendation does not
necessarily have to be reached in one step, each partial conclusion exclusively
exploits the information available at that moment. Consequently, issues linked

Xix
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to impreciseness or missing data can be treated later as the process goes on.
Furthermore, in real-world problems, constrained by time and limited financial
resources, the determination of certain evaluations of the alternatives can be
postponed.

The subjects analysed in this work are coming from our quite heterogeneous
research activities of the past few years. Under the direction of Marc Roubens,
we started our research activities in the tradition of the American school, on
methods and tools taking into account interactions between the points of view
(via the so-called Choquet integral). Our work in this field is still continu-
ing and has recently given birth, in collaboration with Ivan Kojadinovic and
Michel Grabisch, to a software package, called Kappalab, which allows to put
into practice some of our considerations in this field.

Later, Raymond Bisdorff gave us the opportunity to focus on procedures
originating in the European stream of thought. Under his direction, we con-
tributed to develop the RUBIS method which allows to solve the problem of
determining a single best alternative.

As a consequence, the document is structured in three parts as follows.
Part I is intended to be a general introduction to the topics covered by this
work. It is divided into two chapters. In the first one, we delimit the sphere of
our activity and situate our discourse in a particular scientific context, namely
constructive MCDA. Then, in Chapter 2, we define the concept of progressive-
ness and present its consequences on a decision process.

Then, Part IT presents our methodological research on the choice problema-
tigue in the context of the European school for MCDA. It is divided into three
chapters, where in the first one, we present the bipolar-valued credibility calcu-
lus, as well as the construction of a bipolar-valued outranking relation, which
represent the foundations of the further developments of this part. Then, in
Chapter 4, we present the RUBIS method for the progressive determination of
a single best alternative. Finally, in Chapter 5, we extend our considerations
to the determination of k£ simultaneously best alternatives.

Finally, Part III gathers our research activities in the framework of the
American school for MCDA. It is divided into four chapters. The first one fo-
cuses on Multiattribute Value Theory (MAVT) and the Choquet integral as an
aggregation function. Then, in Chapter 7, we formalise the capacity identifica-
tion problem and present different methods to determine the parameters of the
Choquet integral via the DM’s preferences. In the third chapter, we present
how the different classes of problems of MCDA can be solved by means of our
results. Finally, in Chapter 9, we present Kappalab, which is a package for the
GNU R statistical system for capacity and integral manipulation on a finite
setting and which can be used in the context of MAVT.



p ol

This structure unveils the two main branches of our research activities via
Parts II and III, whereas Part I serves as a shell around the whole work. A
reader familiar with MCDA techniques can straight off switch to Chapter 2 of
the first part to be informed on progressiveness, before getting down to either
one of the final two parts, which can be read in any order. However, an MCDA
novice should start by reading the first introductory chapter in order to clearly
locate the problems discussed in this work.

Note that Part II is inspired from our two articles [BMRO7] and [MBO7],
whereas Part III is based on our four papers [MR05b, MR05a, MMRO5] and
[GKMO7]. Nevertheless, our discussions contain some added value compared
to the articles, as we have put our considerations in the light of progressiveness.

From a methodological point of view, our research has always focussed on
practical aspects of MCDA processes, on the central role of the DM and on
computational facets of MCDA methods. This quite pragmatic perception of
decision analysis is the general guideline of our work, and quite regularly we
will discuss practical implications of the underlying theoretical developments.

To help the reader to get through this text, important concepts are put in
the margin of the text. They allow to have a synthetic vision of each section
and to quickly go back to previously introduced notions.

Finally, note that the numbers after the bibliographical entries indicate the
pages on which the articles have been cited.

PATRICK MEYER

Luzembourg, June 2007

margin notes
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Multiple Criteria Decision
Analysis and
progressiveness






Part I: Multiple Criteria Decision Analysis and
progressiveness

Sl n’y a pas de solution, c’est qu’il n'y
a pas de probleme.

Les Shadoks, Jacques Rouxel?

Abstract

The first part of this work is dedicated to a general and intuitive introduction
to Multiple Criteria Decision Analysis, and in particular to a concept that we
call progressiveness. The latter is mainly a framework which guides the analysis
in a particular way, which allows to extract intermediate conclusions requiring
further interactions by the stakeholders of the process.

Consequently, the purpose of this part is to clearly situate and delimit the
subject of this work and to prepare the reader for the following two parts by
introducing fundamental concepts and the notation.

The notion of progressiveness can be found in various resolutions of real-
world decision problems. In order to intuitively assess the meaning of this
concept, let us present right away a short example which will position our
discourse for the reader.

Example Imagine that a company searches for an appropriate
candidate for a newly opened position. Such a recruitment process
s generally performed in multiple steps, where at each stage, the set
of applicants is more and more reduced. This possibly begins with
a filtering process solely based on information from the candidates’
résumés. Then, the remaining applicants are interviewed via phone
and a second selection is made. Finally, a very small number of
persons are asked to come to the company in order to have personal
interviews with the head of the company.

This example is quite explicit and shows how the final best applicant for the po-
sition is selected in a progressive process. At each intermediate stage, a certain
number of candidates are eliminated on the basis of the information available
at that moment. Note that this example will be further detailed later in this

2If no solution exists to a problem, there may be no such problem.



part.

This first part is divided into two chapters. The first one is a brief intro-
duction to Multiple Criteria Decision Analysis and the approach to decision
analysis which will guide us through this work. It is based on a succinct biblio-
graphical review of literature on decision analysis. In Chapter 2, we introduce
the concept of interactivity, define progressiveness and detail their implications
on the decision analysis and the type of recommendation generated by such a
process. These original reflections represent our personal contribution to the
first part of this work.



Chapter 1

On Multiple Criteria
Decision Analysis

Contents
1.1 A brief introduction . . . . .. ... ... ... 5
1.2 Common definitions and concepts . ... ... .. 9
1.3 Two methodological philosophies . . . ... .. .. 11
1.3.1 Building and exploiting an outranking relation . . 11
1.3.2 Building and exploiting an overall value function . 13

1.3.3 MAVT and outranking methods in a constructive
approach . . . ... ... ... L0, 15

The goal of this first chapter is to delimit the sphere of our activity and to sit-
uate our discourse in a particular scientific context, namely Multiple Criteria
Decision Analysis (MCDA). Our main concern is to present the philosophical
environment to which we adhere and which will represent the framework of this
work.

In the first section we introduce MCDA and specify the terminology used
in the sequel. Then, in Section 1.2 we define some conventions and concepts
common to the three parts of this work. Finally, in Section 1.3 we present two
distinct trends of thought in MCDA and briefly show how they can be brought
together in a common framework.

1.1 A brief introduction

It is quite common among scientists to consider that mathematics should be
used to serve human cognition in its broadest sense. It is therefore very tempt-



decision
analysis

decision maker

analyst

preferences

6 CHAPTER 1. ON MULTIPLE CRITERIA DECISION ANALYSIS

ing for a scientist to model real world problems by some strong logical principles
in order to describe and explain them, or even to forecast future events. This
way of thinking may be very applicable in hard' sciences, but it is less relevant
in human sciences. Indeed, as soon as human behaviours or decisions have to
be modelled, mathematical descriptions often run up against their irrationality.

In particular, when it comes to making decisions, human intervention often
represents a major part of the difficulties which may be encountered. Therefore,
in many practical situations, it is advisable to resolve these decision problems
via a scientific preparation called decision analysis .

Such a decision analysis process requires in general at least two actors. On
the one hand there is the so-called decision maker (DM) which is a person who
will take the responsibility for the decision act. He furthermore bears certain
values, priorities and preferences related to the particular decision problem. On
the other hand there is an individual, who will facilitate the decision analysis
process by investigating thoroughly the underlying problem. He is often called
the analyst . In general, his task may be very vast and time consuming and may
include different steps, as for example a clear formulation or a rational structur-
ing of the problem. Furthermore, the analyst’s work may not be accomplished
without a central task, which consists of interactions and discussions with the
stakeholders of the decision process. Note that in practise both actors could
be groups of persons. In this study we nevertheless make the hypothesis that
the DM can be represented by a single person. In particular this implies that
the search for a preferential consensus among a set of DMs is not our concern.
Finally, it may also happen that both stakeholders are represented by a single
person who will play both the role of the DM and that of the analyst.

Roughly speaking, in classical OR, a given decision problem is formulated
in analytical terms and solved by means of an optimisation method. The out-
put of such an analysis is (if it exists) a solution called the optimum. The
DM intervenes in the delimitation of the problem and the validation of the
solution. Note that the latter task is not trivial and is an essential part for
the implementation of a solution in practice. In decision analysis, the DM is
more involved in the possibly multiple stages of the resolution. In particular,
the decision analysis methodology requires that the preferences of the DM are
correctly modelled. This fundamental step involves that the consequences of
each of the possible decision acts are thoroughly analysed in collaboration with
all the stakeholders of the decision process. Therefore, in decision analysis, the
DM has a central and paramount position.

One of the main challenges in real world decision problems is the mul-
tidimensional nature of the potential decision actions. Very often, even the

IThe term hard is used here without any derogative meaning for non-hard sciences.
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apparently simplest decisions that we have to make on a regular basis imply
multiple preference dimensions. Consider for example the following classical
problem.

Example 1 On the one hand Sophie prefers restaurant a to b
because its cook is more famous, but on the other hand she prefers
restaurant b to a because the prices of its dishes are cheaper.

Sophie’s decision will depend on her current mood and financial situation and
she might choose either a or b. We can see via this short, but very demon-
strative example, that the two selected preferential dimensions are conflicting
and that the preferences of Sophie (the DM) have a great influence on the final
output. It has therefore been suggested to adopt a multiple criteria approach,
based on a multidimensional description of the potential decision actions (see
for example [Roy87a]). This multidimensional vision of the problem linked to
a decision analysis approach defines the so-called Multiple Criteria Decision
Analysis .

In short, MCDA'’s general aim is to help a DM to prepare and make a deci-
sion and to study decision problems where more than one point of view has to
be considered. Its objective being not to force a decision at any cost, MCDA
can range from a rational structuring of the decision problem to the elaboration
of a recommendation.

From a historical point of view, the roots of MCDA go back at least to the
18th century, where the Marquis de Condorcet has been the first to systemati-
cally apply mathematics in social sciences. In 1785 he wrote the Essay on the
Application of Analysis to the Probability of Majority Decisions, which deals
with decision making in presence of multiple voters. The very foundations of
MCDA have however been laid around the middle of the 20th century with
Samuelson’s theory of revealed preferences [Sam38], the gradual beginning of
game theory [vM44], the emergence of social choice theory [Arr51] and the in-
terest in psychological and mathematical aspects of decisions [LR57, Fis70].

In the late 50s, an important step towards pragmatic foundations of deci-
sion analysis is made by Simon’s bounded rationality theory [Sim57]. It states
that in real-life decision problems, different factors limit the extent to which
a DM can make a fully rational decision. Therefore he only owns bounded
rationality and he will choose an option taking into account the limitations of
both knowledge and cognitive capacity. Strictly mathematically, this decision
might not be optimal, but it will tend to make the DM happy enough. This
vision underlies the whole discourse presented in this work.

By the end of the 60s, first methods to solve multidimensional decision
problems start to appear. In 1968, Roy inaugurates the branch of outranking
methods [Roy68] whereas in 1976, Keeney and Raiffa broadened value theory to

multiple criteria

MCDA

bounded
rationality
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the multidimensional case [KR76]. These two distinct trends of thought yield
two different methodological conceptions: the so-called European and Ameri-
can schools.

From a philosophical point of view, the European and the American school
are often said to be conflictual in the way they conceive the output of the de-
cision analysis. Indeed, it is quite widely accepted that the former’s goal is to
give a recommendation (decision aiding) , whereas the latter seeks to approach
an optimal solution (decision making) . However, as we will see later, the prac-
tice of methods issued from both schools of thought shows that this mutually
exclusive vision is too restrictive (see also [SLO03]).

From a methodological point of view, there are important differences in
the tools generated from both trends. On the one hand, the European school
developed around discrete methods via outranking relations, where the recom-
mendation is built upon pairwise comparisons of the different options [Roy68].
On the other hand, the American school grew around utility and value methods
to obtain a total comparability of the options [KR76].

At this point, it is useful to differentiate between MCDA approaches, meth-
ods and models. An MCDA approach is a general framework which guides the
plan of attack to a given decision problem. It underlies a certain number of
logical, pragmatical and philosophical principles which endow it with a concep-
tual coherence. An MCDA method is situated within one or more particular
approaches and it is a regular and systematic way of dealing with a decision
problem. Finally, an MCDA model is a mathematical representation of a deci-
sion problem. In short, an MCDA method implements an approach and leads
to a model. We call a recommendation the output of an MCDA method.

In the literature on decision theory it is common to differentiate between
four types of approaches (see for example [Roy93] and [BRT88]): normative,
descriptive, prescriptive and constructive. The differences lie in the significa-
tion of the model which is built, in the way the model is obtained, and in the
interpretation of the results which are presented to the DM [DT04, BMP*06].

The objective of normative decision analysis approaches is to derive models
from norms and standards which are set up beforehand and which are com-
monly accepted. Such models aim at being universal in the sense that they ap-
ply to any DM who wants to act in accordance with the underlying rationality
(see for example [vM44], [LR57] or [Wak89]). The goal of descriptive approaches
is to infer models from the observation of how DMs behave when confronted
to a certain and precise decisional problem. These models are then applica-
ble to any DM who has to face a similar situation (see for example [Sch88]).
Prescriptive approaches try to unveil models for a given DM based on his sys-
tem of values and on preference-related answers. Such models are not intended
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to be general and are only applicable in the context from which they originate
(see for example [Roy85] or [BSO1]). Finally, constructive approaches build
models based on the preferences of a particular DM in a precise decision prob-
lem. In this case, the interaction between the analyst and the DM helps to
construct and uncover his preferences and has therefore a significant influence
on the final output (see for example [LPB83] or [Ros89]).

In short, models built in a normative context are based on generally ac-
cepted norms whereas in descriptive approaches, they are established on em-
pirical observations. The purpose of models induced in prescriptive approaches
is to discover a system of values of a DM which exists prior to the decision
analysis whereas in constructive approaches these preferences tend to be con-
structed simultaneously with the model.

Note here that a decision analysis method may in practice belong to more
than one approach. It might indeed be advisable in certain situations to adopt
different aspects of different approaches in the resolution of a decision prob-
lem. As stated in [DT04], it can be interesting, for example, when adopting
a prescriptive construction of the model, to impose some rationality principles
issued from a normative approach in order to facilitate the dialogue with the
DM and to allow to draw strong conclusions.

In this work we focus on what we call progressive interactive decision anal-
ysis methods. As we will show, these methods fall within the framework of
constructive approaches. Their goal is to obtain a recommendation by pro-
ceeding in steps and steadily by increments via recurrent interactions with the
DM.

Roy [Roy85] has stated that the objective of an MCDA is to solve one of
the following four typologies of problems (or problematiques): determine one
alternative considered as the best one (choice), assign each decision option to a
clearly defined ordered category (sorting), rank the alternatives from the best
to the worst one (ranking), describe the options and their impact in a for-
malised way (description). In this work, we present our contributions to the
first three formulations. Besides we detail a further proposal that we call the
k-choice decision problematique (also called portfolio problematique in [BS03]).
It is an extension of the standard choice problem to the determination of k best
alternatives (k > 1).

1.2 Common definitions and concepts

In this section we present some of the conventions that we use throughout this
work. Note that we only introduce concepts common to the following two parts

constructive

problematique
choice

sorting
ranking

description

k-choice
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Restaurant Cook Price (€) Cuisine
a very famous 100 Italian
b not at all famous 80 Italian
c little famous 50 Luxembourgish
d little famous 100 French

Table 1.1: Sophie’s selection of restaurants

and that further notions are defined as we go along.

The starting point of our discussion is a finite set X of p > 1 potential
decision objects (also called alternatives) . They represent the possible options
on which the DM has to make his decision. As our discourse is situated in
a multidimensional framework, these alternatives are evaluated on a finite set
N ={1,...,n} of n > 1 attributes. Let g; : X — X; be a descriptor which
allows to assess the alternatives on attribute ¢ of N, where X; is the set of
levels of the associated scale. It is now possible to represent an alternative x of
X by its corresponding evaluation profile (gi(x), ..., gn(x)). To illustrate these
different concepts, let us return to the short example of restaurant selection.

Example 1 (continued) Recall that Sophie has to select a restau-
rant. Let us imagine that she makes a first selection for which
she retains four restaurants (= X ). She has decided to evaluate
each of them on three attributes (= N ), namely the reputation of
the cook, the average price of a meal and the type of cuisine. Ta-
ble 1.1 summarises how she evaluated the four restaurants a, b,
c and d on the three attributes. For attribute “type of cuisine”
(i = 3), the set X5 is equal to {French, Italian, Lurembourgish}.
Restaurant ¢ can for example be represented by its evaluation pro-
file (little famous, 50, Luxzembourgish).

Roy [Roy85] underlines that the set X has in a first step to be clearly
identified and validated by the DM and that the attributes represent all the
dimensions that have consequences on the objective of the decision analysis. As
we will show later, in particular, two alternatives having the same evaluations
on all the selected attributes should be considered as indifferent.

A criterion is the combination of an attribute with supplementary informa-
tion derived from the DM’s preferences. For short, it is a numerical function
which represents the attribute together with some of the DM’s preferences, as,
for example, an order of the different evaluation levels. Nevertheless, concern-
ing this point, both previously cited methodological schools diverge in the way
these preferences are put into practical effect.
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Let us present on the restaurant selection problem the concept of preferen-
tial information.

Example 1 (continued) Imagine that Sophie expresses the fol-
lowing preferences concerning the restaurant selection problem: her
preference goes for very famous cooks, she would like to pay as little
as possible and she prefers French cuisine to Italian one, which in
turn she prefers to Luzembourgish meals.

Considering these observations, one can easily check that there ex-
1sts mo optimal restaurant in X, one that would dominate all the
other ones. As a consequence, an MCDA on this problem should
reveal a compromise alternative, satisfactory for Sophie.

1.3 Two methodological philosophies

In this section, our objective is to present how both methodological philoso-
phies, the European and American schools, can be brought together in the
framework of constructive approaches. We start by presenting synthetically the
methodological grounds of the two trends of thought and show in Section 1.3.3
how methods issued from both schools can be considered in constructive ap-
proaches.

Note that, as classically done, the asymmetric part of a binary relation >
will be denoted by >~ and its symmetric part by ~.

1.3.1 Building and exploiting an outranking relation

The objective of outranking methods is to build a relation on the alternatives,
called the outranking relation, and to exploit it in order to solve one of the
MCDA problematiques defined in Section 1.1. This relation then represents
the preferences of the DM based on pairwise comparisons of the elements of X
and is not necessarily transitive or complete.

One of the particularities of outranking methods is that the relation built
on the set X permits three types of comparisons of alternatives, namely pref-
erence, indifference and incomparability. According to Roy [Roy90], they allow
to represent hesitations of the DM which may result from phenomena like un-
certainty, conflicts or contradictions.

Bouyssou [Bou90] defines a criterion as a real valued function on the set
X of alternatives, such that it appears meaningful to compare two alternatives
x and y according to a particular point of view on the sole basis of their two
evaluations.
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As mentionned in Section 1.2, we denote by g;(x) the performance of al-
ternative x on criterion? i of N. Such a performance function g; (i € N)
can be regarded, without any loss of generality, as a real-valued function s.t.
(see [Roy90)):

Ve,y € X, gi(z) > ¢:(y) = x is at least as good as y on attribute i.

Furthermore, to each preference dimension are associated variable preference,
indifference and veto thresholds. For a quantitative attribute, the set of values
taken by the criterion function can be identical to X;. For qualitative criteria
however, the values taken by the criterion function have to be chosen carefully.
In both cases, these values can only be interpreted when linked to the different
thresholds in the pairwise comparison phase.

For short, in the context of outranking methods, we call a criterion the
association of an attribute ¢ of NV with the corresponding criterion function g;
and the different preferential thresholds.

In this framework, the set N of criteria is supposed to be consistent . Con-
sistency is defined via three properties: exhaustiveness, coherence and irredun-
dancy. The family of criteria is ezhaustive, if all the consequences which allow
the preferential comparison of any two alternatives have been taken into ac-
count. To illustrate this, let  and y be two alternatives of X. If g;(x) = g:(v)
for each 7 of F, then necessarily x has to be considered as indifferent from y.
If not, certain points of view have not been considered in the family of criteria.
Second there must be a coherence between local preferences modelled at the
level of the individual criteria and overall preferences modelled over the whole
family N. If g;(z) = ¢i(y) for each i of F'\ {k} and gx(x) > gr(y), then neces-
sarily x has to be considered as at least as good as y. Finally the criteria should
be irredundant in the sense that the family of criteria is considered as minimal
with respect to the preceding two conditions (see [Roy85, Bou90, Bis02]). This
implies in particular that there should not be more criteria in N than strictly
necessary. From a technical point of view, Roy and Bouyssou have described
a set of operational tests which allows to check the consistency of a family of
criteria (see [RB93]).

Considering two alternatives x and y of X, an outranking S between = and
y holds (xSy) if it is reasonable to accept, from the DM’s point of view, that z
is at least as good as y. From this definition it is easy to derive that z and y are
considered as indifferent if simultaneously zSy and ySx, that an incomparabil-
ity situation originates from the complete absence of outranking between z and

2In certain situations it may be necessary to join different attributes with the same pref-
erential semantics into one criterion. This implies that there might not be a one-to-one
correspondence between the attributes and the criteria. Nevertheless, as the construction of
the family of criteria is not the topic of this work, and to avoid confusions, we denote the
criteria by the same labels as the attributes.
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y (neither xSy nor ySt), and that z is strictly preferred to y if Sy and not ySz.

The construction of the outranking relation is done via pairwise compar-
isons of the alternatives on each of the criteria. They are based on differences
of evaluations which are then compared to preference, indifference and veto
thresholds (fixed in accordance with the DM’s preferences) in view of elabo-
rating the outranking relation. An additive aggregation of such local relations
is then performed via a weighted sum. This requires that to each criterion
is associated its importance coefficient (or weight). Finally, this calculation
produces a valued outranking relation on the set X which can then be seen as
a valued digraph, called the outranking digraph .

Different ways of constructing the outranking relations have been proposed
in the literature on MCDA methods. Among the most famous ones, one can
find the ELECTRE-like methods (see for example [KR76, RB93] for their de-
tailed description) or the PROMETHEE-like methods (see for example [BM02]

for an extensive presentation).

The second step of an outranking method is to exploit the outranking di-
graph in order to solve one of the MCDA problematiques mentionned in Sec-
tion 1.1. As the outranking relation is not necessarily complete or transitive,
this task is in general quite difficult and requires a clear understanding of the
semantics linked to the outranking relation.

In Part IT we present the construction and exploitation of a particular out-
ranking relation (called the bipolar-valued outranking relation) in order to solve
the choice and the k-choice problematique. On the basis of the corresponding
digraph, we show and pragmatically justify how to determine in a progressive
manner the potential candidates for a choice recommendation.

1.3.2 Building and exploiting an overall value function

The goal of Multiattribute Value Theory (MAVT) [KR76] is to build a numer-
ical representation of the preferences of the DM on X.

In other words, MAVT seeks at modelling the preferences of the DM, sup-
posed to be a weak order, represented by the binary relation > on X, by means
of an overall value function U : X — R such that,

rry e U@)>UW), VYoyeX

Note that the preference relation induced by such an overall value function is
necessarily a complete weak order.

weight

outranking
digraph

overall value
Sfunction
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The overall value function U can be determined via many different methods,
presented for example in [vE86, Chapter 8] in the context of an additive value
function model. Ideally, such methods should consist in a discussion with the
DM in the language of his expertise, and avoid technical questions linked to
the model which is used.

Concerning the overall value function, a commonly used model is the addi-
tive value function model. In such a case,

U(x) ::Z:wiui(xi)7 Vo= (r1,...,2,) € X,
i=1

where we write x; for g;(z), and where the functions u; : X; — R are called the
marginal value functions and w; is the weight associated to criterion i, Vi € N.
As far as the marginal value functions are considered and depending on the
selected MAVT model, for any = € X, the quantity u;(z;) is sometimes inter-
preted as a measure of the satisfaction of the value x; for the DM.

Another model is the weighted sum model, which can be written as
n
U(x) :=Zwigi(x), VzeX.
i=1

From now on, in the context of MAVT, the term criterion is used to des-
ignate the association of an attribute ¢ € N with the corresponding marginal
value function u;.

As we will see in Part 111, the average value function model is only applicable
if mutual preferential independence (see e.g. [Vin92]) among the criteria can be
assumed. This independence may however be hardly verified in many real-world
applications. It has therefore been suggested to consider more complex mod-
els, as for example the Choquet integral , which can be considered as a natural
extension of the weighted sum model (see for example [Gra92, Mar00a, LG03]).

The marginal value functions and the parameters of the overall value func-
tion are often determined together. In the case of the weighted sum, this
amounts to determining the importance of the n criteria (as trade-offs that a
DM would be willing to make). In such an additive situation, it might be real-
istic to ask the DM to provide such a weight vector. In more complex models,
however, the number of parameters can become huge and their meaning be
unclear for a DM.

In this latter case it might be advisable to determine these parameters di-
rectly from the DM by a proper questioning, called preference elicitation. Hence
the DM can for example provide preferential information on a (small) subset
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of the set X of alternatives or on interactions between the criteria. The precise
form of these prior preferences are discussed in Chapter 7.

Once the overall value function has been determined, each element of X
is associated with a real number. As a consequence, the alternatives become
comparable, and, as we will show in Chapter 8, it is possible to solve quite
conveniently the different problematiques presented earlier.

1.3.3 MAVT and outranking methods in a constructive
approach

As a researcher or practitioner of MCDA, quite frequently one may be con-
fronted to the thesis that there exists a clear dichotomy between the decision
aiding characteristic of the methods issued from the outranking school and the
decision making feature of MAVT methods. In this section we show that this
separation can be overcome and that in practice, both trends of thought can
be brought together in the framework of constructive approaches.

The thesis that the methods issued from the European MCDA school fit
quite well in the context of constructive approaches has been thoroughly stud-
ied and motivated by Bouyssou and Roy (see for example [RB86, RB93]). It
originates from the assumption that a DM’s preferences are in general poorly
formulated and can be variable over time and context (see also the concept
of bounded rationality in [Sim79] and [Mar78]). The goal of decision aiding
methods is therefore to build a new and continuously evolving model of reality.
This context-dependent representation of the problem [Vin92] is consequently
the result of a constructive elicitation process. It is important to note that
the validation of such a model is in general hard to achieve, but is in practice
done via its acceptance by the DM (see also [LMO83] for a discussion on model
validation).

From the literature on problems solved by MAVT it appears that the prac-
tice of these methods also belongs to a constructive approach. In this context,
Bouyssou and Roy show that the adoption of a constructive approach does not
at all signify the rejection of MAVT methods [RB93, p. 595]. Similarly, the
authors of [VE86] state that it is a mistake to think that a DM has numbers
in his head which wait to be elicited. This clearly supports the idea that in
an MAVT method, the preferences have to be determined in a constructive
manner.

Practical applications of MAVT methods are presented in [Bel99] in the
framework of decision conferencing. The latter is a collaborative way to sup-
port shared decision making problems where all the involved parties are gath-
ered together to thoroughly discuss and analyse the problem. MAVT is used to
systematically model the different views of the participants in order to enhance
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the understanding of the problem. From their implementation in real world
problems, it appears that such methods fit in the category of constructive ap-
proaches. The elicitation of the preferences is indeed done interactively and in
small steps, and it is not supposed that the preferences exist beforehand in the
participants’ minds.

In [SLO3], the authors argue that in practice, due to their axiomatic foun-
dations, certain MAVT-based models may sometimes not be well adapted to
describe the preferences of DMs. Nevertheless, they state that it is still possible
to consider those models as a first order approximation for a decision situation.
The axioms can indeed quite easily be explained to a DM and should be used
as guidelines for the elicitation of his preferences.

In practical applications, these underlying axioms could be viewed as restric-
tive locks which don’t allow the DM to express his preferences freely. However,
the thesis of Stewart and Losa [SLO03] is that these theoretical foundations
should provide a guidance in the analysis in order to avoid certain biases, or
even to explicit the latter ones for further consideration.

Both trends of thoughts can also be reconciled in other fields than their
usage in a particular decision analysis approach. Stewart and Losa [SLO3]
also compare their partially compensatory behaviours and the way they deal
with incomparabilities. Nevertheless, these considerations would lead us too
far away from one of the main objectives of this first part of our work, namely
to discuss the interactive and progressive aspects of outranking and MAVT
methods, which is the purpose of the following chapter.
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The goal of this chapter is to give a clear definition of progressiveness in in-
teractive MCDA methods and to explain and delimit the way we use it through-

out this work.

In Section 2.1 we first focus on the interaction between the DM and the
analyst. Then, in the second section, we introduce the concept of progressive-

ness, and outline its use in both methodological schools of thought.

Note that the subject of progressiveness is rediscussed later in Parts II and
[T after we have introduced the MCDA methods and tools issued from our

research.
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2.1 Interactivity

A dictionary definition of interactive is capable of acting on or influencing each
other'. Furthermore, in the context of computer science, it is defined as in-
teracting with a human user, often in a conversational way, to obtain data or
commands and to give immediate results or updated information?. As we will
show, these two definitions describe quite well the spirit of interactivity that
we consider in this work.

In decision aiding, the term interactive is associated with a particular type
of methods which are quite well known and documented in the literature (see
for example [VV89] for an extensive overview). Each of them is based on vari-
ous principles or philosophical assumptions.

The general structure of such an interactive method is a dialogue between
a DM and an interviewer (the latter can be the analyst or a software for ex-
ample). This discussion follows in general a precise protocol, which ensures a
coherent construction of the output and which depends on the method which
is used. The answers of the DM generate stepwisely the desired model for the
decision analysis. This process stops either if the DM is satisfied with the cur-
rent response, or if the interviewer considers that a dead end has been reached
and that further questionings will not improve the quality of the solution.

In this work we will regard interactivity from a less specific point of view. In

the sequel we consider interactivity in the process of the elicitation of the DM’s
preferences, in the sense of the previously mentionned dictionary definitions.

MCDA

| Interactivity

Input Output

‘ Information ‘<—P‘ Elicitation ‘ ‘ Exploitation ‘—r» Recommendation

Figure 2.1: General scheme of an MCDA process

Figure 2.1 represents a standard decision analysis process (inspired from
[GM98]), in which the interactive step is highlighted around the loop which
includes a preference elicitation and an exploitation phase. As already men-
tionned in Chapter 1, any MCDA process applied to real world problems re-
quires a strong interaction between the analyst and the DM. Therefore this

IThe American Heritage Dictionary of the English Language, Fourth Edition.
2Dictionary.com Unabridged (v 1.1).
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discussion phase is necessary for a proper determination of the DM’s prefer-
ences as well as for an adequate construction of the recommendation.

The interactive loop can be regarded as an alternation of discussion and
calculation phases. The DM is asked to express some information about his
preferences, which are then incorporated in the chosen mathematical model.
The output of this calculation step is then confronted to the DM and his pref-
erences, which restarts the loop. Such a procedure clearly aims at supporting
a self-learning of the DM’s preferences and the interaction plays an active part
in their development and evolution [Roy87b].

Besides the resolution of a given decision problem, such an interactive pro-
cedure inside the process aims at various goals. First, in a constructive context,
it is clearly meant to enlighten the DM, in the sense that the questioning should
provide him with intellectual insight on a decision problem. This means that
the ultimate goal is not solely to propose a recommendation, but also to let
him actively participate in its construction by defining and eliciting his own
preferences. As a direct consequence, the DM’s confidence in the output of the
process will be strengthened and he will more easily tend to validate it.

Second, in such interactive constructions, the preference elicitation algo-
rithm stops either when the DM is satisfied with the output, or when the
interviewer decides that it is not useful to continue the iterations. The lat-
ter case occurs when enough information has been gathered to provide a good
recommendation, or when a dead end situation has been reached (further ques-
tionings would lead to contradictions, for example).

Third, such interactive questionings are generally performed in a way which
avoids that too technical questions are asked to the DM. Ideally he should only
be questionned via the language of his domain of expertise. In particular, a
qualitative enquiry is preferable to a quantitative one (recall the statement
from [vES6] that a DM does not have numbers in his head).

We suppose in this work that the input information (see left part of Fig-
ure 2.1) is given beforehand. This implies that the construction of the different
alternatives, as well as the determination of the criteria which have to be con-
sidered in the decision, are performed in an earlier stage. These tasks are far
from being trivial, require a lot of time and effort, but they are out of the
scope of this work. Note that interactivity as considered here allows that this
initial information is modified during the questioning process, in case the DM
considers that it is necessary.

Let us now describe the progress of the interactive construction. Its starting
point is an initialisation phase which requires that the DM expresses some ini-
tial preferences concerning the decision problem. They depend on the MCDA

self-learning

domain of
expertise

input
information

initial
preferences



20 CHAPTER 2. PROGRESSIVE INTERACTIVE MCDA

method which is used and may be of different types. In this work, in the context
of outranking methods, we require from the DM that he indicates the weights
of the criteria and some indifference, preference and veto thresholds on the
values taken by the criteria functions. In the context of MAVT methods, we
ask the DM to provide a partial weak order over a subset of X (the reference
set), and, if possible, some intuitions on the interaction between some of the
criteria or their importance.

In case the DM has difficulties to express some of the required initial infor-
mation, it is the analyst’s role to help him to identify some of his preferences
via a discussion. For example, in MAVT-based methods, it is possible to pro-
pose a certain number of alternatives (possibly fictitious) to the DM so that he
can express some preferential statements. A quite convenient procedure is to
present very similar evaluation vectors to the DM and to ask him to compare
them. Ideally, these alternatives only differ on two dimensions, which allows to
estimate a tradeoff between the concerned criteria and to build the marginal
value functions (see for example [vE86, Chapter 8] for interactive elicitation
procedures).

Once the initial preferences are implemented, a first run of the chosen
MCDA method is performed. This allows to determine a first recommenda-
tion which is in accordance with the preferences expressed by the DM. In the
context of MAVT, it may already happen at this stage that the initial prefer-
ences expressed by the DM are not compatible with the selected model. In such
a case, different options can be considered: a revision of the DM’s preferences
guided by the axioms underlying the model, the choice of a more flexible (and
thus more complex) model or the selection of a model which gives a satisfactory
solution by violating some of the DM’s expressed preferences.

The DM is then confronted to the output of the MCDA method, in order
to continue the interactive construction of the recommendation and his pref-
erences. If the output is not in accordance with his expertise, he can correct
some of his statements or let his preferences evolve. The role of the analyst
is then to adapt the parameters of the method in order to satisfy the DM. In
outranking methods, this can be done by fine-tuning the weights or the thresh-
olds to better fit to the DM’s preferences. In MAVT methods, the analyst can,
for example, ask the DM to add some further alternatives to the reference set
which will enrich the numerical model. All in all, during these discussions, the
goal of the analyst is to determine whether the DM is satisfied with the current
recommendation or whether it needs to be adjusted.

The discussion with the DM and his confrontation to the output of a method
allow him to obtain a synthesised view of the preferences which he expressed.
Such a process therefore clearly fits in the context of constructive approaches.
Two options appear at that moment: either he is satisfied with the result or he
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detects certain incompatibilities with his expertise. In the latter case, he may
have identified new preferential information which he can inject in the method.
By proceeding this way he can stepwisely identify and construct his preferences.

It is important to mention here that at any step of this discussion, previous
affirmations may be revoked . Indeed, if the DM detects that his current percep-
tion of his preferences is not compatible with earlier statements, he can revoke
them and replace them at any time with corrected information. In particular,
in Figure 2.1, one can see that it is always possible to leave the interactive loop
to the left, in order to modify or update the input information. In practice this
is done if a new option is identified during the interactive questioning, if the
evaluations of an alternative require readjustments or if an existing decision
action becomes obsolete.

As already explained, in the context of MAVT methods, a non negligible
issue which may occur at any of the phases, is an incompatibility of the prefer-
ences expressed by the DM with the chosen MAVT model. Nevertheless, this
should not be considered as a restrictive blockage, but rather as a guidance
for the constructive determination of the DM’s preferences [SL03]. It is clear
that if these violations cannot be overcome, the chosen MAVT model is too
restrictive. In such a case, it should either be enriched or the DM must accept
approximate solutions which violate some of the preferences that he expressed.
If neither of these two solutions is acceptable for him, it might be advisable to
use another MCDA method.

The interactive process is in general stopped if the DM is satisfied with the
output of the method. At that stage, a major benefit for the DM is that he has
probably gained further insight on his preferences in the context of the consid-
ered decision problem. The output of the method is then a recommendation
which is in accordance with the chosen decision analysis problematique.

2.2 Progressiveness

In this section we introduce the concept of progressiveness in MCDA. Without
detailing a particular protocol, we indicate the major guidelines which should
underlie a progressive method. We also discuss the consequences and proper-
ties of such processes.

Similarly as for interactivity, it is a general framework which guides a deci-
sion analysis in a particular way. To start, let us once again cite a dictionary
definition which underlines well the meaning of progressiveness which we would
like to point out. The adjective progressive can be defined by mowving forward;

revocability
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advancing; proceeding in steps; continuing steadily by increments®. Thus, one
can already foresee that progressive MCDA methods will fit well in the context
of constructive approaches.

A progressive MCDA method is an iterative procedure which presents inter-
mediate recommendations to the DM which have to be refined at a further step
of the MCDA. The concept of progressiveness therefore intervenes in practice
in the determination of the recommendation, rather than in the elicitation of
a DM’s preferences.
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Figure 2.2: General scheme of a progressive MCDA process

Figure 2.2 represents progressiveness in an MCDA method. As one can see,
it is a framework around interactivity, which controls the construction of a fi-
nal recommendation via intermediate partial conclusions. The entry point to a
progressive method is an initialisation phase which generates a first recommen-
dation in accordance with the DM preferences, via an interactive questioning
(see Section 2.1). If the DM is not completely satisfied with this output, a pro-
gressive process can then be initiated to further refine the partial conclusion.

Note here that progressiveness should not be confused with robustness. In
the literature, robustness may have several meanings, such as flexibility, pru-
dence or stability (see [BMPT06, Section 7.5] for several definitions). Intu-
itively, robustness leads to consider several different sets of values of the pa-
rameters of an MCDA method and to look for recommendations which are good
for almost all sets of values [BMP06].

Before coming to a detailed discussion on progressiveness and its conse-
quences on an MCDA| let us start by presenting a short example which should

3The American Heritage Dictionary of the English Language, Fourth Edition.
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illustrate the necessity of such methods in real-world applications. The example
is situated in the choice problematique.

Example 2 Consider the problem of the selection of a candidate
for a position in a company. The human resources department of
the company collects a huge amount of résumés and other publicly
available information on potential candidates. The latter are evalu-
ated on a certain number of criteria according to the general objec-
tives of the company. After this first evaluation step, a filtering is
performed to reject the largest possible amount of individuals and to
retain only those among which the most interesting one is situated.

These few applicants are then called, and a telephonic interview is
performed by the head of the human resources department. Fach
of the individuals is then reanalysed, some of his evaluations are
refined and possibly he is evaluated on some other supplemental cri-
teria. Afterwards, a filtering is again performed.

Finally, a very limited number of candidates is invited to the com-
pany for an interview with the head of the department proposing the
open position. This final analysis, followed by a filtering step, is in-
tended to unwveil the best candidate among the remaining applicants.

Algorithm 1, presented hereafter, summarises the general structure of a
progressive MCDA method. As we will see, the algorithm shows that the final
recommendation is constructed via intermediate partial conclusions which are
analysed by refining the currently available information. We call X* (resp. N°?)
the set of alternatives (resp. criteria) at stage ¢ of the progressive resolution.
Note that in order to simplify our discourse, N also contains the supplemen-
tary information linked to the criteria, like importance weights, interactions or
thresholds. We write R? for the output of the MCDA at stage i. As long as the
final recommendation is not determined, the R’s are called partial conclusions.

As already discussed for Figure 2.1, the starting point is a first interactive
loop which allows to generate an initial recommendation R°. During this in-
teractive loop, the initial sets X and N may be modified by the DM in order
to allow him to better express his preferences. Therefore the output of this
first stage is given by the triple (XY, N° RY). If the DM is satisfied with the
recommendation R°, the MCDA process can stop here and there is no necessity
for a progressive resolution.

If the DM is not satisfied with this first output, then the current recom-
mendation is reanalysed in view of refining it further to satisfy the DM. The
precise form of these complementary analyses may depend on the type of prob-
lematique and the mathematical model which are chosen. Nevertheless, very
generally, these improvements may take the following form:

- Enrich the currently available data by further information;
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Algorithm 1 Progressive MCDA method
Input: (X, N)

1. Initialisation:
-1+ 0
- Interactive elicitation of the DM’s preferences and determination of
a recommendation R°

- Output: (X°, N°, R?)
2. Progressive Loop:

While the DM is not satisfied with R?, do

1. Interactive elicitation
- Enrich (X N?) by exploiting currently available informa-
tion via an interactive questioning of the DM
- —i+1
2. Partial conclusion
- Based on (X!, Nit1) generate a partial conclusion R**?
3. Output: (X1 N+l Ri+L)

Output: The final recommendation R*.

- Solve issues related to missing data;
- Focus on a subset of alternatives to refine the recommendation.

Such supplementary investigations are then combined with a new interac-
tive loop which finally produces a new partial conclusion. The output of such
a progressive loop is then the triple (X**1 N*t1 Ri+1) If the DM is again
not satisfied with the current recommendation R**!, the progressive loop is
restarted.

This iteration is continued until the DM accepts the recommendation RF
as the final one. In practice this means that he is satisfied with R* or that he
can get along with it on his own to elaborate his final decision.

Note that the different elements of this process can easily be identified in
Example 2 which uses an initialisation phase (selection via the résumés) and
two times the loop of the algorithm.

The use of a progressive decision analysis method can be motivated by (at
prudence least) three reasons. First, it can be justified by prudence. As the ultimate
recommendation does not necessarily have to be reached in one step, each
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partial conclusion can focus exclusively on the information available at that
moment. This means that at each intermediate stage, only strongly motivated
affirmations are made. In the context of outranking relations, this could for ex-
ample mean that the comparability of the alternatives is not forced at any cost.

Second, progressiveness is also motivated by economical constraints. Indeed,
at a given moment, only limited financial or temporal resources may be avail-
able. In Example 2 this is clearly demonstrated by the progressive approach
to the candidate selection. It would indeed not be possible to have personal
interviews in the company with all the initial applicants as such consultations
are in general very costly and time demanding.

Third, as the DM’s preferences, as well as the final recommendation, are
actively constructed via small steps, such methods are motivated by a construc-
tive approach to the problem.

Note also that progressiveness is a methodological context which is well
adapted to deal with missing values. This does not mean that progressive-
ness allows solving problems involving missing values by default. It is rather
a framework which allows to postpone the issue of incomplete information to
later stages. In such a case, it is obviously necessary that the algorithm under-
lying the MCDA is able to deal with such issues. In a progressive process, such
incomplete information can then be completed, if necessary, as the decision
analysis process goes along. This prudent way of dealing with these difficulties
allows to make no hypotheses on the missing data (approximations, default
values) and to consider them as such until they can be determined.

Finally, it is important to note that if progressiveness is adopted for an
MCDA problem, its resolution will be guided by a no return policy. We call
this characteristic of progressiveness irrevocability of previous partial conclu-
sions. Example 2 clearly underlines this feature, as at each step, a certain
number of candidates are put aside, for good reasons, and their rejection is
never reappraised at later stages of the analysis.

Irrevocability is a consequence of prudence and the limited economical re-
sources pointed out above. To illustrate this, consider again the choice prob-
lematique. As we will detail hereafter, the goal is be to narrow at each step the
current set of potential alternatives for the choice. If revocability was allowed,
nothing would guarantee to converge to the desired solution. Furthermore, in
a situation involving limited time or money resources, such reappraisals of pre-
vious conclusions are certainly not appropriate.

Nevertheless, in practical situations, this irrevocability condition might be
too strong. One could indeed imagine a situation, where during the progressive
process, new potentially good decision actions appear, which the DM would like

economical
constraints

missing values

irrevocability
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to include in the current set of alternatives. Such a manipulation does not
strictly fit in a progressive context as described above. Therefore, it should
be performed with much care, and the analyst must control that it does not
generate contradictions with affirmations of previous steps of progressiveness.

Let us now turn to a more detailed description of progressiveness in the two
methodological trends for MCDA.

2.2.1 Progressiveness in outranking methods

Recall that in outranking methods, the relation built on the set X permits
three types of comparisons of alternatives, namely preference, indifference and
incomparability. The latter is a strong argument for the use of progressiveness
in such methods. As already mentioned, progressiveness finds a very natural
context of application in the choice problematique. Hereafter we describe what
the three stages of Algorithm 1 could be in this context. Other formulations
could of course be found. Note that an extended study of a progressive method
for the choice problematique is the subject of the second part of this work.

The first stage of the algorithm consists of the analysis of the initial set of
potential candidates for the choice. During this phase, the preferences of the
DM have to be determined and implemented in the choice algorithm. A first
recommendation R is then generated by removing the alternatives which can
obviously be put aside, considering the currently available information. This
has to be performed via clearly defined rules which justify this cutting off. In
that case, R" should contain hardly comparable alternatives.

If the DM is not satisfied with R°, the progressive analysis can be started.
The alternatives of R (or X°) are then reanalysed and the input data for the
next loop is adjusted or completed with additional information. One goal of
this step is to try to revoke the hard comparabilities between the potential
choice candidates.

During this step, the data is enriched with new information from the DM
and finally a partial conclusion R**! is generated. If it satisfies the DM, the
process can be stopped. Else the progressive loop is reinitiated and the current
recommendation R*! is refined.

Note that due to the property of irrevocability discussed earlier, the initial
set X of alternatives is monotonically reduced after each loop of the progres-
sive method and that ideally, the final recommendation may consist of a single
alternative.

As already said, at a given stage, the partial conclusion R*! should contain
alternatives which are hardly comparable. The reasons for such difficult com-
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parabilities can be of various types, as, for example, the existence of missing
values in the evaluation vectors of the alternatives. In such a case, the objective
of next phase is to try to solve this issue by investigating further the problem
in order to obtain this previously unavailable information.

In such a choice context, we clearly have R**!' C R* and X**!' c X*.

Progressiveness may also be applicable in the framework of the ranking
problematique. In general, outranking methods generate a ranking of the al-
ternatives containing incomparabilities and indifferences (a partial weak order).
Similarly as in the choice problematique, the DM may not be satisfied with such
a ranking, and in a further step of the analysis, he may be interested in resolv-
ing the incomparabilities via further investigations to create a less partial order.
This issue is nevertheless out of the scope of this work. Note that in [Lam07].
the author develops a progressive process to reach a compromise ranking from
multiple rankings originating from a group of DMs. The goal of such a method,
based on prudent orders, is to eliminate incomparability situations in the com-
promise ranking in a progressive manner through interactions with the group
of DMs.

Finally note that progressiveness could also be used to discriminate between
alternatives which are considered as indifferent, at a given stage of the process.
In such a situation, a deeper analysis may add additional information on the
pairwise comparisons which will create a less weak order.

2.2.2 Progressiveness in MAVT methods

The objective of MAVT methods is to build an overall value function which
is a representation of a weak order over the alternatives of X. Hence in this
case, the objective of progressiveness cannot be to overcome incomparabilities
between alternatives. Nevertheless, the use of progressiveness in MAVT has a
similar goal as in outranking methods, namely to make the recommendation
more accurate.

The DM may consider that the ranking generated by such a method might
be too rough and that too many alternatives can be considered as equivalent.
Such a situation can originate from two non-exclusive observations. First the
overall value function generated equivalence classes by assigning the same over-
all values to many alternatives (real indifferences). Second, if the chosen model
allows to give a meaning to the difference of overall evaluations, the alterna-
tives having very close values may be considered as indifferent. In such a case,
it might be interesting to focus on those problematic elements of X in order
to try to discriminate them further, if necessary. In practice this amounts to
establishing that their values are ordered in a definite way.
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In case the input data contains nonstatistical uncertainty, the output of an
MAVT method can be an interval order where the overall evaluations of the
alternatives also suffer from impreciseness. In such a case, progressiveness may
be used to focus on the evaluation of a certain number of alternatives in order
to make them more precise. As a consequence, such a progressive refinement
would allow to further discriminate between the selected alternatives in the
ranking.

At this point it is again possible to clearly observe the distinction between
robustness and progressiveness. Indeed, robustness does not aim at searching
further information on the problem to determine a more accurate output. Its
goal is rather to obtain a recommendation that could be justified by any pos-
sible sets of input values.

In Part IIT we will represent impreciseness in the evaluations of the alter-
natives by so-called fuzzy numbers and we will detail how progressiveness can
be applied in such a framework.

In the particular case of the choice problematique, progressiveness allows
again to focus on a subset of alternatives (namely the first positions of the
ranking) to determine the single best one.

Note that in Section 8.3 of Chapter 8, after having discussed the resolution
of different problematiques, we will briefly return to progressiveness in MAVT
methods.
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Part II: Progressive choice methods in an out-
ranking framework

On n’est jamais aussi bien battu que par
s01 méme.

Les Shadoks, Jacques Rouxel?

Abstract

The second part of this work is situated in a framework of outranking methods,
requiring a pairwise comparison of the alternatives. More precisely we focus on
the choice problematique and its extension to the determination of k£ > 1 best
alternatives. Note beforehand that our developments are based on the pioneer-
ing works of Roy and Bouyssou on these subjects, but quite quickly we will
move away from this path by reformulating the foundations of the resolution
of the choice problematique.

This part is divided into three chapters, each of them presenting some per-
sonal contributions. The first chapter introduces some preliminary considera-
tions on what we call the bipolar-valued credibility calculus. It represents the
roots of the developments concerning the choice problematique.

Then, in Chapter 4 we revisit the choice problematique and detail the RUBIS
method for the determination of a choice recommendation. The considerations
of these two first chapters are based on our article [BMRO07].

Finally, in the third chapter, we discuss the k-choice problematique and its
various formulations. Two of them are solved by a modification of the original
outranking relation and by means of the RUBIS algorithm. Note that this
chapter is inspired from our article [MBO07].

4You are never so well beaten than when you are beaten by yourself.
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Chapter 3

Preliminary considerations

Contents
3.1 Bipolar-valued credibility calculus ... ... ... 33
3.2 Bipolar-valued outranking relation . . . ... ... 35
3.3 Kernels in the bipolar-valued digraph . . ... .. 41

The objective of this first chapter of Part II is to introduce fundamental con-
cepts which we will use later in the description of our proposal (the RUBIS
method) to solve the choice problematique. As we are situated in a context
where we perform pairwise comparisons of alternatives, we detail in this chap-
ter the construction of an outranking relation.

The chapter is structured as follows. In Section 3.1 we introduce the so-
called bipolar-valued credibility calculus which allows us to perform logical op-
erations on propositions which are considered more or less credible by a DM.
Then, in Section 3.2 we detail the construction of the outranking relation on the
set of alternatives, based on the bipolar-valued credibility calculus. Finally, in
the last section, we recall results from [BPRO6] on the determination of kernels
in bipolar-valued outranking digraphs.

Note that the developments of this chapter are inspired from our arti-
cle [BMRO7].
3.1 Bipolar-valued credibility calculus
Later in this work, we will detail the RUBIS method for constructing choice

recommendations and its extension to the k-choice problematique. In order
to easily understand the considerations of the following chapters, we start in
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this section by establishing the backbone of the RUBIS method, namely the
so-called bipolar-valued credibility scale, modelling the credibility of the vali-
dation of preferential statements.

Let & be a propositional statement like “alternative x is a choice recom-
mendation” or “alternative x is at least as good as alternative y”. In a decision
process, a DM may either accept or reject these statements following his belief
in their validation [Bis00]. Such a degree of credibility (or credibility for short)
may be represented via a credibility scale £ = [—1, 1] supporting the following
semantics.

Let £ and ¢ be two propositional statements with which are associated
credibilities r and s € L:

(1) If r = +1 (resp. r = —1) then it is assumed that £ is clearly validated
(resp. clearly non-validated). If 0 < r < +1 (resp. —1 < r < 0) then
it is assumed that £ is more validated than non-validated (resp. more
non-validated than validated). If » = 0 then & could either be validated
or non-validated, a situation we call indetermined.

(2) If r > s then it is assumed that the validation of £ is more credible than
that of ¢ (or that the non-validation of v is more credible than that of

£).

(3) The credibility of the logical disjunction £V 1 (resp. the logical conjunc-
tion & A 1) of these statements equals the credibility of the statement
that is the most (resp. the less) credible of both, i.e. max(r,s) (resp.
min(r, s)).

(4) The credibility of the non-validation of & equals —r € L, which also
denotes the credibility of the validation of the logical negation of £ (written

=§).

Definition 3.1.1. The credibility associated with the validation of a proposi-
tional statement &, defined on a credibility domain L and verifying properties
(1) to (4) is called a bipolar-valued characterisation of .

It follows from Property (3.1) that the graduation of credibility degrees
concerns both the affirmation and the negation of a propositional statement
(see, e.g., [Win84]). Starting from +1 (certainly validated) and —1 (certainly
non-validated), one can approach a central position 0 by a gradual weakening
of the absolute values of the credibility degrees. This particular point in £ rep-
resents an indetermined situation concerning the validation or non-validation
of a given propositional statement [Bis00, Bis02].

Definition 3.1.2. The degree of determination of the validation (for short
determinateness) D(&) of a propositional statement £ is given by the absolute
value of its bipolar-valued characterisation: D(§) = |r|.
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For both a clearly validated and a clearly non-validated statement, the de-
terminateness equals 1. On the opposite, for an indetermined statement, this
determinateness equals 0.

This establishes the central degree 0 as an important neutral value in the
bipolar-valued credibility calculus. Propositions characterised with this degree
0 may be either seen as suspended or as missing statements [Bis02]. The credi-
bility degree 0 represents a temporary delay in characterising the validation or
non-validation of a propositional statement. In the framework of progressive
decision aiding, this feature allows us to easily cope with currently indetermined
preferential situations that may eventually become determined to a certain de-
gree, either as validated or non-validated, in a later stage of the decision analysis
process.

The following section introduces the concept of bipolar-valued outranking
digraph which is the preferential support for the RUBIS choice decision analysis
method.

3.2 Bipolar-valued outranking relation

Recall that X = {z,y,2,...} is a finite set of p alternatives evaluated on a
finite, coherent family N = {1,...,n} of n criteria.

To each criterion j of N we associate its relative significance weight repre-
sented by a rational number w; from the open interval ]0, 1] such that

p
ij =1.
j=1

Besides, to each criterion j of IV is attached a criterion function g;, with values
in [0, 1], and which allows to compare the performances of the decision objects
on the corresponding preference dimension (see Section 1.3.1 for further de-
tails).

Let g;(z) and g;(y) be the performances of two alternatives « and y of X
on criterion j. Let A;(x,y) be the difference of the performances g;(z) — g;(y).

With each criterion j of NV is associated a certain number of thresholds,
which allow to represent a DM’s preferences more accurately when comparing
two alternatives. In this work we consider four such thresholds:

- an indifference threshold ¢;(g;(z)) € [0, 1];
- a preference threshold p;(g;(x)) € [g;(g;(2)),1[;
- a weak veto threshold wv;(g;(z)) € [p;(g;(z)),1] U {2};

weight
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- and, a strong veto threshold v;(g;(x)) € [wv,(g;(z)), 1] U {2}.

The complete absence of veto is modelled here via the value 2. All these thresh-
old functions are supposed to verify the standard non-decreasing monotonicity
condition (see [RB93, page 56]).

Note that the thresholds are not absolute and may depend on the value
taken by alternative x on criterion j.

Let S be a binary relation on X. Classically, an outranking situation xSy
between two alternatives x and y of X is assumed to hold if there is a suffi-
cient majority of criteria which supports an “at least as good as” preferential
statement and there is no criterion which raises a veto against it [Roy85]. The
validation of such an outranking situation may quite naturally be expressed in
the bipolar credibility calculus defined in Section 3.1. Our formulation is based
on the classical ELECTRE definition of the outranking index. Nevertheless the
reader should notice some slight but important differences, due to the seman-
tics of the underlying bipolar valuation.

Indeed, in order to characterise a local “at least as good as” situation between
two alternatives x and y of X for each criterion j of N (called local or partial
concordance) we use the following function C; : X x X — {-1,0,1} such
that:

1 it Aj(z,y) > —q(g;(x));
Ci(w,y)=q-1 if Aj(z,y) < —p;ilg;(x));
0 otherwise .

Credibility 0 is assigned to C;(z,y) in case it cannot be determined whether
alternative x is at least as good as alternative y or not (see Section 3.1).

Similarly, the local or partial veto situation for each criterion j of N is
characterised via a veto-function V; : X x X — {—1,0,1} where:

1 it Aj(z,y) < —v;(g;(2));
Vilz,y) =4 —-1 if Aj(z,y) > —wv;(g;(x));
0 otherwise .

Again, according to the semantics of the bipolar-valued characterisation, the
veto function V; renders an indetermined response when the difference of per-
formances is between the weak and the strong veto thresholds wv; and v;.

Figure 3.1 represents both functions for a fixed g;(z).

The overall outranking index S , defined for all pairs of alternatives (z,y) €
X x X, conjunctively combines an overall concordance index, aggregating all
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Figure 3.1: Local concordance (—) and veto (- -) functions, with g;(x) fixed

local “at least as good as” statements, and the absence of veto on each of the
criteria. For any two alternatives x and y of X we have:

§($,y) = min{é(m7 y)7 —‘/1(33, y)v ety _Vn(xvy)}’ (31)

where the overall concordance index C (z,y) is defined as follows:

Clz,y) = > w;-Cjx,y). (3.2)

JEN

The min operator in Formula 3.1 translates the conjunction between the
overall concordance index C'(z, y) and the negated partial veto indexes —Vj(z,y)
(Vj € N). In case V; = —1 for all j € N (absence of partial veto on all cri-

teria), the resulting outranking index S equals the overall concordance index C.

Following Formulae (3.1) and (3.2), S is a function from X x X to £ repre-
senting the credibility of the validation or non-validation of an outranking situ-
ation observed between each pair of alternatives. S is called the bipolar-valued
characterisation of the outranking relation S, or for short, the bipolar-valued
outranking relation.

The maximum value +1 of the valuation is reached in the case of unanimous
concordance, whereas the minimum value —1 is obtained either in the case of
unanimous discordance, or if there exists a strong veto situation on at least one
criterion.

The median situation 0 represents a case of indeterminateness: either the
arguments in favour of an outranking are compensated by those against it or, a
positive concordance in favour of the outranking is outbalanced by a potential

bipolar-valued
outranking
relation
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(weak) veto situation.

Let us now show how this indetermination degree can be extended to a
larger range of values. To do so, we define the concept of 3-cut of the bipolar-
valued credibility scale. Let 8 €]0,1]. The S-cut relation S of S is defined as
follows, for each (z,y) € X x X:

3 _) 0 if [S(x,y)| < B;
Sple,y) = { S(z,y) else.

This modification of the original bipolar-valued outranking relation S allows to
collapse symmetrically a given range of values around 0 on this indetermination
point. As a consequence, it is possible to consider a larger interval of values as
indetermined in order to take into account majority-related impreciseness. A
DM could decide to require such a modification of the outranking relation, if he
considers that a simple majority is not sufficient to consider that an outranking
situation is validated. Figure 3.2 schematically represents the effect of a 3-cut
on the bipolar-valued credibility scale.

indetermined
——

-1 —‘:3 f) 3‘ -«Ll

Figure 3.2: The values in | — 3, 5[ are collapsed on 0

It is easy to recover the semantics linked to this bipolar-valued characterisa-
tion from our earlier considerations (see Section 3.1). For any two alternatives
z and y of X,

— S(z,y) = +1 means that assertion “xSy” is clearly validated.

S(xz,y) > 0 means that assertion “xSy” is more validated than non-
validated.

— S(x,y) = 0 means that assertion “xSy” is indetermined.

- §(x,y) < 0 means that assertion “xSy” is more non-validated than vali-
dated.

- §(at, y) = —1 means that assertion “xSy” is clearly non-validated.

Definition 3.2.1. The set X associated to a bipolar-valued characterisation
S of the outranking relation S € X x X is called a bipolar-valued outranking
digraph, denoted G(X,S).

The crisp outranking relation S can be constructed via its_bipolar-valued
characterisation. S is the set of pairs (z,y) of X x X such that S(z,y) > 0. We
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write G(X,S) the corresponding so-called crisp outranking digraph associated
to G(X, S).

Let us present these concepts via a short example.

Example 3 Consider the set X = {a,b,c,d,e} of alternatives
evaluated on a coherent family N = {1,...,5} of criteria of equal
weights (see left part of Table 3.1). To each criterion is associated
a preference scale in [0,1] and an indifference threshold of 0.1, a
preference threshold of 0.2, a weak veto threshold of 0.6, and a strong
veto threshold of 0.8.

Based on the performances of the five alternatives on the criteria,
we compute the bipolar-valued outranking relation S shown in the
right part of Table 3.1. The crisp outranking dzgmph G(X S) as-
sociated to the bipolar-valued outranking digraph G(X S) is shown
in Figure 3.5.

coherent family of criteria S
alternatives 1 2 3 4 5 a b c d e
a 0.52 0.82 0.07 1.00 004 | 1.0 -02 -1.0 0.6 04
b 096 0.27 043 0.83 032 | 04 1.0 02 02 04
c 0.85 031 061 041 098 | 0.2 04 1.0 04 0.6
d 0.30 0.60 0.74 0.02 002 |-1.0 -1.0 -1.0 1.0 -1.0
e 0.18 0.11 023 094 063 | 02 02 -04 0.0 1.0

Table 3.1: Example 3: performance table and bipolar-valued outranking rela-

tion

@/

3

/@

<7

X

Figure 3.3: Example 3: associated crisp digraph and indetermined arc

It is worthwile noting in the previous example the dotted arc from alter-
native e to d, representing an indetermined outranking (see Figure 3.3). This
situation is not expressible in a standard Boolean-valued characterisation of
the outranking. Consequently, the negation of the strictly positive part of S
is in general not identical to the complement of S in X x X. This therefore
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requires the use of the dotted arcs to better represent S via its associated crisp
digraph.

The reader, familiar with the ELECTRE methods, may have noticed much
ressemblance between the bipolar-valued characterisation S and the classical
ELECTRE-type valuations of an outranking relation. It is important to notice,
however, that the latter do not necessarily respect the semantics of the bipolar
credibility calculus.

In particular, the 1/2 value does in general not have the meaning of inde-
termined validation which is given here to the 0 credibility degree. The bipolar
valuation of the outranking relation presented here is solely based on sums
and differences of weights of individual criteria. This is less obvious in some
ELECTRE-type valuations, where the local concordance index can take values
in the real unit interval (see for example ELECTRE III). As a consequence, the
meaning conveyed to some of these valuations is not clear.

Let us now introduce some further concepts which are used in this article.
The order n of the digraph G(X,.S) is given by the cardinality of X, whereas
the size p of G is given by the cardinality of S.

A path of order m < n in G(X,S) is a sequence ()7 of alternatives of
X such that S(z;,@iy1) >0, Vi€ {1,...,m —1}. A circuit of order m < n is
a path of order m such that S(x,,,z1) > 0.

Definition 3.2.2. An odd chordless circuit (x;), is a circuit of odd order m
such that S(x;, xi41) >0, Vi€ {1,...,m—1}, S(xm,2z1) >0 and S(z;,z;) <0
otherwise.

Following a result by [Bou06] which extends the results of [Bou96] to the
bipolar-valued case, it appears that, apart from certainly being reflexive, the
bipolar-valued outranking digraphs do not necessarily have any particular re-
lational properties such as transitivity or total comparability. Indeed he shows
that, with a sufficient number of criteria, it is always possible to define a per-
formance table such that the associated crisp outranking digraph renders any
given reflexive binary relation. This result bears a negative algorithmic conse-
quence. Indeed, as we will show in Chapter 4, solving the choice problematique
based on a bipolar-valued outranking relation is a non-trivial algorithmic prob-
lem in case of non-transitive and partial outrankings.

It is important to underline here that the starting point of this study is
deliberately a given performance table, a set of threshold and veto functions
as well as significance weights which are all clearly defined and have been ac-
knowledged by the DM. Consequently, tackling impreciseness issues in these
data is out of the scope of this work. For first attempts to cope with this topic
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in a bipolar-valued credibility calculus framework, see [Bis04].

Historically, in the context of outranking relations, the progressive choice
problematique has been solved by using the independent outranking set, i.e.,
the kernel of a digraph [Roy68, Roy85]. Let us define in the next section
this concept in a bipolar-valued outranking digraph and show how it can be
determined.

3.3 Kernels in the bipolar-valued digraph

Definition 3.3.1. Let Y be a non-empty subset of X.

1.'Y is said to be outranking (resp. outranked ) in G(X,S) if and only if
€Y = JyeY:Sy,z) >0 (resp. S(z,y) >0).

2. Y is said to be independent (resp. strictly independent) in é(X, 5’) if
and only if for all x #y in' Y we have S(z,y) <0 (resp. S(z,y) <0).

3. Y is called an outranking (resp. outranked) kernel if and only if it is an
outranking (resp. outranked) and independent set.

4. Y is called a determined outranking (resp. outranked) kernel if and only
if it is an outranking (resp. outranked) and strictly independent set.

It follows from these definitions that, if S only takes negative values (S=0),
X is an outranking and an outranked kernel.

Let us illustrate these concepts on Example 3.

Example 3 (continued) In the crisp digraph G (see Figure 3.3) we
can observe two determined outranking kernels, namely the single-
tons {b} and {c}. The digraph also contains one outranked kernel,
namely the pair {d,e}. Note that alternatives d and e are indepen-
dent (but not strictly independent) from each other.

A set Y can be characterised via bipolar-valued membership assertions Y :
X — L, expressing the credibility of the fact that x € Y or not, for all z € X.
Y is called a bipolar-valued characterisation of Y, or for short a bipolar-valued
set in G(X,S). The semantics linked to this characterisation can again be

derived from the properties of the bipolar-valued scale £ (also see Section 3.1):

~ Y (z) = +1 means that assertion “z € Y” is clearly validated;

- f’(x) > 0 means that assertion “z € Y7 is more validated than non-
validated;

— Y (z) = 0 means that assertion “z € Y” is indetermined;

outranking

outranked

(strictly)
independent

kernel

bipolar-valued
set
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~ Y(2) < 0 means that assertion “z € Y” is more non-validated than vali-
dated;

— Y(x) = —1 means that assertion “z € Y” is clearly non-validated. Equiv-
alently, one can say that assertion z ¢ Y is clearly validated.

In the following paragraphs, we recall useful results from [BPR0O6]. They
allow us to establish a link between the classical graph theoretic and algebraic
representations of kernels (via their bipolar-valued characterisations).

Proposition 3.3.1. The outranking (resp. outranked) kernels of G(X,S)

are among the bipolar-valued sets Y satisfying the respective following bipolar-
valued kernel equation systems:

I;lj;{[min(Y(y), S(y,z))] = Y (x), forallze X; (3.3)
I;l;.;([Iﬂln(g(SE,y),?(y))] =—Y(z), foradlzeX. (3.4)

Let Y* and )~ denote the set of bipolar-valued _sets verifying respectively
kernel equation systems (3.3) and (3.4) above. Let Y7 and Y5 be two elements
of YT (or V7). Y; is said to be at least as sharp as Ya (denoted Yy < Y;) if
and only if for all z in X either Y3 (z) < Ya(z) < 0 or 0 < Ya(z) < Yi (). The
= relation defines a partial order (antisymmetrical and transitive) [Bis97]. If
Y (x) # 0 for each x in X, Y is called a determined bipolar-valued set.

Theorem 3.3.1 (Bisdorff, Pirlot, Roubens, 2006).

1. There exists a one-to-one correspondence between the mazximal sharp de-
termined sets in YT (resp. Y~) and the determined outranking (resp.
outranked) kernels in G.

2. Each mazimal sharp set in YT (resp. Y~ ) characterises an outranking
(resp. outranked) kernel in G.

Proof. The first result, specialised to determined sets, is proved in [BPRO6,
Theorem 1]. The second one results directly from the kernel equation systems
of Proposition 3.3.1. O

The maximal sharp sets in V' (resp. ) ) deliver thus outranking (resp.
outranked) kernel characterisations. Let us illustrate this result on Example 3.

Example 3 (continued) Recall that the crisp outranking digraph
G contains two outranking kernels and one outranked kernel. The
bipolar-valued characterisations of these kernels are shown in Ta-
ble 3.2.

The outranking kernel {c} is more determined than {b} and is there-
fore the more credible instance. Indeed, one can easily verify that
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Y ‘ a b c d e
{( | -02 02 -02 -02 -02
{c} |-02 -04 04 -04 -04

{de} | -06 -02 -04 1.0 0.0

Table 3.2: Example 3: bipolar-valued characterisations of the kernels

the degrees of logical determination of the membership assertions for
{c} are higher than those for {b} (see Definition 3.1.2). Concerning
the outranked kernel {d, e}, it is worthwhile noting that alternative
d belongs to it with certainty, whereas the belonging of alternative e
to this kernel depends on the indetermined situation dSe.

In the context of a progressive method, if the latter outranking be-
comes more true than false at a later stage, then e can be dropped
from the kernel without any regret. On the opposite, if the outrank-
ing becomes more non-validated than validated, then e remains part
of the then determined kernel {d,e}.

In the past, Bisdorfl and Roubens [BR03] have promoted the most deter-
maned outranking kernel in a bipolar-valued outranking digraph G as a con-
venient choice recommendation in a progressive resolution of the choice prob-
lematique.

Example 3 (continued) The reader can indeed easily verify in the
performance table of his example (see Table 3.1) that alternative
c is performing better than alternative b. Alternative a has very
contrasted performances and d indisputably presents the worst per-
formances.

However, well founded criticisms against the capacity of the outranking
kernel concept to generate, in general outranking digraphs, a satisfactory and
convincing choice recommendation led us to propose a new method. The follow-
ing chapter deals with the choice problematique and details the RUBIS method
for determining an adequate choice recommendation.
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The choice problematique
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This chapter represents the core of the second part of this work. It contains
our developments on the choice problematique in the framework of a bipolar-
valued outranking relation. It is mainly motivated by the unsatisfactory way
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the classical ELECTRE methods deal with the choice problematique. We there-
fore present in this chapter a new proposal for computing provisional choice
recommendations from a bipolar-valued outranking digraph called the RUBIS
method. Our approach is based on new pragmatic and logical foundations of
the progressive choice problematique in the tradition of the pioneering work of
Roy and Bouyssou [RB93].

In the first section, we introduce the choice problematique, present the ex-
isting proposals and introduce the foundations of the RUBIS method. Then, in
Section 4.2 we determine the graph theory-related object which will represent
the choice recommendation. Finally, in Section 4.3 we present the RUBIS algo-
rithm and some of the properties of the RUBIS choice recommendation.

Note that the considerations of this chapter are mainly based on our arti-
cle [BMRO7].

4.1 Foundations of the RUBIS choice decision aid-
ing methodology

Apart from the European multiple criteria decision aiding community [Roy85,
RV96], the progressive resolution of the choice problematique has attracted
quite little attention in the Operational Research (OR) field. Seminal work
on it goes back to the first article of Roy on the ELECTRE I methods [Roy68].
After [Kit93], interest in solving the choice problematique differently from the
classical optimisation paradigm has reappeared. An early work of [BR96] on
valued kernels has resulted in new attempts to tackle the progressive choice
problematique directly on the valued outranking digraph. After first positive
results [Bis00], methodological difficulties appeared when facing highly non-
transitive and partial outranking relations.

In this section, we first revisit the choice problematique in order to identify
the type of pragmatic decision aiding we are interested in. A brief comparison
with the classical ELECTRE method will underline similarities and differences
with the RUBIS method. Finally, we present new foundations for the choice
decision aiding methodology.

4.1.1 The choice problematique

From a classical OR point of view, the choice problematique is the search for
one best or optimal alternative. From a decision aiding point of view, however,
the assistance we may offer the DM depends on the nature of the decision
aiding process we support.
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4.1.1.1 Choice and elimination

Following the tradition [Roy85, RB93], we call choice problematique the cate-
gory of decision problems consisting of the search for a single best alternative.
Symmetrically to this, we define the elimination problematique as the category
of decision problems, whose objective is to search for a single worst alternative.

The interest of considering both opposite problematiques will appear later
in Sections 4.1.3 and 4.2.3, where we show that, due to the intransitivity of the
outranking relation, certain sets of alternatives can be considered a potential
choice, as well as, a potential elimination recommendation (which makes the
recommendation ambiguous in both problematiques).

Following the symmetric design of the bipolar credibility calculus, both the
choice, and the elimination problematique can be tackled similarly. As the first
one is much more common, we will in the sequel exclusively focus on the choice
problematique.

4.1.1.2 Type of decision aiding process

Recall that a decision aiding method is a regular and systematic way of dealing
with a given decision problem. A choice recommendation is the output of such
a decision aiding method in the particular context of the choice problematique.

Very generally, one may distinguish between two general kinds of choice
problematiques, depending on the nature of the underlying decision problem.
On the one hand, choice problems which require the single best alternative to be
uncovered in a single decision aiding step, and, on the other hand, choice prob-
lems which allow to progressively uncover the single best alternative through
the implementation of an iterative, progressive multiple step decision aiding
process.

In the first case, a choice recommendation must always propose a single
best alternative, whereas in the second case, the choice recommendation is a
provisional advice that should, given the current available information, propose
all plausible candidates for a final solution. It is in fact a set of potentially best
alternatives which has to be refined via further interactions with the DM. It
is important to clearly distinguish between a current and the eventual choice
recommendation consisting ideally of the single best alternative. If not, this
last recommendation requires to be further analysed by the DM himself, in
view of determining his ultimate choice.

As already pointed out, our interest lies in this latter category of prob-
lems, where the ultimate recommendation can be determined progressively.
We therefore focus in the sequel on the resolution of this progressive decision
aiding problem, in the tradition of the classical ELECTRE methods.

choice and
elimination
problematique

choice
recommendation

eventual choice
recommendation
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4.1.2 The ELECTRE choice decision aiding method

The progressive choice problematique is extensively discussed and promoted in
the context of multiple criteria decision aiding in [RB93], where the authors
explain that it is important that the non-retained alternatives for the current
choice recommendation are left out for well-founded reasons, acknowledged and
approved by the DM. Instead of forcing the decision aiding procedure to elicit
a single best alternative at any cost, it is indeed preferable to obtain a set Y
of potential candidates for the choice, as long as it can be plainly justified on
the basis of the currently available preferential information.

Starting from this methodological position, Roy defines two principles for
the construction of a choice recommendation. A subset Y of X is a choice
recommendation if:

1. Each alternative which is not selected in Y is outranked by at least one
alternative of Y;

2. The number of retained alternatives in the set Y is as small as possible.

The first principle counterbalances the second one. Indeed, it tends to keep the
cardinality of the choice recommendation high enough to guarantee that no
potentially best alternative is missed out. The second principle tends to keep
its cardinality as small as possible in order to focus on the single best choice.

In the context of the ELECTRE methods, Roy [Roy68, Roy85] proposes to
use as a provisional choice recommendation the concept of outranking kernel.
One can indeed easily check that this recommendation verifies both principles.

According to Roy, a choice recommendation has furthermore to be unique.
The existence of a unique outranking kernel is, however, only guaranteed when
the digraph does not contain any circuits at all [Ber70]. To avoid a possible
emptiness or multiplicity of outranking kernels, Roy [Roy68] initially proposed
in the ELECTRE I method to consider the alternatives belonging to maximal
circuits as ties. These circuits are then collapsed on single nodes, which results
in an outranking digraph which always admits a unique outranking kernel.

The alternatives gathered in such a maximal circuit might, however, not be
all equivalent and behave differently when compared to alternatives exterior to
the circuit. Furthermore, the validation of the arcs of such a circuit may be
problematic due to imprecision in the data or the preferential information pro-
vided by the DM. All in all, these difficulties in the clear interpretation of those
circuits led to the development of the ELECTRE IS method [RB93]. There, ro-
bustness considerations allow to remove certain arcs of the outranking digraph
leading to a circuit-free graph containing a unique outranking kernel.
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Note finally that in both methods, the outranking relation is not viewed on
a valued credibility scale. The double requirement of sufficient concordance and
absence of vetoes is used instead for a crisp validation of pairwise outranking
situations.

In this work we do not follow the same approach, even if the bipolar-valued
framework would allow it. We prefer to investigate the option of avoiding
perturbations and modifications of the original outranking digraph to find a
solution of the choice problem. We therefore revisit the very foundations of
a progressive choice decision aiding methodology in order to discover how the
bipolar-valued concept of outranking kernel may deliver a satisfactory choice
recommendation without having to express doubts about a given bipolar-valued
characterisation of the outranking relation.

4.1.3 New foundations for a progressive choice decision
aiding methodology

Let us now introduce five principles (two from the previous discussion and three
new ones) that the construction of a choice recommendation in a progressive
decision aiding method should follow.

P1: Non-retainment for well motivated reasons
Each non-retained alternative must be put aside for well mo-
tivated reasons in order to avoid to miss any potentially best
alternative.

A similar formulation is that each non-retained alternative must be considered
as worse as at least one alternative of the choice recommendation.

P>: Minimal size
The number of alternatives retained in a choice recommenda-
tion should be as small as possible.

This requirement is obvious when recalling that the goal of the choice prob-
lematique is to find a single best alternative and that ultimately, a choice
recommendation containing a single element concludes the progressive decision
aiding process.

P3: Efficient and informative refinement
Each step of the progressive decision aiding must deliver an
efficient and informative refinement of the previous recom-
mendation.

The currently delivered recommendation should focus on new and previously
unknown preference statements, such that the progressive decision aiding pro-
cess can converge to a single choice recommendation as quickly and efficiently
as possible.
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Note that a progressive decision aiding process is not required to go on until
a single best alternative can be recommended. As already mentioned, it may
be up to the DM to determine the ultimate choice from the eventual recom-
mendation of the decision aiding.

Principle Pg is quite similar to the previous principle and appears to make
it redundant. In the following section, however, when implementing the RUBIS
method, their strategic difference will become apparent.

Ps: Effective recommendation
The recommendation should not correspond simultaneously to
a choice and an elimination recommendation.

This principle avoids the formulation of ambiguous recommendations, i.e. both
outranking and outranked sets of alternatives, which could appear in intransi-
tive and partial outranking relations.

It is worthwhile noting that in a situation where all decision alternatives
are either considered to be pairwisely equivalent or incomparable, no effective
choice recommendation can be made.

Ps: Maximal credibility
The choice recommendation must be as credible as possible
with respect to the preferential knowledge available in the cur-
rent step of the decision aiding process.

As the credibility degrees in the bipolar-valued outranking digraph represent
the more or less overall concordance or consensus of the criteria to support an
outranking situation, it seems quite natural that in the case of several potential
choice recommendations, we recommend the one(s) with the highest determi-
nateness of the membership assertions.

As mentioned before, the first two principles are identical to those proposed
by Roy (see Section 4.1.2). However, alone they are not sufficient to gener-
ate satisfactory choice recommendations. The three additional principles Ps,
P4, and Ps, not satisfied by neither ELECTRE I nor ELECTRE IS, will show
their operational value when translated in Section 4.2 into properties in the
bipolar-valued outranking digraph. Let us finish by defining the concept of
RuBIS choice recommendation.

We call a RUBIS choice recommendation (RCR), a choice recommendation
which verifies the five pragmatic principles above.

Our goal in the following section is to determine which graph theory-related
object these properties characterise as a convincing choice recommendation.
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g‘a b c d e

1.0 02 -10 -07 -0.8
-0.6 1.0 08 1.0 0.0
-1.0 -1.0 1.0 0.2 0.8
06 -06 -1.0 1.0 -04
-1.0 -0.8 -04 -06 1.0

o U O o

Table 4.1: Example 4: the bipolar-valued outranking relation

4.2 Tackling the choice problematique

Let us note beforehand that obvious RUBIS choice recommendations exist in
case the outranking relation is transitive, namely the set of all maximal alter-
natives. However, as already mentioned earlier, the crisp outranking digraphs
that we obtain from the bipolar-valued characterisation of an outranking rela-
tion are in general not transitive. This clearly motivates the necessity to find
a procedure which computes a choice recommendation verifying the five prin-
ciples for any possible reflexive binary relation.

Throughout this section, we illustrate our discourse via the following didac-
tic example!.

Example 4 Let é(X, §) be a bipolar-valued outranking digraph,
where X = {a,b,c,d,e} and S is given in table 4.1 and the associ-
ated crisp digraph G(X,S) is represented in figure 4.1.

Figure 4.1: Example 4: associated crisp digraph and an indetermined arc

Let us now analyse the previously mentioned principles one by one and
present their translations in terms of the concepts presented in Chapter 3.
Note that all the directed concepts linked to an outranking property can sym-
metrically be reused in an elimination problematique via the corresponding
outranked properties.

IB. Roy, 2005, private communication.
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4.2.1 Non-retainment for well motivated reasons (princi-
ple: Py)

In terms of the bipolar-valued outranking relation, principle P; amounts to
saying that each non-retained alternative should be outranked by at least one
alternative of the choice recommendation.

R1: Outranking _ _
An RCR is an outranking set in G(X, S).

Example 4 (continued) The sets{a,b, e}, {b,c,d}, as well as {a,b,c}
for instance, are all outranking sets.

4.2.2 Minimal size and efficient and informative refine-
ment (principles: P, and P3)

In this Section we show that these two principles are closely linked. To rewrite
principle Po of minimal size in the present context, we first need to define some
concepts related to graph theory.

Definition 4.2.1.

1. The outranking neighbourhood T'V(z) of a node (or equivalently an al-
ternative) x of X is the union of x and the set of alternatives which are
outranked by x.

2. The outranking neighbourhood I'"(Y) of a set Y is the union of the
outranking neighbourhoods of the alternatives of Y .

3. The private outranking neighbourhood F;C(a:) of an alternative x in a set
Y is the set TT(z) \ T (Y \ {z}).

For a given alternative z of a set Y, the set T'y- () represents the individual
contribution of x to the outranking quality of Y. If the private outranking
neighbourhood of z in Y is empty, this means that, when x is dropped from
this set, Y still remains an outranking set. From this observation one can derive
the following definition.

Definition 4.2.2. An outranking (resp. outranked) set Y is said to be irre-
dundant if all the alternatives of Y have non-empty private outranking (resp.
outranked) neighbourhoods.

In view of these considerations, we transcibe the minimal size principle into
its formal counterpart, which is that of irredundancy of the set.

Example 4 (continued) {a,b,e}, {b,c,d}, {b,e,d}, and {a,c} are
irredundant outranking sets. {a,b,c}, listed in the context of prin-
ciple R1, is not irredundant outranking because alternative b has an
empty private neighbourhood in this set.
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Let us now switch to principle Ps (efficient and informative refinement),
whose primary objective is to avoid that, in the case of a provisional choice
recommendation, the DM may notice a best sub-choice without any further
analyses.

We require therefore that a choice recommendation Y should be such that
the digraph restricted to the nodes of Y does not contain any obvious sub-choice
recommendation. Consequently, at each stage of the decision aiding process,
the provisional choice recommendation must focus on new and previously inde-
termined or unknown preference statements. Let us illustrate this with a short
example.

Example 5 Consider the problem shown on the crisp digraph rep-
resented in figure 4.2.

Both highlighted sets Y1 = {a,b} and Yo = {a, d,e, f, ..., z} verify
the principles Py and Ps as outranking irredundant sets. A DM
could be tempted to prefer Y1 to Ya because of its lower cardinality.
Nevertheless, Y1 contains information which is already confirmed
at this stage of the progressive search, namely that the statement “a
outranks b” is validated. In the case of the choice Ys, the next step
of the search will focus on alternatives which presently are incom-
parable.

If a further analysis step would focus on the set Y1, then it is quite
difficult to imagine that the DM will be able to forget about the
already confirmed validation of the statement “a outranks b”. He
will most certainly consider a as the choice, which might however
not be the best decision alternative, as a is not outranking any of
the alternatives of {d,e, f,...,z}.

According to principle Ps we therefore recommend Ys as a choice
recommendation.

Figure 4.2: Example 5: an unstable ({a,b}) and a stable ({a,d, e, f, ..., z}) set

In view of the previous considerations and the output generated by princi-
ples P1 and P, it is quite natural to define the concept of stability as follows:
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Definition 4.2.3. An outranking (resp. outranked) set Y in G(X,S) is said

to be stable? if and only if the induced subgraph Gy (Y, Sly) does not contain
any irredundant outranking (resp. outranked) subset.

The outranking (resp. outranked) kernels (see Definition 3.3.1) of an out-
ranking digraph verify this property of stability. Nevertheless, as already men-
tioned and as it is shown in the following property, the existence of an outrank-
ing (resp. outranked) kernel is not guaranteed in an outranking digraph.

Property 4.2.1. If a digraph é(X, 5) has no outranking (resp. outranked)
kernel, it contains a chordless circuit of odd order.

Proof. This property represents the contraposition of Richardson’s general
result: If a digraph contains no chordless circuit of odd order, then it has an
outranking (resp. outranked) kernel [Ric53]. O

The outranking kernel gives indeed a potential choice recommendation in
case the outranking digraph does not contain any chordless circuit of odd or-
der. Consider now the case where a potential choice recommendation, resulting
from principles P; and P, consists of a chordless circuit Y = {a, b, ¢} of order 3
such that a.Sb, bSc and c¢Sa. Such a choice recommendation is clearly neither a
kernel nor is it a stable recommendation. Nevertheless, it may be an interesting
provisional recommendation because it presents three alternatives to the DM
which do not contain obvious information on the possible single choice at this
step of the progressive search. In fact, a, b and ¢ can be considered as equivalent
potential candidates for the choice in the current stage of the decision process.

These considerations show that neither the concepts of stability and irre-
dundancy nor that of outranking kernel are in fact sufficient for guiding the
search for a choice recommendation in a general outranking digraph. In the
first case, potentially interesting choice recommendations are left out and in
the latter case, nothing guarantees the existence of a kernel in an outrank-
ing digraph. In order to overcome these difficulties, we introduce the concept
of hyperindependence, an extension of the independence property discussed in
Section 3.3.

Definition 4.2.4. A setY is said to be (strictly) hyperindependent in G if it
consists of chordless circuits of odd order p > 1 which are (strictly) independent
of each other.

Note that in Definition 4.2.4 above, singletons are assimilated to chordless
circuits of (odd) order 1. Principles Py and P3 can now be translated into the
following formal property:

R2: Hyperindependence _ B
An RCR is a hyperindependent set in G(X, S).

2Note that in graph theory, the term stability is often used to designate what we call
independence. Here we use the term in a different sense.
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As a direct consequence, we can define the concept of hyperkernel.

Definition 4.2.5. A hyperindependent (resp. strictly hyperindependent) out-
ranking (resp. outranked) set is called an outranking (resp. outranked) hyper-
kernel (resp. determined hyperkernel ).

Note that the outranking and outranked hyperkernels obviously verify the
property of stability (see Definition 4.2.3).

Example 4 (continued) Set {a,b,d,e} (see Figure j.1) is an out-
ranking hyperkernel. The indetermined outranking relation between
b and e implies that the set is not strictly hyperindependent. Note
here that this obvious potential choice recommendation would have
been left out if the search was restricted to outranking kernels.

In case the outranking digraph does not contain any chordless circuits of odd
order 3 and more, the outranking kernels of the digraph deliver potential choice
recommendations verifying the first two RUBIS principles.

In the general case however, the RCR will consist of at least one outranking
hyperkernel of the digraph.

4.2.3 Effective and maximally credible recommendation
(principles P4 and Ps)

In order to translate principle Py (effective recommendation), we introduce the
concept of strict outranking set.

Recall that one can associate an outranking (resp. outranked) set Y with
a bipolar-valued characterisation Y+ (resp. 17_). It may happen that both
kernel characterisations are solutions of the respective kernel equation systems
of Proposition 3.3.1. In order to determine in this case whether Y is in fact an
outranking or an outranked set, it is necessary to specify which of its bipolar-
valued characterisations is the more determined.

We extend therefore the concept of determinateness of propositional state-
ments (see Definition 3.1.2) to bipolar-valued characterisations of sets.

Definition 4.2.6. The determinateness D(Y') of the bipolar-valued characteri-
sationY of a setY is given by the average value of the determinateness degrees

DY (x)) for all x in X.

In view of the bipolar definition of the global outranking and concordance in-
dexes (Formulae 3.1 and 3.2), which solely balance rational significance weights,
we define here the overall determinateness of a bipolar-valued set characterisa-
tion as the mean of all the individual membership determinatenesses. Never-
theless other aggregation operators could be used as well.

hyperkernel

determinateness
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‘We can now define the concepts of strict and null set as follows:
Definition 4.2.7.

1. A set'Y which is outranking and outranked with the same determinate-
ness, i.e., D(YT) = D(Y ™) is called a null set.

2. A setY for which D(Y*) > D(Y ™) (resp. D(Y~) > D(Y')) is called a
strict outranking set (resp. outranked set).

One can now translate the principle of effectiveness P, into the following
formal property:

Rs: Strict outranking o
An RCR is a strict outranking set in G(X, 5).

This concept allows to solve the problem raised by the following example.

Example 6 Consider the crisp outranking digraph represented on
figure 4.3 (for the sake of simplicity we suppose that all the arcs
which are drawn (resp. not drawn) represent a credibility of the
outranking of 1 (resp. —1)).

{a} and {c} are both irredundant outranking sets with the same
mazximal determinateness 1. However, one can easily see that alter-
native a compares differently with b than ¢ does. Set {c} is clearly
a null set. If we now require the three properties Ri, Ro and Rs
to be verified, only the set {a} can be retained as a potential choice
recommendation.

G—
®

Figure 4.3: Example 6: illustration of the necessity of Property R3

An immediate consequence of the effectiveness principle is that a bipolar-
valued outranking digraph, which is completely symmetrical, i.e., with equal
credibility degrees for all xSy and ySz, does not admit any RCR. Every out-
ranking set will automatically be a null set. Indeed, without any asymmetrical
preferential statements, it is impossible to derive any preferential discrimina-
tions that would support a convincing choice recommendation.

3Inspired from [RB93].
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Y| a b ¢ d e |DY)

{c}
{b}

-0.2 0.2 -02 -0.2 -0.2| 0.20 -

-0.2 -04 04 -04 -0.4‘ 0.36 RCR

Table 4.2: Example 3: illustration of the maximal credibility principle

Finally, principle Ps (mazimal credibility) involves again the idea of deter-
minateness of bipolar-valued sets (see Definition 4.2.6). In the case of multiple
potential choice recommendations, we recommend the most determined one,
i.e., the one with the hi~ghest~ determinateness. Let ) be the set of sets verify-
ing Ry, R and R3 in G(Y, S).

R4: Maximal determinateness_
An RCR is a choice in G(X, S) that belongs to the set

V= {¥' € YID(Y') = max D(Y)}. (4.1)
Yey

Example 3 (continued) Recall that in this example (see Section 3.2),
we determined two outranking kernels which were potential choice

recommendations (see Table 4.2). The determinateness of the ker-

nel {c} (0.36) is significantly higher than that of kernel {b} (0.20).

Following property R4, we recommend in this case the first solution,

namely kernel {c}.

In this section, we have presented the translation of the five RUBIS principles
into properties of sets of alternatives defined in the bipolar-valued outranking
digraph. Detailed motivations for these principles have been given. They lead
quite naturally to the new concept of outranking hyperkernel of an outranking
digraph.

Remember that, in Section 4.1.3, we called a RUBIS choice recommenda-
tion, a recommendation verifying the five pragmatic principles. The maximally
determined strict outranking hyperkernel being a consequence of the transla-
tion of these principles into formal properties of a bipolar-valued outranking
digraph, it consequently gives an adequate RUBIS choice recommendation.

The following section focuses on the construction of the hyperkernels and
proposes a general algorithm for computing the RUBIS choice recommendations
in a given (non-symmetrical) bipolar-valued outranking digraph.

RCR
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4.3 Computing the RUBIS choice recommenda-
tion

We start by presenting an algorithm which allows to determine the hyperkernels
of an outranking digraph, before presenting some of their properties.

4.3.1 Determination of the hyperkernels

If G(X, S) contains chordless circuits of odd order (> 3), the original outranking
digraph is modified into a digraph that we will call the chordless-odd-circuits-
augmented (COCA) outranking digraph G¢(X¢, S¢).

Intuitively, the main idea is to “hide” the problematic circuits behind new
nodes which are added to the digraph in a particular way. This may appear to
be a problematic perturbation of the original information. Nevertheless, as we
will see later, such a transformation does not affect the original problem but
only helps to find further solutions.

The procedure to obtain the COCA digraph G¢ s iterative. The initial
digraph is written Go(Xo,Sp), and is equal to G(X,S). At step ¢, the set of
nodes becomes X; = X;_1 U C;, where C; is a set of nodes representing the
chordless circuits of odd order of éi—1<Xi—1,§i—1)- These nodes are called
hypernodes.

The outranking relation gi_l is augmented by links between the nodes from
X;—1 and those from C; in the following way (the resulting relation is written

Si)4l

Si(Cr,x) =V Si-1(y, ) Vo€ X1\ Cy,

VCy € C; N yeCk (4.2)
Si(Ck,,T):—l-l Vo € C ,
gi(.T,Ck) = \/ S;i—l(may) if @ ¢ Ck )
Ve e X;_1,C, €C; _ yeCk (4.3)
Si(x,Cy) = +1 ifxeCy .

The iteration is stopped at step r for which |X,| = |X,41].

This constructions permits the hypernodes to inherit the outranking, out-
ranked and independence properties from their corresponding odd chordless
circuits. As we will see later, this inheritance property allows to construct the
outranking and outranked hyperkernels.

4For the sake of simplicity, an element C}, of C; will represent a node of X; as well as a
the set of nodes of X;_1 representing the circuit C}.
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We then define G€(X€, 5€) as the digraph G,(X,,S,). As the order of the
original digraph Gis finite, the number of circuits it may contain is also finite.
Therefore, the iteration is a finite process. Note that this iterative approach
is necessary because of the fact that new chordless circuits of odd order may
appear when new hypernodes are added to the digraph.

Figure 4.4 presents such a case. First the chordless circuit {a, b, ¢} of order
3 is detected. A new node labelled {a,b, c} is added. Then the chordless circuit
{{a,b,c},d, e} of order 3 is detected. Again, a new node labelled {{a, b, c},d, e}
has to be added. No further odd chordless circuit can then be detected.

Figure 4.4: An iteration generates a new odd circuit

The outranking (resp. outranked) hyperkernels of é(X , g) are then de-
termined by searching the classical outranking (resp. outranked) kernels of
GC(X¢, S¢) [Bis97, Bis06a].

4.3.2 Properties of the COCA outranking digraph

Let us now focus on the properties of this extension of the outranking digraph.

Property 4.3.1. The outranking (resp. outranked) kernels of é(X, §) are also
outranking (resp. outranked) kernels of G¢(X¢, S¢).

Proof. If G does not contain an odd chordless circuit, GC = G and the property
is trivial.

Let us suppose that G contains at least one odd chordless circuit. Let Y
be an outranking kernel of G (the case of the outranked kernels can be treated
similarly). We must prove that Y is also an outranking kernel of GC.

First, the elements of Y are independent in G and G€ because no relation
is added between elements of X in X¢. Second, as Y is an outranking set in G,
each element of X \ 'Y is outranked by at least one element of Y. In particular,
if C% is an odd chordless circuit of X, each node of Cj is also outranked by at
least one element of Y (in X). Due to the special way S€ is built, the node
representing C}, in X is also also outranked by at least one element of Y. This
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remains true if at least one node of C} belongs to Y. O

Following from the construction principle of the COCA digraph (see Equa-
tions 4.2 and 4.3), a hypernode inherits the outranking, outranked and indepen-
dence characteristics of its corresponding odd chordless circuit. Furthermore,
the individual nodes of each odd chordless circuit are outranked by and are
outranking the hypernode with a credibility of +1 (which could be called in-
difference).

Property 4.3.2. The digraph éc(Xc,gc) contains at least one outranking
(resp. outranked) kernel.

Proof. If G contains an outranking (resp. outranked) kernel, then via Prop-
erty 4.3.1, this remains valid for GC.

Let us suppose that G contains no outranking kernel (a similar proof can be
done for outranked kernels). Via Property 4.2.1, this implies that G contains
at least one odd chordless circuit.

Consequently, there exists at least one irredundant outranking set ¥ in X
which contains at least one arc of at least one odd chordless circuit. This results
from the fact that there exists no bipartition of an odd chordless circuit into
an outranking and an outranked kernel.

Let us suppose that the irredundant outranking set Y contains a single such
arc, belonging to the odd chordless circuit Cf, which we denote by xSy (the
case of multiple such arcs can be treated similarly). By construction, in G , there
exists a hypernode which inherits the outranking and outranked properties of
Ck. In particular, it inherits the fact that = and y are independent of the
remaining nodes of Y.

Consequently, the set Y \ {z,y} U C}, is irredundant, outranking and inde-
pendent in GC. Consequently it is a kernel of GC. O

An important consequence of the previous properties is given in the follow-
ing theorem.

Theorem 4.3.1. Any outranking digraph é(X, 5) contains at least one out-
ranking (resp. outranked) hyperkernel.

Proof. This theorem follows directly from Property 4.3.2: if any COCA out-
ranking digraph contains at least one outranking (resp. outranked) kernel, then
consequently, any outranking digraph contains at least one outranking (resp.
outranked) hyperkernel. O

Let us now present and discuss the computing of a RUBIS choice recom-
mendation in the following section.
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Algorithm 2 The RUBIS algorithm

Input: G(X,5),
1. Construct the associated COCA digraph G (X€, §C),

2. Extract the sets K+ and K~ of all outranking and outranked hyperkernels
from G€,

3. Eliminate the null kernels from X +
4. Rank the elements of K+ by decreasing logical determinateness,

Output: The first ranked element(s) in K.

4.3.3 The RCR algorithm

The first step of the RCR algorithm is by far the most difficult to achieve, as
the number of odd chordless circuits in a bipolar-valued outranking digraph
can be huge.

To study this operational difficulty, we have compiled a sample of 1000
bipolar-valued outranking digraphs. One possibility would have been to gen-
erate them as such, without considering underlying performance tables. This
would have produced a set of digraphs which would not be very representative
for real MCDA problems. Instead, we chose to generate them from perfor-
mances of 20 alternatives evaluated randomly on 7 to 20 criteria with random
weights distributions and random thresholds.

In nearly 98% of the sample, the time to compute the COCA digraph on a
standard desktop computer is less than a second. In one case, we observe an
execution time of around 30 seconds (due to a high number of odd chordless
circuits in the digraph).

In Table 4.3, we note that nearly 75% of the sample digraphs do not admit
any odd chordless circuit at all. In 100% of the observations less than 10 hy-
pernodes are added to the original outranking digraph.

The second step of the RCR algorithm concerns the extraction of hyperk-
ernels from the COCA digraph. From a theoretical point of view, this step is
well-known to be computationally difficult [Chv73]. However, this difficulty is
directly linked to the arc-density, i.e., the relative size of the digraph. Indeed,
only very sparse digraphs, showing an arc-density lower than 10% in the range
of digraph orders which are relevant for the choice decision aiding problema-
tique (10-30 alternatives), may present difficulties for the search of kernels.
Figure 4.5 shows the histogram of the distribution of the arc-density on the
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number of odd
chordless circuits | #  rel. freq. (%) cum. freq. (%)
0 735 73.5 73.5
1 116 11.6 85.1
2 65 6.5 91.6
3 25 2.5 94.1
9 1 0.1 100.0

Table 4.3: Number of odd chordless circuits in random bipolar-valued outrank-
ing digraphs of order 20 (1000 observations).

0.09

T T T T T T T T
Statistical test for normality: frequency histogram ——m
0.08 - Chi-squared(2) = 2.708 M N(82.572,5.6794) ------ B
pvalue = 0.00001
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65 70 75 80 85 90 95
arc density in %

Figure 4.5: Histogram of the arc density of a sample of 1000 COCA digraphs
of order 20

sample of 1000 random outranking digraphs of order 20. For this test sample,
we observe a very high mean density of 82.6% with a standard deviation of
5.7%. Consequently, determining hyperkernels is in general a task which is
feasible in a very reasonable time. Indeed, the mean execution time with its
standard deviation for this step of the algorithm are around a thousandth of a
second on a standard desktop computer.

Finally, eliminating the null hyperkernels and sorting the strict outranking
hyperkernels in decreasing order of determinateness is linear in the order of the
digraph and involves no computational difficulty at all.

Let us mention a few more results related to this simulation, which allow
to better understand the structures of the underlying problems. The average
number of outranking hyperkernels is 6.629 per digraph (standard deviation of
3.053). Among these, the average number of strict outranking hyperkernels is
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6.000 (standard deviation of 2.565) and the average number of null sets is 0.208
(standard deviation of 0.526). Among the strict outranking hyperkernels, on
average 0.112 were containing hypernodes.

Let us illustrate the RCR algorithm on Example 4 (see Section 4.2).

Example 4 (continued) The bipolar-valued outranking digraph of
this example (see Figure 4.1) contains a chordless circuit of order 3,
namely {a,b,d}. The original digraph G is extended to the digraph
GC which contains a hyper-node representing {a,b,d}.

The corresponding outranking digraph admits an outranking kernel
{a,c} and a hyperkernel {{a,b,d}, e} which is both outranking and
outranked, bul not with the same degree of determinateness (see
Table 4.4). The first one is significantly more determined than the
second one. Consequently, the RUBIS “choice recommendation” is
{{a,b,d}, e}, where alternative e is in an indetermined situation.

s¢ ' a b ¢ d e {abdl| D
a 01 02 -1.0 -0.7 -08 10
b 06 1.0 08 10 00 10
c 1.0 10 1.0 02 08 02
d 06 -06 -1.0 1.0 -04 10
e 1.0 -8 04 -06 10  -06
{a,b,d} 1.0 10 08 10 00 L0

{{a,b,d},e}" | -0.6 -0.6 -0.6 -0.6 0.0 0.6 0.5
{a,c} 0.2 -02 0.2 -02 -02 -02 0.2

{{a,b,d},e}~ | 0.0 0.0 00 -0.6 0.0 0.6 | 0.2

Table 4.4: Example 4: the associated COCA digraph with the bipolar-valued
characterisations of its outranking (4) and outranked (-) hyperkernels.

Before finishing this chapter, let us return to a concept which was introduced
earlier in Section 3.2, namely the (-cut of a bipolar-valued outranking relation.

4.3.4 On the (-cut of the bipolar-valued outranking rela-
tion

As already said, in practice, a -cut applied on the RUBIS choice recommen-

dations is used to extend the indetermination to a larger range of values. This

allows the DM to change the majority threshold and to focus on strong conclu-
sions.

Let us illustrate its use in practice, and return to Example 3.
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Example 3 (continued) Imagine that the DM considers that for
an outranking statement to be wvalidated (resp. non-validated), it
requires that a weighted majority of more than 65% of the criteria
supports it.

This means that all propositions which have credibility degrees below
0.8 and above -0.3 should be considered as indetermined. The effect
of this B-cut is presented in Table 4.5. It shows in particular that
at this level of B it is necessary to consider {a,c} as a RCR, where
a is in an indetermined situation (S(c,a) = 0 after the B-cut; see
Table 3.1 and Figure 4.6).

Y | a b ¢ d e | DY)

{a,c} | 0.0 -04 0.4 -04 -04]| 0.32 RCR
{} [ 00 00 00 00 00| 00 -

Table 4.5: Example 3: illustration of the effect of a g-cut

Figure 4.6: Example 3: the g-cut digraph

Let us finish this section by indicating that all the examples of this chapter
have been computed with the free Python module digraphs [Bis06b] which
allows to manipulate bipolar-valued digraphs and to determine the RCR from
a given performance table.

4.4 Further remarks on progressiveness in the
RuUBIS method

It is obvious that the RUBIS method fits in the framework of progressive meth-
ods. In Section 2.2.1 we outlined the general structure of a progressive reso-
lution of the choice problematique. The RUBIS method is totally in line with
this presentation.
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In practice, it may happen that the RuBIS algorithm produces no RUBIS
choice recommendation because all the outranking hyperkernels are null sets.
In such a situation it is recommendable to reanalyse the whole problem in order
to construct a less symmetrical outranking relation. Another solution would be
to use alternative definitions of the degree of determinateness D or the strict-
ness of a set.

It may also happen that the RUBIS algorithm generates multiple RUBIS
choice recommendations with the same degree of determinateness. In such a
situation, two options appear: either the DM selects one of the recommenda-
tions and continues the process on this set, or he considers the union of the
recommendations for the next step of the progressive analysis. The second op-
tion is obviously more prudent, as any potential best alternative is reanalysed
at a later stage.

In less problematic cases, at each step, the DM is asked to focus on pro-
gressively smaller sets, containing the potential candidates for the choice. The
hard comparability of the alternatives of those subsets originates from three
possible situations:

- Odd chordless circuits;
- Strict independence;
- Indetermination.

In the first case, the alternatives belonging to an odd chordless circuit can be
seen as more or less equivalent. It is therefore useful to continue the progressive
analysis to try to discriminate them further in order to be able to eliminate
some of them from the choice recommendation.

In the second situation, alternatives from the choice are considered as
strictly independent. A further step of the progressive analysis is then meant
to determine new or more precise information on those alternatives, in order to
make them preferentially comparable. Again, the goal is to reduce the choice
set by eliminating supplementary alternatives.

Finally, in indetermination situations, the pairwise comparisons of such al-
ternatives should be enriched with more precise or supplementary information
in view of generating a higher discrimination. As discussed earlier, indetermi-
nations might also be the result of a S-cut of the outranking relation. In such
a case, it could be advisable to lower the value of § in order to resolve certain
indetermined situations.

All in all, in any of the possible states, the objective of a progressive analysis
of the problem is to reduce the choice set in view of uncovering the single best
alternative.
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In this chapter we discuss the problem of choosing k& best alternatives in the
context of outranking-based models. We call this typology of problems the
k-choice problematique. Our study is grounded on the methodological studies
of Chapter 4, where we detailed the construction of a recommendation for the
choice problematique. As we will show, this problem can be seen as a particular
case of the k-choice problematique, where k = 1. Furthermore we will under-
line that k-choice decision analyses can have different formulations depending
on the operational objectives of the underlying required decision problem.

The chapter is organised as follows. In Section 5.1, we present three for-
mulations of the k-choice problematique. The second section deals with the
resolution of two of these problems and in Section 5.3, we present a small ex-
ample which shows the differences between the two latter formulations.

Note that the considerations of this chapter are mainly based on our arti-
cle [MBO7]. They represent our latest research in outranking methods, and are
consequently only first results. Future developments on the k-choice problema-
tique will be our priority in our future research activities.

67
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5.1 Three formulations of the k-choice problema-
tique

Solving the choice problematique amounts to helping the DM to determine
a single alternative which can be considered as the best one. It is however
less obvious to give a single definition of the k-choice problematique. Indeed,
different formulations to the selection of k best alternatives can be given:

K1 Search for the first k best alternatives (k first-ranked);

Ko Search for a set of k alternatives better than any other coalition of k
alternatives (best k-team);

KCs Search for a set of k alternatives better than all the other alternatives
(best k-committee).

Other formulations of the k-choice problematique might possibly exist, but in
this work we will focus on these three definitions.

Let us now detail these formulations one by one.

5.1.1 Ki: considerations on the k£ first-ranked problem

This first formulation Ky corresponds probably to what people have commonly
in mind when they think about “selecting the best k alternatives” among a set
of decision objects:

Consider the k objects ranked in the first & positions of a complete
order or a weak order (a ranking).

As we already mentionned, in the context of MCDA, such a ranking can
hardly be obtained in the framework of pairwise comparisons of alternatives.
Indeed, the outranking relation which results from such pairwise comparisons is
in general neither transitive nor complete (some alternatives may be incompa-
rable in terms of the outranking relation). Furthermore, in case the outranking
relation is a partial order (or a partial weak order), it is difficult to conceive
what the k first positions of the ranking could be.

These observations show that the outranking relation can difficultly be used
directly to solve the problem of the k first-ranked alternatives. To overcome this
problem, the outranking relation must first be exploited in order to build a total
order or at least a weak order (see for example [Bis99] or the ELECTRE II, III
and IV methods [RB93] or the PROMETHEE I and IT method [BM94, BMO05]).

If such an exploitation is adopted, it might then possible to rank (possibly
with ties or incomparabilities) the alternatives from the best to the worst one
and to determine the k first ones. In case of indifferences in a weak order,
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selecting the k first ones might not be possible and it will be necessary to select
k' > k alternatives and proceed via a supplementary decision aiding step to
determine the k first ranked alternatives. A similar difficulty arises in case of
a partial order.

Note here that another possibility to achieve total comparability of the al-
ternatives in MCDA is via Multiattribute Value Theory, where a weak order
on the alternatives is generated by means of an overall utility function. This
subject is the purpose of Part III of this work.

From the previous considerations, it is possible to derive a quite obvious,
but important and very general property concerning the k first-ranked problem.

Property 5.1.1. Let Y; be the set of i first-ranked alternatives. Yk < n, if
Yi_1 and Y}, exist, we have
Y1 C Y.

This property is simply a translation of a quite natural intuition: the k — 1
first-ranked alternatives also belong to the set of k first-ranked alternatives.
The possible non-existence of Yy _1 or Y is simply due to the difficulty which
arises in case of ties in weak orders or of incomparabilities in partial orders.

It is also obvious that in the case where k = 1, the k first-ranked problem
amounts to selecting the first (and therefore best) alternative in the ranking.

Due to the necessity of exploiting the outranking relation in order to obtain
a ranking, we will not explore this option further here. We will rather focus
on the remaining two formulations /o and K3, which are solely based on the
outranking digraph, and which produce different results in general.

5.1.2 [Kj: introducing the best k-team problem

The second formulation of the k-choice problem in a set X of alternatives can
be summarised by the following intuitive procedure:

Search for a subset Y of X of cardinality k£ which is better than any
other set of cardinality k.

The main difficulty lies in the formal definition of the “is better than’-relation
for this particular case. Nevertheless, before dealing with this problem, let us
first present practical situations in which the determination of the best k-team
is applicable.

A first potential practical context is given by any situation where teams of
k persons have to compete against each other and where each person has been
evaluated individually on the family N of criteria. In our context, a pairwise
comparison of all possible teams of k£ persons is then performed on the basis of
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the individual outrankings.

A second kind of situations is given by facility location problems, where k
locations have to be selected simultaneously. Again, all the eligible combina-
tions of k locations are pairwisely compared to determine which one is the most
appropriate.

Very generally, the best k-team problem is applicable in any decision situa-
tion where sets of alternatives have to be compared in view of choosing one of
them. Let us now turn to a more formal definition of the best k-team problem.

We call a k-set a set of k alternatives. In the context of Ko, we call a k-team
such a k-set. Recall that the available information is an outranking relation on
the single alternatives. Our objective is here to build an outranking relation on
the k-teams. In this framework, it is quite natural to require that the following
conditions are verified by a k-team:

71 Inheritance
A k-team inherits the outranking and outranked properties of its mem-
bers;

72 Intra-team indiscernibility
A k-team is considered as a entity from the outside;

73 Exclusive inter-team comparisons
Two k-teams are exclusively compared on basis of inter-team information.

The first property originates from the following observation. If an alterna-
tive y € X certainly outranks an alternative 3y’ € X and if y and 3y’ respectively
belong to k-teams Y and Y’, then this positive information for Y and negative
information for Y’ should be reflected in the way the two k-sets are compared.

The objective of the second property is to make a k-team act as a coherent
entity. In such a situation, the elements of a k-team should act together as a
coalition. Consequently, when compared to the other members of the k-team,
a given alternative’s weakness or strength should not be regarded.

The third property is useful in the case where two teams which have a non-
empty intersection are compared. It is a consequence of the second property
on the comparison of k-teams. As the k-sets should be considered as an entity,
using intra-team information for their comparisons is not appropriate. Conse-
quently, we require that two k-teams are only compared on basis of information
which is not linked to their intersection.

Let us present a short example which allows to better understand the con-
sequences of the three principles 7; to 73.
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Example 7 Consider a set of 4 alternatives X = {a,b,c,d} and an
outranking relation built from pairwise comparisons of these deci-
sion objects, S = {(a,d), (b,¢), (¢,d)}. Recall that S can be recovered
from its bipolar-valued characterisation S (see Table 5.1 and Figure
5.1). Let us analyse how the three 2-teams {a, b}, {a,c} and {b,c}
should be pairwisely compared.

Sets {a,b} and {b, c} have alternative b in common, which outranks
alternative c. The arc between b and c is internal to the set {b,c}. In
accordance with principle T3, this information should not be taken
into account when comparing {a,b} and {b,c}. Therefore with the
available outranking information, these two sets are incomparable.

Sets {a,b} and {a,c} have alternative a in common. In that case,
the arc between b and c is clearly inter-team information and the
set {a,b} should outrank the set {a,c}.

§2‘ a b c d
a 1 <0 <0 >0
b <0 1 >0 <0
c <0 <0 1 >0
d <0 <0 <0 1

Table 5.1: Example 7: generic table representing S

Figure 5.1: Example 7: crisp outranking digraph

This example intuitively explains how the comparison of the sets of alterna-
tives in the k-team problem should be performed on the basis of the outranking
relation built on pairs of alternatives. Note that a more detailed analysis of
this example is given in Section 5.3.

The three properties above lead quite naturally to the following literal defi-
nition of the outranking relation on the set of k-teams. The following definition
outlines how the k-team should inherit the outranking and outranked charac-
teristics of its elements, in accordance with principle 77.
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Definition 5.1.1. Let Y,Y’' C X be two k-teams. Y outranks (resp. is out-
ranked by) Y' if Iy, y") € (Y x Y)Y\ (Y NY")? s.t. ySy' (resp. y'Sy).

We will detail the construction of the outranking relation between pairs of
sets of alternatives in Section 5.2. Note already at this point that due to prin-
ciple 73, no condition is imposed on the incomparability (or independence) of
the alternatives in a k-team.

In this definition, the outranking relation between k-teams is build disjunc-
tively. Note here that other definitions could of course be deduced from the
principles. For example, one could require that a k-team Y outranks another
k-team Y if all the alternatives of Y outrank those of Y. A weaker formulation
would be to consider the outranking validated if a majority of elements of Y
outranks those of Y.

In practice certain combinations of alternatives may be meaningless or un-
achievable. This can be illustrated, e.g., in a facility location problem, where
it is important that the locations are geographically well spread. In such a
situation, some sites may have very good individual evaluations, but it would
not make sense to combine them with some other locations. It might therefore
be recommendable to have a prior analysis in order to determine the eligible
combinations of alternatives.

In Section 5.2.1 we will show how to solve the k-team problem based on the
previous considerations, Definition 5.1.1 and the RUBIS choice method. Let us
finish by situating the k-team problem in the context of progressive decision
aiding methods.

In practice the ultimate objective of this problematique is to determine a
unique k-team which is considered as the best set of k alternatives. Nevertheless,
in a progressive method, it may be necessary to go through a few intermediate
steps, where at each step, some k-teams are rejected for well motivated reasons
(similarly to what is done in the RUBIS choice method).

5.1.3 Kj: introducing the k-committee problem

In this subsection we start by giving a third intuitive definition of what the
selection of k best alternatives could be:

Search for a subset Y of X of cardinality k& which is in its integrality
better than all the other alternatives.

Again, the problem here is to understand what the “is better than’-relation
signifies in this particular case. Similarly as for the previous formulation, let us
start by presenting a type of problem that the search for the best k-committee
could address.
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A potential practical context is given by any situation where in a set X of
persons, a subset Y of k of them has to direct, pilot or command the remain-
ing ones (for example a committee). In that case, each non-retained person of
X \ 'Y has to be considered as “less preferred’ than Y in its collectiveness.

The main difference with the previous formulation o is that here, sets
of alternatives have to be compared to single alternatives. In this context, a
k-set is called a k-committee. Again, the initial information is given by an
outranking relation on the set of alternatives. The objective here is to build an
outranking relation which allows to compare k-sets to single alternatives. We
therefore require in this context that the following principles are verified for
any k-committee.

C1 Imheritance
A k-committee inherits the outranking and outranked properties of its
members;

C2 Intra-committee indiscernibility
A Ek-committee should be considered as an entity from the outside;

C3 Inter-committee comparisons
k-committees are pairwisely compared via the alternatives they outrank.

Principles C; and Cs are identical to 77 and 75 for the best k-team problem.

Principle C3 clearly shows the main difference between the best k-team and
the best k-committee problem. Committees are compared via the single alter-
natives they outrank, whereas teams are compared to other teams.

Let us again analyse on basis of Example 7 how committees behave in an
outranking digraph.

Example 7 (continued) In this example, the following three 2-
committees are considered: {a,b}, {a,c} and {b,c}.

Set {a, b} has to be compared to alternatives ¢ and d. c¢ is outranked
by b and d is outranked by a. Therefore, the set {a,b} should out-
rank both b and d (inheritance principle C1). Set {b,c} has to be
compared to alternatives a and d. A similar reasoning as before
leads to the fact that the set {b,c} should outrank d but be incompa-
rable to a. Finally, the set {a,c} should be outranked by alternative
b and outrank alternative d.

Note again that a detailed analysis of this example in the case of the best
k-committee problem is presented in Section 5.3.

The k-committee problem can now be defined as the search for a set Y
of k alternatives which is better than all the alternatives which are not in

k-committee
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Y. Combined to the three principles, this leads to a literal definition of the
outranking relation in the case of the k-committee problem.

Definition 5.1.2. Let Y C X be a k-committee and x € X. Y outranks x if
JyeY st ySx.

Note again that other definitions could be deduced from the pragmatic prin-
ciples and that no condition is given on the incomparability (or independence)
of the alternatives in a k-committee. Furthermore, similarly as for the k-team
problem, it may be necessary to determine first the feasible k-committees by a
filtering process.

5.2 Solving Ky and 3

In this section we present how the latter two formulations of the k-choice prob-
lematique can be solved. In both cases the bipolar-valued outranking digraph,
built on the set of alternatives, needs to be modified to obtain the desired choice
recommendation. As we will show, the RUBIS method presented in Chapter 4
will be the backbone of the resolution algorithms. The main motivation to
use this method is because it is based on pragmatic foundations which are
developed in Chapter 4.

5.2.1 K5: best k-team

In view of the discussions of Section 5.1.2 one can easily see that the best k-
team problem can be solved in an outranking digraph G*(X?, S*) where the
nodes represent all possible sets of k alternatives.

If the outranking relation Stis appropriately defined (see Definition 5.1.1),
then the progressive search for the best k-team amounts to the progressive
search for the RUBIS choice recommendation in that new digraph.

Let us now detail the construction of Gt.

The nodes X! of G! represent all admissible subsets of k alternatives of X
(recall that certain subsets could possibly be considered as obsolete). The car-
dinality of X is therefore at most (Z), which might be quite large for certain
combinations of n and k. We label the nodes of X* by capital letters in the
sequel! as they represent subsets of X.

The outranking relation St is built as follows (based on Definition 5.1.1):

V(V,W) e Xt x X

SHV,W) = max{S(v,w) : (v,w) € (V x W)\ (VNW)2}. (5.1)

LFor the sake of simplicity, an element Z of X* will represent a node of Gt (xt, gt) as well
as a subset of X.
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The crisp outranking relation S* associated to St can be recovered as the
set of pairs (V, W) € X* x X* such that S*(V, W) > 0.

As mentionned in Section 3.1, the max operator models the credibility of
the disjunction of logical statements. In fact, for a k-team Y to outrank an-
other k-team Y’ it is sufficient that one alternative of Y (positively) outranks
another alternative of Y’. Furthermore, this aggregation of the outrankings
allows in some way to model complementarity among the different alternatives
of a k-team. All in all, the construction of S as detailed in formula 5.2.1 clearly
satisfies principles 77, 75 and 73.

It is now obvious that all the concepts introduced in Chapter 4 can be used
in G*(X*,S%) and have a signification in G(X,S) in terms of subsets of alter-
natives. For example, a hyperindependent choice in G*(X*, St) is a choice in
G (X, §) which is composed of independent odd chordless circuits of subsets of
X.

The objective of Ky can now be reinterpreted in G*(X*,S'). The goal of
Ky in GY(X!,5) is to select one unique k-set (or node) which is considered
as the best one. This definition is very comparable to the search for one best
alternative in an outranking digraph (see Section 4.1.1).

Consequently, in the context of a progressive method for the determination
of the best k-team, the solution is to apply the RUBIS method to the digraph
Gt (Xt 8. As already mentioned, it will exploit the bipolar-valued outranking
relation in order to extract at least one maximally determined strict outranking
hyperkernel (the choice recommendation). The elements of this hyperkernel are
subsets of k elements of X which are incomparable, in an indetermined situa-
tion, or, considered as equivalent in an odd chordless circuit.

In the case where the choice recommendation is unique and only contains
one element V of G*(X*,S*), then the problem is solved and V is a subset of
k alternatives of X which can be considered as the best k-team.

If the choice recommendation contains more than one element of G*(X*, St),
then these k-teams should not be considered as the best ones, but merely as a
collection of hardly comparable subsets of alternatives, among which the best
k-team can be found. Similarly, in the case of multiple choice recommenda-
tions of equal determinateness, it is recommendable to continue the progressive
search with the union of the elements of the choice recommendations. Indeed,
the only certain information is that some k-teams could be set aside for well
motivated reasons. In the next step of the progressive method the decision
maker can restrict his analysis to these potential k-teams and refine their eval-
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uations or evaluate their members on further criteria.

Note that one can easily verify that the search for one best alternative as
defined in Chapter 4 is a particular case of the best k-team problem for which
k=1.

5.2.2 K3: best k-committee

Recall that the goal of the search for the best k-committee is to determine a set
Y of cardinality & which is as a whole better than all the other alternatives. The
problem will again be solved in a modified bipolar-valued outranking digraph
G°(X°¢,S), but this time its construction is less obvious than for Ko. We will
nevertheless show that after a proper construction of éc, the RUBIS method
can again be applied in that new digraph to solve the best k-committee problem.

This time we focus on comparisons between sets of nodes and single al-
ternatives. Therefore, the set X¢ is defined as the union of X and a set of
supplemental nodes which represent all possible subsets of k nodes of X. We
use the same conventions as for Ko and consequently label the supplemental
nodes (called k-nodes) in X¢ by capital letters. Note that the nodes of X in
X¢ are still labelled with lower case letters.

The construction of S¢ is somewhat trickier. The original relation S is
included into S¢, which is then built as follows:

V(V,IW) e X¢x X¢: SC( W) =
V(V,w)e X x X¢st. weV: SC( )—land Sc(w V)=
V(V,w)e X x X¢st. wégV: SC(Vw)—maX{S(v w) : UEV};
(
(v,

N =

Vio,W)e X°x Xst. vg W: S°v7 W) = max{S(vw) weWh
V(v,w) € X¢x X°:  5v,w) = S(v,w).

Let us explain this construction in further details.

A~ o~~~
ot w
T O —

Formula (1) puts any two k-committees in a situation of equivalence. This
is merely technical and will become clear in the presentation of Algorithm 3.
Formula (5) simply expresses that the original outranking relation is included
in S°.

In Formula (2) k-committees are quite naturally considered as equivalent
to their members. Formulae (3) and (4) allow the comparison of k-committees
to the remaining alternatives, pursuant to Definition 5.1.2.

Let us now turn to the determination of the best k-committee, at a given
step of the progressive search. In G¢, the search for the set of k alternatives,
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Algorithm 3 The best k-committee algorithm

Input: G°(X¢,5°)
1. Search for the set Z¢ of irredundant outranking choices of éC(X C,gc)
containing exclusively k-nodes;
2. VYeel«
- Remove any k-nodes from X ¢ which are not in Z¢ (:= X¢);

- if |[Y°| = 1 then determine the RUBIS best choice in G¢(X¢, S¢),
containing exclusively k-nodes;

- else :

i. modify S¢ as follows into §,f:

Se(V, W) = -1 V(V,W) €Y xY*;
Si(w,y) =S5w,y)  else.

ii. Determine the RUBIS best choice in G© (Xg, gﬁ), containing ex-
clusive k-nodes;

3. Select the most determined bipolar-valued RUBIS best choice(s) among
all those determined at step 2;

Output: a single (resp. a set of) RUBIS choice recommendation(s).

which is in its entirety better than any other alternative, amounts to determin-
ing at least one k-node V which outranks all the alternatives z € X.

Algorithm 3 presents the general resolution scheme for the k-committee
problem. Due to the particular way we construct G¢ (and in particular S°¢),
the output of the first step is one or more irredundant outranking choices con-
taining exclusively k-nodes (the potential candidates for the best k-committee).
This clearly shows that the first stage of the algorithm is used for filtering pur-
poses.

In the second step, the RUBIS best choice algorithm is applied to a modified
graph for each irredundant outranking choice determined in the first step. Each
digraph G¢ is composed of the original alternatives and an irredundant outrank-
ing choice. The modification of the outranking relation consists in removing
the “equivalence” arcs that link the potential k-committees in the outranking
choice. This allows the RUBIS algorithm to determine the desired strict choice
recommendation.
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Similarly as earlier for the k-team problem, if the output is not a single k-
node, then the progressive search must be reapplied to the set of potential best
k-committees (and the set of alternatives which compose the k-committees).

5.3 Illustrative example

In this section we develop a detailed description of the Example 7 presented in
Section 5.1. In order to simplify the notations, we will label the alternatives of
X! by concatenations of the labels of the alternatives of X. For example, the
node of X* representing the subset {a,b,c} of X will be labelled abc. We will
furthermore suppose that any possible k-team and any k-committee is feasible.

®

o\

Figure 5.2: Crisp outranking digraph for the best 2-team problem
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Figure 5.3: Crisp outranking digraph for the best 3-team problem

Two possible best k-team searches can be performed on this example (namely
for k = 2 and k = 3). Both situations are represented on Figures 5.2 and 5.3.

The RuBIS choice recommendation for the 2-team problem is given by the
set {{a,b},{b,c}}. These two potential candidates as a best 2-team are in-
comparable and are therefore selected for a further analysis. This signifies that
in the next step of the progressive method, the DM can focus on these two
subsets of alternatives in order to determine which one is the best one. The
other subsets of 2 alternatives can already be rejected without any regret at
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this stage of the progressive decision aiding process.
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Figure 5.5: Crisp outranking digraph for the best 3-committee problem

The RUBIS choice recommendation for the 3-team problem is given by the
set {{a, b,c},{a,c, d}} Again, these two potential candidates for a best 3-team
are incomparable and the best candidate might be found in a further step of
the decision aiding process.

In case of the search for the best k-committee, again two searches can be
performed (namely for £ = 2 and k = 3). Both situations are represented on
Figures 5.4 and 5.5. The dotted (resp. dashed) arcs represent the crisp relations
of type (1) (resp. (2)) from the definition of S¢. As one can clearly see, they
are merely technical arcs to allow the use of the RUBIS choice recommendation
algorithm.
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The RuBIS choice recommendation for the 2-committee problem is given
by the choice {a,b}. Indeed, the set {a,b} clearly respects the definition of the
2-committee, namely that both alternatives are outranking in their entirety c
and d.

For the best 3-committee problem, two potential k-sets could be considered:
either the choice {a,b,c} or the choice {a,b,d}. The final selection of either
one (or both) of these choices as choice recommendation(s) will depend on their
determinateness and / or their strictness. Both concepts directly depend on
the precise values of the bipolar-valued characterisations of the two potential
choices.
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Part III: Preference elicitation in Choquet inte-
gral-based Multiattribute Value Theory and ex-
ploitation

Pourquoi faire simple quand on peut
faire compliqué ¢!

Les Shadoks, Jacques Rouxel?

Abstract

The last part of this work focusses on Multiattribute Value Theory based on
the Choquet integral as the aggregation operator of the partial evaluations of
the alternatives. The Choquet integral can be seen as an extension of the clas-
sical weighted arithmetic mean which allows to take into account interactions
between the criteria.

This third part is divided into four chapters, each of them containing some
personal contributions. The first one is an introductory chapter on MAVT and
the Choquet integral. Furthermore, it contains our results on an extension of
the Choquet integral to the case of imprecise partial evaluations, inspired from
our article [MRO5b].

Chapter 7 is a review of different methods for the elicitation of the pref-
erences of a DM in Choquet integral-based MAVT. It is based on our pa-
per [GKMO7] and contains the identification method that we first published in
a chapter of [MRO5a].

In the third chapter of this part we solve different MCDA problems in an
MAVT context and present our contributions to both the classical crisp in-
stance, and the case taking into account impreciseness. It is based on our
articles [MRO5b, MR05a] and [MMRO5].

Finally, in Chapter 9 we present the Kappalab [GKMO06] R package, to
which we contributed, and an application. To do so, we detail the interactive
process for the elicitation of a DM’s preferences on a fictitious example.

2Why should things be easy when they can be tricky?!
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Chapter 6

On Multiattribute Value
Theory and the Choquet
integral

Contents

6.1 Multiattribute Value Theory .. ... . ... ... 86
6.2 The Choquet integral as an aggregation operator 88
6.2.1 Capacities and Choquet integral . . . .. .. ... 88
6.2.2 The Mobius transform of a capacity . . . .. ... 90
6.2.3 Analysis of the aggregation . . . . ... ... ... 90
6.2.3.1 Importance index . . ... ... .. ... 90

6.2.3.2 Interactionindex . . . . .. .. ... ... 91

6.2.4 The concept of k-additivity . . . . ... ... ... 93

6.3 Extending the Choquet integral to fuzzy numbers 94
6.3.1 Fuzzy numbers and fuzzy sets . . . . .. ... ... 94
6.3.2 A fuzzy extension of the Choquet integral . . . . . 97

In this chapter we introduce Multiattribute Value Theory in the first section
and focus on a model which allows to take into account interactions among the
criteria. Then, in Section 6.2, we introduce the Choquet integral which will
be used as an aggregation function in the selected MAVT model. Finally, in
the third section we detail our work on an extension of the Choquet integral
to the case where the evaluations of the alternatives on the criteria suffer from

impreciseness.

Note that Sections 6.1 and 6.2 are inspired from our articles [GKMO7]
and [MROba], whereas Section 6.3 presents results from our work published
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in [MRO5b).

6.1 Multiattribute Value Theory

The aim of Multiattribute Value Theory (MAVT) [KR76] is to model the pref-
erences of the DM, represented by a binary relation > on X, by means of an
overall value function U : X — R such that,

xry < U(x) >Uly), Vz,ye X.

The assessment of the function U can be done via different methods, described
for example in [vE86, Chapter 8] in an additive value function model. Roughly
speaking, they can be assigned to two classes: on the one hand, methods based
on direct numerical estimations (as, e.g., direct rating of alternatives on a car-
dinal scale), and on the other hand, those based on indifference judgements
(as, e.g., the dual standard sequences which builds a series of equally spaced
intervals on the scale of values). To avoid a direct elicitation of the value func-
tion, some methods propose to infer a preference model from so-called holistic
information about the DM’s preferences (as, e.g., the UTA method presented
in [JS82]).

In this work we will choose this latter option and determine the function U
by means of an interactive and incremental process requiring from the DM that
he expresses his preferences over a small subset of selected objects. We focus on
this learning procedure in Chapter 7 of this work. The resulting overall value
function can then be seen as a numerical representation of the preference re-
lation > on X, and consequently as a synthetic view of the expertise of the DM.

The preference relation > is assumed to be complete and transitive, hence
a weak order. As far as the overall value function is considered, the most
frequently encountered model is the additive value model (see, e.g., [BP05] or
Section 1.3.2). In this work, we consider the more general transitive decompos-
able model of Krantz et al. [KLST71, BP04] in which U is defined by

U(z) := Fui(x1), .-y un(xn)), Vo= (x1,...,2,) € X, (6.1)

where the functions u; : X; — R are called the marginal' value functions
and F' : R — R, non-decreasing in its arguments, is sometimes called the
aggregation function. For the previous decomposable model to hold, it is
necessary that the preference relation is a weakly separable weak order (see,
e.g., [BP05, KLSTT71)).

Recall that in the context of MAVT (see Chapter 1.3), we use the term
criterion to designate the association of an attribute ¢ € N with the corre-

n this work we use both adjectives marginal and partial to describe these value functions.
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sponding marginal value function u;.

The exact form of the overall value function U depends the preferences
which are expressed by the DM. When mutual preferential independence (see,
e.g., [Vin92]) among criteria can be assumed, it is frequent to consider that
the function F' is additive and takes the form of a weighted sum. The decom-
posable model given in Equation 6.1 can then be the taken as the classical
additive value model, if further conditions are satisfied. In practice however,
mutual preferential independence among criteria might sometimes be hardly
verified.

In order to be able to take interaction phenomena among criteria into ac-
count, it has been proposed to substitute the weight vector involved in the
computation of weighted sums by a monotone set function on NV, called ca-
pacity [Chob53] or fuzzy measure [Sug74]. Such an approach can be regarded
as taking into account not only the importance of each criterion but also the
importance of each subset of criteria. A natural extension of the weighted arith-
metic mean in such a context is the Choquet integral with respect to (w.r.t.)
the defined capacity [Gra92, Mar00a, LGO3].

The use of a Choquet integral as an aggregation function in Equation 6.1
requires the ability to compare the value of an object according to the different
criteria. In other words, it is necessary that the marginal value functions are
commensurable, i.e. u;(x;) = u;(x;) if and only if, for the DM, the object x is
satisfied to the same extent on criteria ¢ and j; see, e.g., [GLV03] for a more
complete discussion on commensurability.

Consequently, in this Choquet integral framework, as far as the value func-
tions are considered, for any x € X, the quantity w;(x;) can then be interpreted
as a level of the satisfaction of the value x; for the DM.

In the considered context, commensurable marginal value functions can be
determined by using the extension of the MACBETH methodology [BV99] pro-
posed in [LGO3]; see also [GLV03, GL04]. This task is not trivial and can take
a large percentage of the time dedicated to an MCDA problem. In this work
we do not discuss this problem further. We rather focus on the problem of
the elicitation of the capacity (or capacity identification problem) and on the
exploitation of the overall value function in Chapter 8.

Once the different marginal value functions have been determined, the next
step is to determine the parameters of the aggregator. In the case of the
weighted sum, this amounts to determining the importance of the n criteria
(as trade-offs that a DM would be willing to make). In an additive situation,
it might be realistic to ask the DM to provide such a weight vector. Neverthe-
less, as soon as the Choquet integral is used, the number of parameters of the

capacity

Choquet integral

commensurable
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capacity can become huge (at most 2" — 2). It is therefore not reasonable to
ask the DM to supply the analyst with such an information.

It is consequently advisable to determine the capacity from some learning
data. We call this information the initial preferences of the DM and it usually
consists of a partial weak order over a (small) subset of the set X of alternatives,
a partial weak order over the set of criteria, intuitions about the importance
of the criteria, etc. The precise form of these prior preferences are discussed in
Chapter 7.

Once the capacity has been determined from the initial preferences of the
DM, it is possible to calculate the overall value of each of the alternatives.
Through this step, the elements of X become comparable and it is consequently
possible to solve the classical MCDA problematiques.

6.2 The Choquet integral as an aggregation op-
erator

In this section we introduce the Choquet integral which will be used as the
overall value function in the selected MAVT context.

6.2.1 Capacities and Choquet integral

Note beforehand that in order to avoid a heavy notation, we omit braces for
singletons and pairs, e.g., by writing u(z), N \ ¢j instead of u({:}), N\ {i,j}.
Furthermore, cardinalities of subsets S, T, ..., are denoted by the correspond-
ing lower case letters s,t,... Finally, the power set of N will be denoted by
P(N).

As mentioned in the previous section, capacities [Chob53], also called fuzzy
measures [SugT4], can be regarded as generalisations of weighting vectors in-
volved in the calculation of weighted sums.

Definition 6.2.1. A capacity on N is a set function p : P(N) — [0,1]
satisfying the following conditions:

(i) (D)

(ii) for any S,T C N, S CT = p(S) < u(T).

0, u(N) =1;

Furthermore, a capacity p on N is said to be

o additive if p(SUT) = pu(S) + p(T) for all disjoint subsets S,T C N;
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o cardinality-based if, for any T C N, p(T') depends only on the cardinality
of T
Formally, there exist p1,..., -1 € [0,1] such that u(T) = u; for all
T C N, T # 0, such that |T| =t.

Note that there is only one capacity on N that is both additive and cardinality-
based. We call it the uniform capacity and denote it by p*. It is easy to verify
that p* is given by

w(T) =t/n, VT CN.

In the framework of aggregation, for each subset of criteria S C N, the
number u(S) can be interpreted as the weight or the importance of S. The
monotonicity of p means that the weight of a subset of criteria cannot decrease
when new criteria are added to it.

When using a capacity to model the importance of the subsets of criteria,
a suitable aggregation operator that generalises the weighted arithmetic mean
is the Choquet integral [Gra92, Mar00a, LGO03].

Definition 6.2.2. The Choquet integral of a function x : N — R represented
by the vector (x1,...,2,) w.r.t. a capacity p on N is defined by

Cu(x) = ng(i) [11(Asiy) = (Aiirn)],

where o is a permutation on N such that x,1) < -+ < Tn). Also, Ay =
{o(i),...,o(n)}, for alli e {1,...,n}, and As(ny1) := 0.

Seen as an aggregation operator, the Choquet integral w.r.t. ;1 can be consid-
ered as taking into account interaction phenomena among criteria, that is, com-
plementarity® or substitutivity’ among elements of N modeled by u [Mar00a].

The Choquet integral generalises the weighted arithmetic mean in the sense
that, as soon as the capacity is additive, which intuitively coincides with the
independence of the criteria, it collapses into a weighted arithmetic mean.

An intuitive presentation of the Choquet integral is given in [MS00]. An
axiomatic characterisation of the Choquet integral as an aggregation operator
can be found in [Mar0Oa]. Note that the first use of the Choquet integral in
decision analysis is probably due to Schmeidler in the context of decision under
uncertainty; see [Sch89], and see also [H5h82).

2The satisfaction of one attribute in a pair is weak compared to the satisfaction of both.
3The satisfaction of one attribute in a pair has almost the same effect as the satisfaction
of both.

Choquet integral

complementarity

substitutivity
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6.2.2 The Mobius transform of a capacity

Any set function v : P(IN) — R can be uniquely expressed in terms of its
Mébius representation [Rot64] by

v(T) =Y m,(S), VTCN, (6.2)
SCT

where the set function m, : P(N) — R is called the Mdbius transform or
Mébius representation of v and is given by

my(S) = > (=1)*"'u(T), VSCN. (6.3)
TCS

Of course, any set of 2" coefficients {m(S)}scny does not necessarily cor-
respond to the Mobius transform of a capacity on N. The boundary and
monotonicity conditions must be ensured [CJ89], i.e., we must have

m(0) = 0, > m(T) =1,

TCN
(6.4)
S m(T)>0, VSCN,Vies.
TCS
T34
As shown in [CJ89], in terms of the Mdbius representation of a capacity u
on N, for any = (z1,...,x,) € R", the Choquet integral of x w.r.t. u is given
by
Crn,, () = > mu(T) )\ i, (6.5)

TCN ieT

where the symbol A denotes the minimum operator. The notation C,,,, which
is equivalent to the notation C,, is used to emphasise the fact that the Choquet
integral is here computed w.r.t. the Mobius transform of .

6.2.3 Analysis of the aggregation

The behaviour of the Choquet integral as an aggregation operator is generally
difficult to understand. For a better understanding of the interaction phe-
nomena modeled by the underlying capacity, several numerical indices can be
computed [Mar00b, Mar04]. In the sequel, we present two of them in detail.

6.2.3.1 Importance index

The overall importance of a criterion ¢ € N can be measured by means of its
Shapley value [Sha53], which is defined by

ouliy = 3 T DM gy ),

n!
TCN\i
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Having in mind that, for each subset of criteria S C N, u(S) can be interpreted
as the importance of S in the decision problem, the Shapley value of ¢ can be
thought of as an average value of the marginal contribution p(T Ui) — u(T) of
criterion ¢ when added to a subset 7" not containing it. A fundamental property
is that the numbers ¢, (1), ..., ¢,(n) form a probability distribution over N. In
terms of the Mobius representation of u, the Shapley value of ¢ can be rewritten
as )

Om, ()= D sogmu(T V). (6.6)

TCN\i

Finally note that )~ ¢,(i) =1 and ¢,(i) € [0,1], Vi € N.
i=1

6.2.3.2 Interaction index

In order to intuitively approach the concept of interaction, consider two cri-
teria i and j such that wu(ij) > u(i) + p(j). Clearly, the previous inequality
seems to indicate a positive interaction or complementary effect between ¢ and
j. Similarly, the inequality u(ij) < p(é) + p(j) suggests that ¢ and j interact
in a negative, substitutive or redundant way. Finally, if u(ij) = (i) + p(j), it
seems natural to consider that criteria ¢ and j do not interact, i.e., that they
have independent roles in the decision problem.

A coeflicient measuring the interaction between i and j should therefore de-
pend on the difference p(ij) — [1(i) + p(5)]. However, as discussed by Grabisch
and Roubens [GR99], the intuitive concept of interaction requires a more elab-
orate definition. Clearly, one should not only compare p(ij) and (i) +u(j) but
also see what happens when 4, j, and ij join other subsets. In other words, an
index of interaction between ¢ and j should take into account all the coefficients
of the form pu(T'U 1), p(T'U j), and u(T Uij), with T'C N\ ij.

Murofushi and Soneda [MS93] suggested to measure the average interaction
between two criteria ¢ and j by means of the following interaction indez:

L(ij) = > W[MT Uij) — w(T Vi) — (T U j) + u(T)].
TCN\ij ’

Note that, given a subset T not containing ¢ and j, the expression

w(TUij) — (T Ui) — w(T U j) + pu(T)

can be regarded as the difference between the marginal contributions p(T'Uij)—
p(TUi) and (T UjF) — wu(T). We call this expression the marginal interaction
between i and j in the presence of T. Indeed, it seems natural to consider that
if

w(TUij) = (T Ui) > p(TUj) — uw(T) (resp. <),

interaction
index
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i and j interact positively (resp. negatively) in the presence of T'.

The quantity I,(ij) can therefore be interpreted as a measure of the av-
erage marginal interaction between i and j. An important property is that
I,(ij) € [-1,1] for all i C N, the value 1 (resp. -1) corresponding to max-
imum complementarity (resp. substitutivity) between ¢ and j [Gra97b]. In
terms of the Mobius representation of 41, I,,(ij) can be rewritten as

. 1 .
Imu (Z]) = Z mm”(TUZ]). (67)

Other indices that can help to understand the behaviour of a Choquet
integral are wveto and favour indices, orness and andness degrees, etc; see
e.g [Mar00b, Mar04] for a more complete list of behavioural indices.

Figure 6.1: Interpretation of the Choquet integral if |N| = 2

Before finishing this section, we turn to a representation of the Choquet
integral which helps to understand the concepts of positive and negative inter-
actions. Imagine a problem involving 2 criteria and consider the 5 situations
of Figure 6.1 (inspired from [GR00] and [MRO5a]). The dashed lines represent
alternatives having the same overall evaluations through a Choquet integral.
The 5 cases can be characterised as follows:

I p(1)+ p(2) < p(12): complementarity (or positive interaction);



6.2. THE CHOQUET INTEGRAL 93

I = p(1) + p(2) > p(12): redundancy (or negative interaction);
0T«
IV (1) = p(2) =

V @ p(1) = p(2) = 1: maximal redundancy.

Note that for case (IV) (resp. (V)) the Choquet integral corresponds to the
min (resp. max) function.

6.2.4 The concept of k-additivity

From the results presented in Sections 6.2.1 and 6.2.2, one can see that a ca-
pacity p on N is completely defined by the knowledge of 2" — 2 coefficients,
for instance {1(S)}oxscn or {m,.(S)}oxscn. Such a complexity may be pro-
hibitive in many applications. The fundamental notion of k-additivity proposed
by Grabisch [Gra97b] enables to find a trade-off between the complexity of the
capacity and its expressivity.

Definition 6.2.3. Let k € {1,...,n}. A capacity p on N is said to be k-
additive if its Mdobius representation satisfies m,(T) = 0 for all T C N such
that t > k and there exists at least one subset T of cardinality k such that

mu(T) # 0.

As one can easily check, the notion of 1-additivity coincides with that of
additivity. Note that, in this case, it follows from Equation (6.7) that the in-
teraction index is zero for any pair of criteria, which is in accordance with the
intuition that an additive capacity cannot model interaction. More generally, it
can be shown that a k-additive capacity, k € {2,...,n}, can model interaction
among at most k criteria; see, e.g., [FKMO06].

Let k € {1,...,n} and let p be a k-additive capacity on N. From Equa-
tion (6.2), we immediately have that

u(S) = Z mu(T), VS CN,

0ATCS
t<k

which confirms that a k-additive capacity (k < n) is completely defined by the
knowledge of Zle () coefficients.

Finally note that for a k-additive capacity m,,, Equation (6.5) becomes:

Con, () = > mu(T) N 2.

TCN ieT
|T|<k

k-additivity
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6.3 Extending the Choquet integral to fuzzy
numbers

In this section we present an extension of the classical Choquet integral to
the case where the partial evaluations of the alternatives contain impreciseness
represented by so-called fuzzy numbers.

6.3.1 Fuzzy numbers and fuzzy sets

In this section, we first recall general concepts on fuzzy sets, fuzzy numbers
and possibility distributions. In 1965, Zadeh [Zad65] introduced the concept of
fuzzy set to be able to represent and manipulate data which have nonstatistical
uncertainty or in case of impreciseness. Let A be a classical set. A fuzzy set
B in A can be defined by its membership function

ng:A—1[0,1].

For z € A, nz(2) = 0 means that z does not belong to B, n5(2) = 1 represents

the complete membership of z to B , and the values between 0 and 1 stand for
intermediate memberships. We write B(z) := 13 (z) for the degree of member-

ship of the element z in the fuzzy set §7 for each z in A.

The support Bofa fuzzy set E of A is the crisp set of elements of A for
which the membership degree to A is non-zero,

B={ze€A:B(z)>0}.

A fuzzy set B of A is said to be normal if there exists an element z in B for
which B(z) = 1.

Below we will define fuzzy numbers of R. To simplify our discourse, we
restrict here to the case where B is a fuzzy set in R. Let us note cl(B) the
closure of the support of B. A A—level set of B of A is given by

B = {zeR:B(z) > A} if A>0,
—\ aB) if A = 0.

A fuzzy set B of R is said to be convez if [E])‘ is a convex subset of R for all
A €[0,1].

A fuzzy number Z of R is a fuzzy set in R that is normal, convex and has a
continuous membership function of bounded support. Let F be the family of
all fuzzy numbers. For a fuzzy number z € F we define

Zm(N) = min[z]*,  zpr(\) = max[z].
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am(X) an ()

Figure 6.2: A fuzzy number z

We now can introduce the concept of possibility distributions by means of
the fuzzy numbers as defined in [Zad65] and [Zad78]. This allows to see fuzzy
numbers as possibility distributions. Let a,b € RU{—o00, 400} with a < b. The possibility
possibility that Z € F takes its value from the interval [a,b] is defined by distribution

Pos(Z € [a,b]) = max Z(z).
z€Ja,b]

In particular for A € [0, 1],

Pos(z < z;p (X)) = Z<Inza>((A) Z(z) = A,

Pos(Z > zp (V) = Z>Hzlz)((>\) Z(z) =\

In [DP80] the authors write a fuzzy number in a very general way as

L(&2) fa—a<z<a,

[0

~ ifa<z<0b,
H2) = R(:3Y) ifb<z<b+8,
0 otherwise,

where [a, b] is the peak of Z, L, R : [0,1] — [0, 1] are upper semi-continuous and
non-increasing shape functions with L(0) = R(0) = 1 and L(1) = R(1) =0
which are called side functions. The support Z is equal to Ja — o, b+ ] side function

Note that crisp numbers are particular cases of fuzzy numbers. Indeed, if
z € F with Z = {z}, then Z is a crisp number.

A particular type of fuzzy numbers are the trapezoidal fuzzy numbers. A  trapezoidal
fuzzy number 7 is called a trapezoidal fuzzy number if its membership function —Jfuzzy number
can be written as

1-22 ifa—a<z<a,
_ 1 ifa<z<b,
Z(z) = b

1-%52 ifb<z2<b+p,

0 otherwise.

=




triangular fuzzy
number

exrtension
principle

96 CHAPTER 6. ON MAVT AND THE CHOQUET INTEGRAL

« and (3 are called the left and right width. We use the notation z = (a, b, a, 3).
One can show that [2]* = [a — (1 — N)a, b+ (1 — X)4], for all A € [0,1]. In the
particular case where a = b the fuzzy number is called triangular and a is said
to be the centre of Zz.

In order to use mathematical operations on fuzzy numbers, Zadeh [Zad65]
introduced the sup-min extension principle which allows to work consistently
with the crisp case. The idea is that each function f on crisp sets induces a
corresponding fuzzy function on fuzzy sets. If 21,...,2, € F and f: R" - R is
a continuous function, then the via the sup-min extension principle we extend
f to fuzzy numbers as follows:

FGie () = sup min{E(21), Bz} Ve € R,
f(zla~~7zn):z
It is important to note that, as shown in [Ngu78|, f(z1,...,25) is a fuzzy num-

ber.

An important hypothesis underlies Zadeh’s extension principle. It supposes
that the fuzzy numbers are non-interactive. Interactivity among fuzzy numbers
is defined via their joint possibility distribution, defined hereafter.

Let 21, ..., 2, be fuzzy numbers. An n-dimensional possibility distribution ¢
is a fuzzy set in R™ with a normal, continuous membership function of bounded
support. ¢ is called the joint possibility distribution of z1,...,2, if

Zi(z) = gjlgﬁé (21,5 2n)
i

holds for all z; € R4 = 1,...,n. z is called the i-th marginal possibility
distribution of ¢. Furthermore, if z1,...,%, € F are fuzzy numbers, and ¢ is
their joint possibility distribution then

(21,5 2n) <min{z1(21),...,2n(2n)} Vz eRi=1,... n.

Equivalently [¢]* C [71]* x ... x [2,]* for all A € [0, 1]. Fuzzy numbers z; € F,
i =1,...,n are said to be non-interactive if [¢]* = [71]} x ... x [z,]* for all
A€ [0,1].

In the following section, the task will be to determine the Choquet inte-
gral of a function Z : N — R represented by a vector of criterial evaluations
(Z1,...,2Zn) w.r.t. a capacity g on N. We will suppose that the fuzzy numbers
Zi, 1 € N are non-interactive in the sense discussed above.

Nevertheless in the context of MCDA, this does not mean that the criteria
cannot interact. As presented in Section 6.2.3.2, at the level of the criteria,
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RS
&

Figure 6.3: Non-interactive (left) and interactive (right) fuzzy numbers z; and
Z

different types of interactions can occur, as for example redundancy, comple-

mentarity or preferential dependence?.

6.3.2 A fuzzy extension of the Choquet integral

We can see that Definition (6.5) of the Choquet integral in terms of the Mébius
representation of a capacity p on N is a combination of functions which are
continuous on R x R, namely the addition (+), the multiplication (-) and the
minimum (A) functions. By using the extension principle of Zadeh described
in Section 6.3.1 one can extend these three functions to their fuzzy versions as
follows.

First of all, the extension + of the addition of two real numbers to two fuzzy
numbers can be defined as

Z1+722(2) = sup min[z;(a), Z5(b)].
at+b=z

The result is a fuzzy number according to [Ngu78]. In particular, the sum of
two trapezoidal (resp. triangular) fuzzy numbers remains a trapezoidal (resp.
triangular) fuzzy number.

Indeed, let us consider two trapezoidal fuzzy numbers z = (a.,b,, a,, 5,)
and ¥ = (ay, by, ay, By). According to the definition of the sum of two fuzzy
numbers we have 24y = (a, + ay, b, + by, a. + oy, B2 + 5y).

4Consider z,y € A for which the evaluations on S C N are equal. The subset N \ S is
preferentially independent of S if the preference of x over y is not influenced by their common
part on S.
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The multiplication, in our case, is a scalar multiplication of a fuzzy number
by a crisp number p € R (a coefficient of m,,). p * Z is such that

for any A € [0,1]. Again, the result of this scalar multiplication is a fuzzy
number. In the particular case of a trapezoidal (resp. triangular) fuzzy num-
ber, the output remains a trapezoidal (resp. triangular) fuzzy number. For a
trapezoidal number Z = (a,,b., a,, 3.) we have pz = (pa., pb,, pa.,pp.).

Finally, the extension A of the minimum of two crisp numbers becomes

AGL2) (=) = sup  minfzi(a), 2(0)].

min(a,b)=z

Again the result is a fuzzy number. But in the special case of trapezoidal
or triangular fuzzy numbers, the result no longer remains a trapezoidal or
triangular fuzzy number. The side functions become piecewise linear functions.
Figure 6.4 represents the minimum (bold dashes) of two fuzzy numbers.

Figure 6.4: Minimum of two fuzzy numbers (bold dashes)

After having presented the extensions of the operators needed to use the
Choquet integral as an aggregation operator for fuzzy numbers, we define the
fuzzy extension of the Choquet integral as

e

o) = > mu(D) 7\ &, (68)

TCN ieT

where m,, is the Mobius transform of the capacity u.

The Choquet integral of a vector of fuzzy partial evaluations is a fuzzy
number. In case of partial evaluations which are trapezoidal or triangular
fuzzy numbers, the resulting fuzzy number has piecewise linear side functions.
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It is obvious that this extension remains valid in the case of a k-additive
fuzzy measure. The definition can then be written

—_~—

Co@)= 3 mu(T)7 N\ 7

TCN ieT
ITI<k

Formula 6.8 is based on Definition 6.5 of the Choquet integral, obtained via
the Mobius transform of Definition 6.2.2. Note that it would be interesting to
determine to which extent this fuzzy extension is dependent on the underlying
representation and which algebraic transformations lead to equivalent fuzzy
definitions of the Choquet integral.

Let us consider a short example to show how the Choquet integral is cal-
culated in case of triangular partial evaluations. This example is inspired from
Example 5.1 of [YWHLO05].

- (D

Figure 6.5: Towards the Choquet integral of fuzzy numbers

Example Let N = {1,2}, u(1) = 0.1, p(2) = 0.2, pu(1,2) = 1.
The Mébius transform m,, can easily be obtained as m, (1) = 0.1,
mu(2) = 0.2, m,(1,2) = 0.7. The partial evaluations are rep-
resented by the triangular fuzzy numbers 1 = (1,1,0) and z3 =
(0.5,0,1). The Choquet integral then becomes:

Con, (@1,72)) = mu(1) 71 + mu(2) " 3
ma(1,2) 7 A7)

= (02,0.1,0.2) + 0.7 7 \(z1,72)
= 5+

where § = (0.2,0.1,0.2) and s’ = 0.7 * 7\(5{,55) Figure 6.5 shows
a few steps of these calculations. (1) and (2) stand respectively for
Z1 and T3. (3) and (4) represent 5 and s'. Finally, (5) shows the
aggregated value 6’;((??1, Z32)).
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Note that in [YWHLO05] a fuzzy extension of the Choquet integral is pre-
sented, based on the classical representation of the Choquet integral by means
of a capacity p. A difficulty in that case is the ordering of the fuzzy numbers
which is not needed in the present approach via the Mobius transform m,
and may be problematic in the case of non-linear fuzzy numbers. A numerical
method is also developed to estimate the value of the Choquet integral using
trapezoidal fuzzy numbers. The authors of [CMO04] present an interval-based
Choquet integral to derive preferences on multicriteria alternatives.

Fuzzy set theory was introduced in MCDA in both methodological schools.
The authors of [CF96] review a certain number of applications of fuzzy numbers
in MCDA, and refer to other surveys.
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In this chapter we first introduce the capacity identification problem and show
that it can be described as an optimisation problem. In the first section we
furthermore detail and formalise the type of information which can be used to
represent the DM’s preferences. In Section 7.2 we survey the main identifica-
tion methods presented in the literature and detail our own proposal.

Note that this chapter is based on our work published in [GKMO07]. In par-
ticular, the method presented in Section 7.2.4 is based on our article [MRO05a).

As classically done, and as already mentioned, the asymmetric part of the
binary relation >, representing the DM’s preferences, will be denoted by > and

its symmetric part by ~.

Finally note that this chapter is situated in a context, where the aggregation
performed via the Choquet integral exclusively concerns crisp evaluation.
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7.1 The identification problem

As already mentioned in Section 6.1, we assume that the marginal value func-
tions have been determined beforehand. The objective of this section is to
present how to identify a capacity, if it exists, such that the Choquet integral
w.r.t. this capacity numerically represents the preferences of the DM (see Equa-
tion (6.1)).

Let O C X be a reference set of alternatives on which the DM is able to
express some preferences. The set O is usually composed either of real options
from the DM’s expertise domain or of selected, potentially fictitious objects,
on which the DM’s reasoning may be useful to model his preferences. Using
the terminology of artificial intelligence, the set O could be seen as a learning
set. Its usually small cardinality (rarely more than 20 alternatives) is due to
the fact that the expression of the preferences of the DM is generally a very
time-consuming and wearying process. See for instance [Vin92, Chapter 3| for
a more complete discussion about the subset O.

Once an appropriate subset O has been determined, the DM is asked to
express his initial preferences. These preferences, from which the capacity is
to be determined, can take the form of:

- a partial weak order > over O (ranking of the available objects);
- overall evaluations of the alternatives of O;

- a partial weak order >y over N (ranking of the importance of the crite-
ria);

- quantitative intuitions about the importance of some criteria;

- a partial weak order > p on the set of pairs of criteria (ranking of inter-
actions);

- intuitions about the type and the magnitude of the interaction between
some criteria;

- the behaviour of some criteria as veto or favour [Mar00b, Mar04, Gra97a];

- the knowledge of an inter-additive partition of IV, i.e. roughly, a partition
composed of pairwise independent subsets of criteria [FMOO];

- etc.

In the context of MAVT based on the Choquet integral, it seems natural to
translate some of the above prior information as follows:

- x>0 @' can be translated as C),(u(z)) — Cp,(u(z’)) > d¢;

- & ~o &’ can be translated as —c < Cy,(u(z)) — Cp(u(z’)) < d¢;
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- i > Jj can be translated as ¢, (i) — ¢, (j) > dsn;

- i~y j can be translated as —dgn < ¢,(2) — ¢, (j) < dsn;

ij > p kl can be translated as I,,(ij) — I, (kl) > 0r;
- ij ~p kl can be translated as —d; < I,,(ij) — I, (kl) < 0r;

where u(z) = (ui(x1),...,un(xy,)) for all x € X, and d¢, dsp and &y are
nonnegative indifference thresholds to be defined by the DM. In other terms,
the partial weak orders =, =N, >~ p previously mentioned are translated into
partial semiorders with fixed indifference thresholds. Note that in practice a
constraint of the form I,,(ij) — I,,(kl) > 07 is generally accompanied either by
the constraint I,,(ij) < 0 or by the constraint 0 < I,,(kl).

The remaining more quantitative information could be translated as follows
(although this is more questionable):

- intuitions about the importance of a criterion ¢ could be translated as
a < ¢, (i) < b, where the reals a,b € [0,1], a < b, are to be fixed by the
DM;

- intuitions about the type and the magnitude of the interaction between
two criteria ¢ and j could be translated as a < I,,(ij) < b, where 0 < a <
b <1, in case of complementarity and, where —1 < a < b < 0, in case of
substitutivity.

Finally, the veto (resp. favour) effect of a criterion ¢ can be directly trans-
lated as pu(7T) = 0 for all 7' C N such that 7" Z ¢ (resp. u(T)=1forall T C N
such that T' > ¢) [Mar0Ob, Prop. 3 and 4].

Most of the identification methods proposed in the literature give rise to an
optimisation problem:

min or max f

p(SUd) —u(S)>0,Vie NNVS C N\ i,
1

subject to Gu(i) — duld) = dsn,
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where p is a capacity on N, and f is an objective function that distinguishes
the various identification methods. Its arguments can be of various types, but
include in general the parameters of the capacity which have to be determined.
The exact form of f will be discussed hereafter in Section 7.2.

The constraints are a selection of the previously listed initial preferences,
expressed on certain alternatives (z,2’ € X) and criteria (i, j, k,l € N). They
are linear with respect to the parameters of the capacity. Note that the above
presentation of the optimisation problem is solely a generic presentation. The
constraints depend on the type of preferential information provided by the DM.
We consequently adopted this understandable but unformal notation for the
sake of simplicity.

A solution to the above problem is a general capacity defined by 2™ — 1
coefficients. The number of variables involved increases exponentially with n.
Consequently the computational time will also increase at least exponentially.
For large problems, both for computational and simplicity reasons, it may
be preferable to restrict the set of possible solutions to k-additive capacities,
ke {l,...,n}, typically kK = 2 or 3. Furthermore, for parsimony reasons, it is
possible to start with a small k£, and to increase its value if necessary, until a
feasible solution is found.

The idea is here simply to rewrite the above optimisation problem in terms
of the Mé&bius transform of a k-additive capacity using Equations (6.3), (6.5),
(6.6) and (6.7), which will decrease the number of variables from 2™ — 1 to

Zle () as one can see from Table 7.1. We obtain

min or max f

S mu(TUi)>0,Vie N, VS C N\ i,

subject to

where m,, is the Mobius representation of a k-additive capacity p on N.
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. "lo 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
9 3 6 10 15 21 28 36 45 55
3 -7 14 25 41 63 92 129 175
n 3 7 15 31 63 127 255 511 1023

Table 7.1: Influence of the order of k-additivity and the number n of criteria
on the number of variables.

Of course, the above optimisation problem may be infeasible if the con-
straints are inconsistent. Such a situation can arise for three main reasons :

- The preferential information provided by the DM is contradictory or vi-
olates natural axioms underlying most decision making procedures such
as compatibility with dominance, transitivity of strict preferences, etc.

- The number of parameters of the model, i.e. the number of coefficients of
the Mobius transform, is too small to have all the constraints satisfied.
In this case, in order to increase the number of free parameters, and
therefore to improve the expressivity of the model, the approach usually
consists in incrementing the order of k-additivity.

- It may happen however that even with a general (n-additive) capacity,
the constraints imposed by the DM, still being in accordance with the
previously mentioned natural axioms, cannot be satisfied. In such a case,
some more specific axioms underlying the Choquet integral model are
violated (see e.g. [Wak89], Theorem VI.5.1 concerning comonotonic con-
tradictory tradeoffs, or [MDGP97]) and the Choquet integral cannot be
considered as sufficiently flexible for modelling the initial preferences of
the DM.

Note that in the latter case, where the Choquet integral-based model is
not rich enough to model the DM’s preferences, we propose a less constrained
approach in Section 7.2.4, where a capacity which violates certain of these pref-
erences is determined.

It is important to note that, in the interactive framework as defined in
Part I, finding a solution to the above optimisation problem does not necessar-
ily end the identification process. Indeed, the obtained Choquet integral-based
representation is then usually analysed by means of the indices presented in
Section 6.2.3. If the results are not completely in accordance with the DM’s
reasoning, his initial preferences are enriched by additional constraints and
a new identification is performed. This interactive loop continues then until
a satisfactory representation of the DM’s preference and an adequate recom-
mendation are found. Note that in Chapter 9, we present an application of
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such an interactive elicitation on a fictitious example by means of the Kap-
palab [GKMO06] package.

7.2 Main methods for capacity identification

As discussed in Section 7.1, most methods for capacity identification proposed
in the literature result in optimisation problems. They differ according to their
objective function and the preferential information they require as input.

After presenting two methods that could be seen as generalisations of mul-
tiple linear regression, we review methods based on mazimum split, minimum
variance and minimum distance identification principles. We end this section
by describing a hybrid method that we developed, providing an approximate
solution if there are no capacities compatible with the DM’s preferences.

7.2.1 Least-squares based methods

Historically, the first approach that has been proposed can be regarded as a
generalisation of classical multiple linear regression [MMS&9]. It requires the
additional knowledge of the desired overall evaluations y(z) of the available
objects x € O. The objective function is defined as

frstmy) = [C, (u(z)) — y(x)]?,

z€O

where u(z) = (u1(x1),...,un(zy)) for all x € X. The aim is to minimise
the average quadratic distance between the overall values {C.,, (u(z))}zco
computed by means of the Choquet integral and the desired overall scores
{y(2)}zco provided by the DM.

The optimisation problem takes therefore the form of a quadratic program,
not necessarily strictly convex [GNW95], which implies that the solution, if it
exists, is not necessarily unique (this aspect is investigated in detail in [MG99]).
In order to avoid the use of quadratic solvers, heuristic suboptimal versions of
this approach have been proposed by Ishii and Sugeno [IS96], Mori and Muro-
fushi [MM89] and Grabisch [Gra95]. Let us detail this latter approach.

Called Heuristic Least Mean Squares (HLMS), it is based on a gradient ap-
proach starting from a capacity p defined by the DM that we call the initial
capacity. This capacity is typically an additive capacity representing the DM’s
prior idea of what the aggregation function F' in Equation (6.1) should be. In
the absence of clear requirements on the aggregation function, a very natural
choice for y is the uniform capacity p* since the Choquet integral w.r.t. that ca-
pacity is nothing else than the arithmetic mean. Once the initial capacity p has
been chosen, for each object = € O, the gradient modifies only the coefficients
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of p involved in the computation of C),(u(x)) (without violating monotonicity
constraints). When all the available objects have been used, unmodified coef-
ficients of p are modified towards the average value of neighboring coefficients.
This forms one iteration, and the process is restarted until a stopping crite-
rion is satisfied. The advantage over the optimal quadratic approach is that
only the vector of the coefficients of p has to be stored, while in the latter, a
squared matrix of same dimensions has to be stored. Also, as we will see in
Section 9.3.1, this heuristic approach tends to provide less extreme solutions
than the optimal approach. However, unlike for the optimal quadratic method,
it is not possible to require that the solution be k-additive, k < n.

In the context of MAVT based on the Choquet integral, the main incon-
venience of these methods is that they require the knowledge of the desired
overall values {y(x)}.co, which often can only hardly be obtained from the
DM.

7.2.2 A maximum split method

An approach based on linear programming was proposed by Marichal and
Roubens [MR00]. The proposed identification method can be stated as fol-
lows:

max frp(e) :=¢

ST mu(TUi)>0,¥ie N, VS C N\ i,
TCS
t<k—1

> mu(T) =1,
TCN
0<t<k

Cm,, (u(z)) = Cm,, (u(2')) = 60 + ¢,

subject to

Roughly speaking, the idea of the proposed approach is to maximise the mini-
mal difference between the overall values of objects that have been ranked by
the DM through the partial weak order =¢ (hence the name mazimum split).
Indeed, if the DM states that x =¢ z’, he may want the overall values to reflect
this difference in the most significant way.

The main advantage of this approach is its simplicity. However, as the least
squares based approach presented in the previous subsection, this identification
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method does not necessarily lead to a unique solution, if any. Furthermore, as
it will be illustrated in Chapter 9, the provided solution can sometimes be con-
sidered as too extreme, since it corresponds to a capacity that maximises the
difference between overall values.

Note that we have extended this identification method to handle MCDA
ordered sorting problems [MMRO5]. Details concerning this topic can be found
in Chapter 8.

7.2.3 Minimum variance and minimum distance methods

The idea of the minimum variance method [Koj07] is to favour the least specific
capacity, if any, compatible with the initial preferences of the DM. The objective
function is defined as the wvariance of the capacity, i.e.

2

IIRCREEED DI DIEACIN B SECRCATH Iy I

iEN SCN\i TCS

(n—s—1)!s!

where v4(n) = .

As shown in [Koj07], minimising this variance is equivalent to maximis-
ing the extended Havrda and Charvat entropy of order 2. This method can
therefore be equivalently regarded as a maximum entropy approach. The op-
timisation problem takes the form of the following strictly convex quadratic
program:

min fary (my)

S mu(TUi) >0,Vie N, VS C N\ i,

t<k—1
Z mM(T) =1,
0<t<k

C,. (w(x)) = Crm,, (u(a)) = bc,

subject to

As discussed in [Koj07, KMRO5], the Choquet integral w.r.t. the minimum
variance capacity compatible with the initial preferences of the DM, if it exists,
is the one that will exploit the most on average its arguments.



7.2. MAIN METHODS FOR CAPACITY IDENTIFICATION 109

One of the advantages of this approach is that it leads to a unique solution,
if any, because of the strict convexity of the objective function. Also, in the case
of poor initial preferences involving a small number of constraints, this unique
solution will not exhibit a too specifical behaviour characterised for instance
by very high positive or negative interaction indices or a very uneven Shapley
value.

A generalisation of this approach [Koj06] consists in finding, if it exits, the
capacity closest to a capacity defined by the DM and compatible with his ini-
tial preferences. As already discussed in Section 7.2.1, this initial capacity is
typically an additive capacity representing the DM’s prior idea of what the
aggregation function should be. In the absence of clear requirements a very
natural choice for p is the uniform capacity p*. In order to practically imple-
ment such a minimum distance principle, in [Koj06], three quadratic distances
have been studied. In the sequel, we restrict ourselves to the following one
defined, for any two capacities u, u on N by

(s m,) = / (Co, (2) — Con (2)]2da. (7.1)

[071]11,

This quadratic distance, thoroughly studied in [Mar98, Chap. 7] in the context
of the extension of pseudo-Boolean functions, can be interpreted as the ex-
pected quadratic difference between overall values computed by Cy,, and Cyy,,
assuming that the vectors of partial values are uniformly distributed in [0, 1]™.

In the absence of clear requirements on the aggregation function, a natural
objective function for the above discussed minimum distance principle is thus
given by

2
1 n
f m ::/ Cm, () — = x; | dx.
wolmy) [0,1]" ) ”;

The resulting optimisation problem is again a strictly convex quadratic pro-
gram.

7.2.4 A less constrained method

This approach, which we first presented in [MRO05a], can be seen as a general-
isation of the least squares methods described in Section 7.2.1. The minimal
preferential information which has to be provided by the DM is a weak order
over the available objects. The objective function, depending on more variables
than the least squares methods described earlier, is defined as

fors(muy) ==Y [Cu, (u(@)) - y()]”,

z€O
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where y = {y(z)}zco are additional variables of the quadratic program! rep-
resenting overall unknown evaluations of the objects that must verify the weak
order imposed by the DM.

The optimisation problem can be written as the following convex quadratic
program :

min fors(mu,y)

S mu(TUi)>0,Vie N, ¥SC N\ i,
TCS
t<k—1

Z mM(T) =1,
TCN
o<i<k

y(a) —y(a') = by,

subject to

where §, is an indifference threshold, playing a similar role as é¢, i.e., it can be
interpreted as the desired minimal difference between the overall values of two
objects which are considered as significantly different by the DM. A solution of
the quadratic program consists of the Mobius representation m,, of the capacity
and the overall evaluations y = {y(z)}.co-

Let us first intuitively explain the main idea of the approach. As discussed
at the end of Section 7.1, assuming that the constraints imposed by the DM are
not contradictory and do not question natural multiple criteria decision axioms
such as compatibility with dominance, it may still happen that the number
of parameters (following from the chosen order of k-additivity) is too small so
that these constraints can be satisfied. A first possibility consists in increasing
k, if possible. A second solution consists in relaxing some of the constraints
by translating the desired weak order over the available objects by means of
conditions on the unknown overall evaluations {y(z)},co. In that case, the
Mbobius transform m,, is less constrained and there may exist a solution.

The role of the objective function is to minimise the quadratic difference
between the numerical representation {y(x)}.co of the weak order imposed by
the DM and the overall values computed by means of the Choquet integral.

! The acronym GLS stands for “generalised least squares”.
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If the objective function is zero, then for each object x, its overall evaluation
y(x) equals its aggregated overall value C,,, (u(z)). In that case, the weak or-
der obtained by ordering the objects according to their aggregated evaluations
is consistent with the weak order imposed by the DM and the threshold 4, is
not violated. Two possibilities arise: either there is a unique solution or there
exists an infinity of solutions to the problem. In the second case, the solution
is chosen by the solver and its characteristics are difficult to predict.

If the objective function is strictly positive, then the aggregated overall eval-
uations {Ci,, (u(2)) }zco do not exactly match the overall unknown evaluations
{y(z)}rco numerically representing the weak order imposed by the DM. Two
possibilities arise: either the weak order induced by the aggregated overall eval-
uations {Cy,, (u(z)}zeo corresponds to =o but x =0 2’ does not necessarily
imply Cp,,, (u(x)) > Cp, (u(z’)) 4 6, (see Subsection 9.3.5), or the weak order
induced by the {C,,, (u(x)}zco does not correspond to >¢. In the former case,
the solution does not respect the DM’s choice for the minimal threshold J,. In
the latter case the weak order is violated on average which might not be very
satisfactory.

The advantage of this approach is that it may provide a solution even if the
weak order over the available objects is incompatible with a Choquet integral
model because some specific axioms are violated, if the indifference threshold
dy is too large, or if some of the constraints on the criteria are not compatible
with a representation of the weak order by a Choquet integral. It is then up to
the DM to decide if the result is satisfactory or not. Nevertheless, as already
explained, this approach should be used with care when the objective function
is zero, since then, it simply amounts to letting the quadratic solver choose a
feasible solution whose characteristics are difficult to predict.

Note that this identification method can also be used to test if a given
problem can be represented by a Choquet integral. If the objective function
is strictly positive, then there exists no capacity which allows to represent the
problem by means of a Choquet integral (for a fixed order of k-additivity).

In this Chapter we have presented several identification methods, among
which is situated our proposal, which is the less constrained method. We have
also underlined that some of these methods do not necessarily generate unique
solutions. Consequently, the representation of a decision problem by means of
an overall value function might in such cases not be unique. Consequently, this
can produce some uncertainty in the order induced by U. These robustness
and stability issues of the identification methods are nevertheless out of the
scope of this work.
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In this chapter we show how common MCDA problems can be solved by ex-

ploiting the results of Choquet integral-based MAVT.

In the first section, where we focus on the case where the partial evalua-
tions are crisp numbers, we detail how to solve the choice, the ranking and the
ordered sorting problems. Then, in Section 8.2 we switch to the case where
the partial evaluation of the alternatives are fuzzy numbers, and present how
the choice and the ranking problems can be dealt with. Finally, in the third
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section we return to progressiveness issues in the context of MAVT.

Note that Section 8.1.2 is based on our articles [MMRO5] and [MRO05a],
whereas Section 8.2 presents our research published in [MRO5b].

8.1 The crisp case

We suppose here that the partial evaluations of the elements of X are crisp
numbers and have been aggregated by means of a Choquet integral into a
fuzzy overall evaluation for each alternative. In the following sections we will
show how to exploit this information in order to determine a choice among the
alternatives, to rank them and to sort them in ordered classes.

8.1.1 The choice and the ranking problem

Recall that the objective of MAVT is to model the preferences of the DM, rep-
resented by a binary relation > on X, by means of an overall value function
U:X — Rsuch that, = y < U(z) > U(y), Va,y € X. Therefore,
once the capacity modelling the DM’s preferences has been determined, all the
alternatives of X become comparable by means of their overall value calculated
by a Choquet integral. Note nevertheless that this representation might not be
unique (as shown in Chapter 7.

Consequently the ranking problem, aiming at positioning the alternatives
of X from the best to the worst one, has a natural solution via the order of the
overall values of the alternatives.

Similarly, the choice problem, whose objective is to determine a single best
alternative, can be solved by considering the alternative with the highest over-
all evaluation. In case of a tie, either the DM chooses one of the equivalent
alternatives, or, in the context of a progressive method, the analysis can be
continued further in order refine some evaluations to discriminate between the
equivalent alternatives. The k-choice problem is similarly solved by consid-
ering the first k positions of the obtained ranking. In case of ties, again, the
DM should either select one of the equivalent elements of X, or, continue the
evaluation in a progressive framework to increase the discrimination between
tied alternatives.

8.1.2 The ordered sorting problem

Consider a partition of X into m nonempty classes {Cl;}7*,, which are ordered
in increasing order of preferences; that is, for any r,s € {1,...,m}, with r > s,
the elements of CI, are considered as better than the elements of Cl;.
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We also set
ciz=Jc, (r=1,...,m).

t>r

The objective of the ordered sorting problem is to partition the elements of
X into the classes {Cl;}7;. The following considerations are mainly based on  ordered
the following result, adapted from [GMS01, Theorem 2.1], which states that, sorting
under a simple condition of monotonicity, it is possible to find a discriminant
function that strictly separates the classes Cly,...,Cl,, by ordered numerical
thresholds.

For any x; € X; and any y_; € X _; := [Ljen\ (53 X, we set
Ty i = (Y1, 5 Yio1,Ti, Yit1, -5 Yn) € X,
Theorem 8.1.1. The following two assertions are equivalent:
1. Forallie N, t€{1,...,m}, z;,z, € X;, y_; € X_;, we have

2 =i ap and zy_; € Cly = xhy_; € CIZ.

2. There exist

o functions g; : X; — R (i € N), strictly increasing,

e a function f: R™ — R, increasing in each argument, called discrim-
inant function,

o m — 1 ordered thresholds {z;}7" 5 satisfying
22K 23K < Zm
such that, for any x € X and any t € {2,...,m}, we have

Flor(x1), 92(22), -, gnlan)] = 2 & x € CI7.

For a practical use of this result, Roubens [Rou01] restricted the family of
possible discriminant functions to the class of n-variable Choquet integrals and
the partial value functions to normalised scores.

8.1.2.1 Capacity identification

We again assume that the value functions of the different criteria have been
determined beforehand. The goal of this section is to present how to identify
a capacity, if it exists, such that the Choquet integral w.r.t. to this capacity
allows to represent the preferences of the DM related to an ordered sorting.

O C X is once more a reference set of alternatives on which the DM is
able to express some preferences (see Section 7.1). For the sorting problem, we
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will assume that the DM can assign each element of O to one of the classes
Cly (t € {1,...,m}). This assignment renders a partition of O into classes
{O}72,, where Oy :== ONCI; for all t € {1,...,m}. Note that we suppose
here that the sets O; are non-empty, for all ¢ € {1,...,m}.

As the Choquet integral is supposed to strictly separate the classes O; (and
later the classes Cl;), the following necessary condition is imposed

Cu(u(sc)) - Cﬂ(“(y)) Ze, (8.1)

for each ordered pair (z,y) € O; X O;—1 and each t € {2,...,m}, where € is a
given strictly positive threshold and u(x) := (u1(z1),. .., un(zn)).

These separation conditions, put together with the boundary and mono-
tonicity constraints on the fuzzy measure, form a linear constraint satisfaction
problem whose unknowns are the coefficients of the capacity. Thus at this
stage, the sorting problem consists in finding a feasible solution satisfying all
these constraints. Note that if € is chosen too big, the problem might have no
solution.

In practice, the identification methods described in Chapter 7 can be ap-
plied to identify a capacity which respects the DM’s preferences. In [MMRO05],
we present how the maximum split approach of Section 7.2.2 can be applied to
the ordered sorting problem. In such a case, the strictly positive threshold e,
which is meant to strictly separate the classes, is considered as a non-negative
variable to be maximised. The minimum variance and minimum distance meth-
ods of Section 7.2.3 can also be used here to determine the capacity. In both
cases, the separation constraints require that the DM determines a value for
the threshold e (which replaces in that case d¢ of Section 7.2.3).

Let us now define a dominance relation D on X as follows: For each x,y €
X

)

Dy & wi(x;) > ui(y;) Vi e N.

Being an intersection of complete orders, the binary relation D is a partial order,
i.e., it is reflexive, antisymmetric, and transitive. Furthermore we clearly have

Dy = Cu(u(z)) = Cululy)).

We can now define, for each ¢ € {1,...,m}, the set of non-dominating alterna-
tives of Oy,

Nd; :={x € O; | 2’ € O;\ {2} : xDz'},

and the set of non-dominated alternatives of O,

ND;:={x €O |p2’ € O\ {x} : 2/ Dx}.
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Due to the increasing monotonicity of the Choquet integral, it is sufficient
to consider Constraint (8.1) only for each ordered pair (z,y) € Ndy X NDy_q
and each t € {2,...,m}. Therefore, the total number of separation constraints
boils down to

> INdi|IND;—y]-

t=2

8.1.2.2 Assignment

Let p* be a solution for the capacity identification problem presented in the
previous section (for any of the selected identification methods). Then any
alternative x € X will be assigned to

e the class Cl; if

2, G () < Cor (u(e)) < s, G (u(1),

e the union of the classes Cl; and Cl;_ if

_max G (u(y)) < G (ula)) < min Cpe(u(y)).

Suppose now that there exists no solution to the capacity identification
problem. It is then possible to use the identification method of Section 7.2.4
which allows to solve less constrained problems. If its objective function is
strictly positive, this signifies that certain conditions imposed by the DM are
violated. We detail hereafter how to determine an assignment for each alter-
native of O (and of X) in terms of intervals of contiguous classes.

First of all, let us suppose that u; : X; — [0,1] (Vi € N) (without being
restrictive, this simplifies the notations of the following considerations). Fur-
thermore assume that u(x~) := (0,...,0) is assigned to the worst class Oy,
and that u(z™) := (1,...,1) is assigned to the best class O,,. Let I denote
the index of the class to which the DM has assigned alternative x of O.

In this context we will show that any alternative x € X can be assigned to
an interval of classes of {Cl;}72,. As a consequence, to each such assignment
corresponds a lower class index [, and an upper class index I of {1,...,m}.

Let us start by defining different types of assignments which we will consider
here.

Definition 8.1.1. An alternative x € X is said to be precisely assigned to
Cl, ifly =1f =:1,. Else z is said to be ambiguously assigned to the interval
of classes [Cl,—,Cl,+].

precise and
ambiguous
assignment
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The following definition is useful in the case where the class to which an
alternative x of X should belong is known beforehand, and that the objective
is to determine the accuracy of an assignement.

Definition 8.1.2. An alternative x € X is said to be correctly assigned if
Cljs € [C’ll;,C’ll;].

We define the degree of the assignment by d(z) =1} —1; + 1, Vo € X.

For each s € [0,1], we define:

m(s) = max 12, and
zeO:
Cu(u(z))<s
M(s)=  min 2.
z€O:
Cu(u(z))=s

m (resp. M) is a right (resp. left) continuous stepwise function of argument s
with values belonging to the discrete finite set {1,...,m}.

To each s € [0, 1] we associate an interval of contiguous classes [l , [1] such
that
I; = min{m(s),M(s)} and
(8.2)

1T = max{m(s), M(s)}.

It can be easily verified that [; < [f. Furthermore, due to the monotonicity of
m and M, for any r and s of [0,1] s.t. r < s, we also have:
I7 <1 and [f <If.

Formula 8.2 generates a partition of [0, 1] into closed, semi-open or open
intervals s.t. to each of these intervals can be associated an interval of labels
of classes.

Note that for each x € O we have
I; <1 <if.

Consequently, either x is correctly and precisely assigned (d(z) = 1), or it is
correctly and ambiguously assigned (d(x) > 1).

The remaining alternatives of X \ O are then assigned to intervals of classes,
according to their overall evaluations.
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student profile O;

A (7,5)  Os

B (6,6) O

C (7,7 Os
(6,8)

D , O,
A (10,7)  Og
B’ (8,8) O
C’ (10,5) Os
D’ (8,6) Oy

DOy  B(0s) :
= : :
H H j H
: Cos) - A(0)
B(Oy) D0y
6 -
< | - |
CA0)) L C(09)
6 7 8 10

Figure 8.1: Assigning 8 students to 6 classes

8.1.2.3 Illustrative example

Consider a fictitious example where 8 alternatives have to be assigned to 6 or-
dered classes O; to Og. Each of the alternatives has been evaluated on 2 criteria.

Table 8.1 summarises the value profiles of the 8 alternatives and Figure 8.1,
inspired from [MRO05a], represents the situation graphically. Note here that
the order relation on the classes (arrows) reveals comonotonic contradictory
tradeoffs (see [MDGP97]). Hence, the discrimination between the 6 classes is
not representable by a Choquet integral. As stated in the previous section, it
is nevertheless still possible to find an approximate solution by means of the
less constrained identification method of Section 7.2.4. We apply it here with
0y = 0.1.

The capacity determined by the identification method is shown in Table 8.2.
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subset L
0 0.000
{1} 0.414
{2} 0.791
{1,2} -0.204

Table 8.2: The capacity for the 8 alternatives problem

The Shapley values are 0.312 for criterion 1 and 0.688 for criterion 2. The in-
teraction index between both criteria equals -0.204.

Figure 8.2 represents a summary of the construction of the classes, as de-
tailed in the previous section. First one can observe that the separation con-
straint is not respected (between D and C’). Second, one can see that the
problem is not suited for a Choquet integral-based MAVT. Nevertheless, with
the less constrained identification method, it is still possible to find a satisfac-
tory sorting. 3 alternatives (A’, B’ and D) are correctly and precisely assigned,
whereas the 5 remaining alternatives are correctly and ambiguously assigned.

Cp(u(z)) 5.827 6.000 6.827 7.000 7.068 7.581 8.000 8.241

up O;

M(s)

‘77
—

prt(efvalg 1,170 [1,2] © [2,3] ¢ [3,4] i [3,4] @ [4,4] | [4,5] | [5,6] | [6,6]
Tome L2 3.4 3,4 3,4 4,4 [55  [6,6

2
53
HNWEUID | FNWReROIOD

Figure 8.2: Construction of the 6 classes

8.2 The fuzzy case

In this section we suppose that the fuzzy partial evaluations of the elements of
X have been aggregated by means of a Choquet integral into a fuzzy overall
evaluation for each alternative. In the following sections we will show how to
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exploit this information in order to determine a choice among the alternatives
and to rank them.

8.2.1 The choice problem

Recall that the goal of the choice problematique is to determine an alternative
which can be considered as the best one. To achieve this, we determine here a
subset of alternatives (the choice recommendation) among which the best one
can be found. Each alternative which does not belong to the choice should be
rejected.

Let us define the degree of plausibility of the preference of one alternative
w.r.t. another one. It is given as the possibility II that an alternative x is not
worse than y (let’s write z > y) in the following way (see e.g. [RV88]):

—_— e~ ——

(@ = y) = sup [min{[Cpn,, (u(2))](a), [Crn, (u(y))](B)}], (8.3)
where [C,';,: (u/(;))](a) is a notation for 7 — (;(Iv))(a) (see Section 6.3.1), and,
where u?a?) = (u1(21), ..., un(zy)) is the vector of fuzzy partial evaluations of

alternative x of X.

Figure 8.3 illustrates the meaning of this degree of plausibility of the pref-
erence of x over y (x,y € X). h represents the height at the intersection of the

two fuzzy numbers C,,, (u(z)) and Cfm/} ,(u(y)) representing alternatives x and
y. We have II(z »= y) = h and I(y = x) = 1.

Figure 8.3: Degree of plausibility of the preference of x over y

Roubens and Vincke [RV88] have shown that the plausibility IT as defined
in Equation (8.3) is a fuzzy interval order (i.e. a reflexive, complete and Ferrers
valued relation) and that it is min — max-transitive.

choice

plausibility of
the preference
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If these credibilities are computed for each pair of alternatives of X, it is
possible to represent the problem as a valued digraph where the nodes repre-
sent the alternatives and the arcs the valued relation II. This graph is called a
fuzzy possibility digraph.

Starting from this, one can define a valued strict preference relation by
P(z,y)=1-T(y = z) V(z,y) € X* [FRY4].

The associated digraph is called the fuzzy preference digraph.

The objective is to extract information from this digraph, in order to de-
termine a choice among the alternatives of X. Let us first recall the concept of
score of non-domination of an alternative x of X [Orl78]:

Definition 8.2.1. The score of non-domination of an alternative x of X in
a fuzzy preference digraph is given by

ND(z)=1-— max P(y,x).

Finally, the choice will be given by the core of X, which is defined as follows:

Definition 8.2.2. The core Yy of X is a subset Yy C X such that its elements
all have a score of non-domination of 1. Equivalently, Yo = {z € X|ND(x) =

1}.
It has been shown in [RV88] that the core of a fuzzy preference digraph is
non-empty.

Consequently, Yy gives a solution to the choice problem. If Y;; contains more
than one element, in the progressive context, the decision aid may be continued
on this restricted set in view of determining a unique best alternative. The
following example illustrates a situation where the core is composed of more
than one alternative.

Example Consider the situation presented on Figure §8.4. Altﬂza—
tives z, y and z of X have respective overall evaluations C/';;(u(ac)),
C/',\,;(u(y)) and C/',\,;(u(z)) Both y and z have a score of non-
domination of 1 (one can easily check that P(y,z) = P(z,y) =0).
Consequently, both alternatives must be retained for a further anal-
ysis step, or the DM has to select one of the equivalently best alter-
natives.

8.2.2 The ranking problem

In order to determine a ranking on the alternatives of X, we suggest two pos-
sibilities in this section: first via a weak order, and second via an interval order.
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Figure 8.4: Alternatives y and z are held back for a choice recommendation

Let us first introduce the concept of possibilistic mean (see [CF01, DP87]
for further details). Recall that in Section 6.3.1 we considered the member-
ship function of a fuzzy number T as a possibility distribution. The upper

possibilistic mean of T is then defined by possibilistic
mean

1 1
MT(Z) ::/0 zM(/\)d)\:/O 2pr(N)dPos(Z > zpr(N))

and the lower possibilistic mean of T by

1 1
M~ () ::/0 zm()\)d)\:/o 2m(N)dPos(Z <z, (XN)).

Intuitively, the upper (resp. lower) possibilistic mean corresponds to the aver-
age value of the maxima (resp. minima) of the A-level sets.

The possibilistic mean of the fuzzy number = is then defined by
~ 1 ~ ~
M(@) = M (@) + M™(@)].

Figure 8.5 gives an illustration of the upper possibilistic mean. We represents
both the surface and its value on the same figure, which allows to give a better
intuition on its semantics. If we consider two fuzzy numbers T and y we can

o~ ~
define the upper dominance > of T over y by upper
dominance

+
T>y = M (T) - M (y) >0.
Similarly one can define the lower dominance i lower
dominance
8.2.2.1 Ranking by a weak order

Let us now apply the concept of possibilistic mean to the overall evaluations of
the alternatives of X by means of the fuzzy extension of the Choquet integral.
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Figure 8.5: Representations of M™(Z): a number and a surface

Let x and y be two alternatives of X. A weak order on X can be defined by
the relation =pyy (is not worse than):

zmpy Y = M(Cn(u(@)) > M(Crn(u(y))). (8.4)

It is possible to give a geometric interpretation to this relation. Consider

two alternatives z and y of X with respective overall evaluations C/’;; (u(z))

and 5’,\,; (uf(\yJ)) These two fuzzy numbers define four areas Ay, ..., A4 as shown
on Figure 8.6. We can easily see that

Ay — Az = ./\/lJr(C'/,:M (Jx/))) - M+(C'/7,v“ (uf(\y/))) (upper dominance) and

Ay — Ay = Mf(CTn/“(u/(;))) — MTCT;(J(?))) (lower dominance).

Definition 8.4 can then be rewritten as

Figure 8.6: Comparing Cf;,;(uf(\;)) to CT;M(J@)
TrpM Y = A4+ AL > Az + As.

This weak order proposal corresponds to the area compensation method of
Fortemps and Roubens [FR96].
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8.2.2.2 Ranking by an interval order

This second proposal to determine a ranking on X is based on the comparison
of the intervals [M™(Cy, (u(z))), M*(Cp(u(z)))], for each z in X.

Let I be a symmetrical relation, and P be an antisymmetrical relation on
X x X such that

ePy = M (Cp,(u(@))) > MF(Cp, (u(y)))

yPr <= M7 (Cn, (u(y))) > M*(Cry,, (u(x)))

"
xly else.

The relation (P, ) is an interval order which can be used to build a ranking on
the alternatives of X.

Note that the particularity of such an interval order is that the associated
indifference relation I is not transitive. For three alternatives z,y and z of X
it is hence possible to have the situation where x/y and ylz, but xPz.

The main difficulty thus arises for indifferent alternatives (or intervals which
have a non-empty intersection). In a progressive framework it is possible to
focus on these problematic alternatives to make them preferentially more dis-
criminant.

8.2.2.3 On the calculation of the possibilistic means in practise

In real-life MCDA problems, one can suppose that the partial evaluations of
the alternatives are given by trapezoidal or triangular fuzzy numbers. Besides
the objective is in general to build the simplest possible model, which means
in our framework to use a k-additive Choquet integral with k as low as possible.

Let us therefore suppose that the partial valuations of an alternative x of

X are trapezoidal fuzzy numbers u;(x;) = (a;,b;, a4, 5;) (i € N) and that we
restrict to a 2-additive Choquet integral. The aggregation can then be written
as

—_~—

G (0(2)) = D om(0) 7 usCe) 30 m(ig) 7 minfu (). s ()

{i,J}CN

The minimum of two trapezoidal fuzzy numbers can be summarised by 8 param-

eters (a,b,\7,a/, o/, A\t 3, 3") representing two upper piecewise linear shape

functions passing through the following points: (a —&”,0), (a —a/, A7), (a, 1),

(b,1), (b+p',AT), (b+3",0). Figure 8.7 represents these 8 parameters. Let m

be the minimum of two trapezoidal fuzzy numbers. One can easily obtain that
o +A7a”

M~() =a— == and
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Figure 8.7: The minimum of two trapezoidal fuzzy numbers

N /+)\+ 1
Mt (m)=b+ %
Furthermore, one can see that for any fuzzy numbers z and 3 and any real

number p, M*(p* ) = pM*(Z) and M*(F + y) = M*(T) + ME(y)".

In the present context we therefore have for any alternative x € X:

—_~—

2 my ({i}) M (ui (7))

+ 5 mu({i M= (minfus (), 5 (7,)}).

i,5=1
i#j

iy
Q
3
=
&
I
M=

This shows that in this particular case where the partial evaluations are
trapezoidal fuzzy numbers and where we restrict to a 2-additive fuzzy number,
the possibilistic mean of the overall evaluations of the alternatives can be very
conveniently calculated.

8.3 Further considerations on progressiveness
in Multiattribute Value Theory

In this section, let us briefly return to the concept of progressiveness, and to how
it can be used in the framework of MAVT models. As already mentionned in
Chapter 2, two main reasons motivate the use of progressive methods, namely
economical constraints and prudence.

Progressiveness can conveniently be used if the partial evaluations of the
alternatives suffer from impreciseness, which can be represented by fuzzy num-
bers. Due to economical limitations, or even prudence, in such a framework,
the DM will give imprecise values to the alternatives in a first step. Via the

L M¥ is an abbreviation to avoid the writing of two similar formulae for M+ and for M~
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methods described in Section 8.2, it is possible to present a first partial con-
clusion to the DM for the choice and the ranking problems.

The DM might not be satisfied with this partial conclusion, as it may contain
too many alternatives which are considered as indifferent. In such a situation,
he can focus on these problematic alternatives in order to remove some impre-
ciseness from their evaluations.

In practice this is done by narrowing the fuzzy numbers which are used
as partial evaluations of the alternatives. Due either to financial or to time
constraints, in a previous step of the progressive analysis, the DM may have
evaluated certain alternatives quite roughly on some criteria. The intermediate
conclusion indicates him on which alternatives he has to focus in order to ob-
tain the desired recommendation. In the choice problematique, he can restrict
his analyses to the elements of the core, whereas in the ranking problematique
he may focus on alternatives considered as indifferent in the weak order or the
interval order.

Such a filtering allows the DM to focus on a few alternatives, for which he
can try to obtain less imprecise information and narrow their evaluations. If
necessary, this step is repeated a few times, until the DM is satisfied with the
final recommendation.
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Application of the
Kappalab R package
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In this chapter we present the Kappalab package that we helped to develop
with I. Kojadinovic and M. Grabisch. Kappalab, which stands for “laboratory
for capacities”, is a package for the GNU R statistical system [R D05] for ca-
pacity and integral manipulation on a finite setting and which can be used in

the context of MAVT.

In the first section we introduce the framework around Kappalab and its
limitations. Then, in Section 9.2 we switch to the description of a fictitious

example which we analyse and solve by means of Kappalab in Section 9.3.

Note that this Chapter is based on our article [GKMO07] and the manual of
Kappalab [GKMO06].

129
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9.1 On Kappalab

The identification methods discussed in Chapter 7 have been implemented
within the Kappalab package [GKMO06] for the GNU R statistical system.
The package is distributed as free software and can be downloaded from the
Comprehensive R Archive Network (http://cran.r-project.org) or from
http://www.polytech.univ-nantes.fr/kappalab. To solve linear programs,
the LpSolve R package [BT05] is used; strictly convex quadratic programs are
solved using the Quadprog R package [TWO04]; finally, not necessarily strictly
convex quadratic programs are solved using the ipop routine of the Kernlab R
package [KSHZ04].

As far as the maximum number of criteria is considered, Kappalab allows to
work comfortably with up to n = 10 criteria if n-additive capacities are consid-
ered and with up to n = 32 criteria if 2 or 3-additive capacities are considered.

In the following section, we present a fictitious problem which allows to
easily understand the use of the Kappalab package and the output of the dif-
ferent identification methods. We intentionally restrict to the crisp case, as
the fuzzy case is not yet implemented in Kappalab. Note also that the sorting
problematique is not treated here.

9.2 Description of the problem

We consider an extended version of the fictitious problem presented in [Koj07]
concerning the evaluation of students in an institute training econometricians.
The students are evaluated w.r.t. five subjects: statistics (S), probability (P),
economics (E), management (M) and English (En). The marginal values of
seven students a, b, ¢, d, e, f, g on a [0,20] scale are given in Table 9.1.

Student S P E M En Mean
18 11 11 11 18 13.80
18 11 18 11 11 13.80
11 11 18 11 18 13.80
18 18 11 11 11 13.80
11 11 18 18 11 13.80
11 11 18 11 11 1240
11 11 11 11 18 1240

Q= ® Q0 o

Table 9.1: Partial evaluations of the seven students.

Assume that the institute is slightly more oriented towards statistics and
probability and suppose that the DM considers that there are three groups of
subjects: statistics and probability, economics and management, and English.
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In each of the first two groups, subjects are considered to have the same impor-
tance. Furthermore, the DM considers that within those groups, subjects are
somewhat substitutive, i.e. they overlap to a certain extent. Finally, if a stu-
dent is good in statistics or probability (resp. bad in statistics and probability),
it is better that he is good in English (resp. economics or management) rather
than in economics or management (resp. English). This reasoning, applied to
the profiles of Table 9.1, leads to the following ranking:

a-pb-pcrod-per-o f>0g. (9.1)

Furthermore we will assume that the DM considers that two students are sig-
nificantly different if their overall values differ by at least half a unit.

By considering students a and b, and f and g, it is easy to see that the cri-
teria do not satisfy mutual preferential independence, which implies that there
is no additive model that can numerically represent the above weak order.

In order to use the identification methods reviewed in Chapter 7 and im-
plemented in Kappalab, we first create 7 R vectors representing the students:

<- c(18,11,11,11,18)
<- c(18,11,18,11,11)
<- c(11,11,18,11,18)
c(18,18,11,11,11)

<- c(11,11,18,18,11)

<- c(11,11,18,11,11)
g <- c(11,11,11,11,18)

V V V V V V VvV
H O Q& 0 T e
N
|

The symbol > represents the prompt in the R shell, the symbol <- the assign-
ment operator, and c is the R function for the creation of vectors. Let us now
analyse the outputs of the different identification methods presented earlier in
this work.

9.3 Solving the problem

In this section, the objective is to elicit the preferences of the DM in the con-
text of the fictitious problem presented in Section 9.2. This resolution is done
interactively, in accordance with the developments of Chapter 2.

9.3.1 The least squares methods

In order to apply the least squares methods presented in Section 7.2.1, the
7 vectors previously defined and representing the students need first to be
concatenated into a 7 row matrix, called C here, using the rbind (row bind)
matrix creation function:
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> C <- rbind(a,b,c,d,e,f,g)

Then, the DM needs to provide overall values for the seven students. Although
it is unrealistic to consider that this information can always be given, we assume
in this subsection that the DM is able to provide it. He respectively assigns 15,
14.5, 14, 13.5, 13, 12.5 and 12 to a, b, ¢, d, e, f and g. These desired overall
values are encoded into a 7 element R vector:

> overall <- c(15,14.5,14,13.5,13,12.5,12)

The least squares identification routine based on quadratic programming
(providing an optimal but not necessarily unique solution) can then be called
by typing:

> 1s <- least.squares.capa.ident(5,2,C,overall)

in the R terminal. The first argument sets the number of criteria, the second
fixes the desired order of k-additivity, and the last two represent the matrix con-
taining the partial values and the vector containing the desired overall values
respectively. The result is stored in an R list object, called here 1s, containing
all the relevant information for analysing the results.

The solution, a 2-additive capacity given under the form of its Mobius
representation, can be obtained by typing:

> m <- 1s$solution

and visualised by entering m after the prompt:

>m
Mobius.capacity
{3 0.000000
{1} 0.311650
{2} 0.176033
{4,5} 0.001752

As discussed in Section 7.2.1, for the considered example, the obtained solution
is probably not unique [MG99].

The Choquet integral for instance of a w.r.t. the solution can be obtained
by typing:

> Choquet.integral(m,a)
[1] 15

To use the least squares identification routine implementing the heuristic
approach proposed in [Gra95], we first need to create the initial capacity as
discussed in Section 7.2.1. Here, in the absence of clear requirements on the
form of the Choquet integral, we take the uniform capacity on the set of criteria:
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> mu.unif <- as.capacity(uniform.capacity(5))

The heuristic least squares identification routine can then be called by typ-
ing:

> hls <- heuristic.ls.capa.ident(5,mu.unif,C,overall,alpha=0.05)

The first argument sets the number of criteria, the second contains the initial
capacity, the third represents the matrix of partial evaluations, the fourth the
vector containing the desired overall values, and the last the parameter con-
trolling the gradient descent.

The overall values computed using the Choquet integral w.r.t. the two ob-
tained solutions are given in the last two columns of the table below, the sixth
column containing the desired overall evaluations, and the seventh the mean
value of the evaluations of each alternative:

S P E M En Given Mean LS HLS

a 18 11 11 11 18 15.0 13.8 15.0 15.0
b 18 11 18 11 11 14.5 13.8 14.5 14.5
c 11 11 18 11 18 14.0 13.8 14.0 14.0
d 18 18 11 11 11 13.5 13.8 13.5 13.5
e 11 11 18 18 11 13.0 13.8 13.0 13.0
f 11 11 18 11 11 12.5 12.4 12.5 12.5
g 11 11 11 11 18 12.0 12.4 12.0 12.0

As one can see, both the optimal and the heuristic methods enable to recover
the overall values provided by the DM. Recall however that the solution re-
turned by the optimal quadratic method is 2-additive whereas that returned
by the heuristic method is 5-additive.

The Shapley values of the solutions can be computed by means of the
Shapley.value function taking as argument a capacity and are given in the
following table :

S P E M En
LS 0.29 0.14 0.21 0.13 0.24
HLS 0.24 0.18 0.20 0.16 0.21

As one could have expected, the Shapley value of the solution obtained by
the heuristic approach is less contrasted than that returned by the optimal
quadratic method.

9.3.2 The LP, minimum variance and minimum distance
methods

As discussed earlier, the least squares methods applied in the previous section
are not well adapted to MAVT since they rely on information that a DM cannot
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always provide. The LP, the minimum variance and the minimum distance
methods require only a partial weak order over the available objects, such as
the one provided by the DM in Equation (9.1). This weak order is naturally
translated as

Cin, (@) > Cp,, (b) > Cin,(¢) > Cpy, (d) > Crn(€) > Cpa, (f) > Cin, (9)-
with indifference threshold 6o = 0.5.

Practically, this threshold is stored in an R variable:
> delta.C <- 0.5
and the weak order over the students is encoded into a 6 row R matrix:

> Acp <- rbind(c(a,b,delta.C), c(b,c,delta.C), c(c,d,delta.C),
c(d,e,delta.C), c(e,f,delta.C), c(f,g,delta.C))

each row containing a constraint of the form Cy,  (u(z)) > Cp,, (u(y)) + dc.

The LP approach is then invoked by typing:
> 1p <- lin.prog.capa.ident(5,2,A.Choquet.preorder = Acp)

The first argument fixes the number of criteria, the second sets the desired
order of k-additivity for the solution, and the last contains the partial weak
order provided by the DM. All the relevant information to analyse the solution
is stored in the R object 1p.

The minimum variance approach is called similarly:

> mv <- mini.var.capa.ident(5,2,A.Choquet.preorder = Acp)

To use the minimum distance approach, we first need to create the initial
capacity. In the absence of clear requirements from the DM, we choose the
uniform capacity on the set of criteria, which can be created by entering:

> m.mu <- additive.capacity(c(0.2,0.2,0.2,0.2,0.2))

The capacity closest to the uniform capacity compatible with the initial pref-
erences of the DM is then obtained by typing:

> md <- mini.dist.capa.ident(m.mu,2,"global.scores",
A.Choquet.preorder = Acp)

The second argument sets the desired order of k-additivity for the solution,
while the third one indicates which of the 3 available quadratic distances be-
tween capacities should be used [Koj06]. The character string "global.scores"
refers to the distance given in Equation (7.1).

The overall values computed using the Choquet integral w.r.t. the 2-additive
solutions are given in the following table:
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S P E MEn Mean LP MV MD
a 18 11 11 11 18 13.8 18.00 15.25 14.95
b 18 11 18 11 11 13.8 17.36 14.75 14.45
c 11 11 18 11 18 13.8 16.73 14.25 13.95
d 18 18 11 11 11 13.8 16.09 13.75 13.45
e 11 11 18 18 11 13.8 15.45 13.25 12.95
f 11 11 18 11 11 12.4 14.82 12.75 12.45
g 11 11 11 11 18 12.4 14.18 12.25 11.95

Note that, as expected, the LP approach leads to more dispersed values, reach-
ing the maximum value (18) that a Choquet integral can take for the seven
students.

Note also that, for the minimum variance and the minimum distance meth-
ods, the differences between the overall values of two consecutive students in
the weak order provided by the DM equal exactly dc. The latter observation
follows from the fact that, in this example, the aim of both methods is roughly
to find the Choquet integral that is the closest to the simple arithmetic mean
while being in accordance with the preferential information provided by the
DM.

The Shapley values of the 2-additive solutions are:

S P E M En
LP 0.45 0.00 0.27 0.05 0.23
MV 0.27 0.16 0.21 0.14 0.22
MD 0.24 0.18 0.20 0.16 0.22

As one can see, all three solutions designate statistics (S) as the most impor-
tant criterion. Note that the LP solution is very extreme, since the overall
importance of probability (P) and management (M) is very small and that of
S is close to one half.

However, the overall importances of the criteria are not in accordance with
the orientation of the institution. Indeed, one would have expected to obtain
that statistics (S) and probability (P), and economics (E) and management
(M), have the same importances. This is due to the fact that until now, the
preferential information which we used was limited to a small number of stu-
dents which were ranked by the DM.

In order to build a more accurate model, we can impose additional con-
straints as we shall see in the next section. This clearly justifies the use of an
interactive approach to model the DM’s preferences in MAVT.

This last table gives the Mobius representations of the three 2-additive
solutions:
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LP MV MD

{3 0.00 0.00 0.00
{1} 0.73 0.34 0.33
{2} 0.00 0.18 0.19
{37} 0.55 0.25 0.21
{4} 0.09 0.15 0.16
{5} 0.45 0.18 0.14
{1,2} 0.00 -0.13 -0.17

{1,3} -0.36 -0.06 -0.05
{1,4} 0.00 -0.04 -0.06
{1,5}% -0.18 0.09 0.10
{2,3} 0.00 0.02 0.03
{2,4} 0.00 0.11 0.15
{2,5} 0.00 -0.03 -0.02
{3,4} 0.00 -0.08 -0.08
{3,5} -0.18 0.04 0.08
{4,5} -0.09 -0.01 0.00

As expected, the Mobius representation of the LP solution appears to be the
least similar to the Mobius representation of the uniform capacity.

9.3.3 Additional constraints on the Shapley value

As discussed in the previous section, assume now that by considering the Shap-
ley values of the 2-additive solutions obtained above, the DM explicitly requires
that statistics (S) and probability (P), and economics (E) and management (M),
have the same overall importances, i.e. S ~y P and E ~xn M.

These additional constraints are translated as
8¢ < b, (S) = ¢m, (P) <y and

—0p < Om,, (E) = ¢m,, (M) < by,

where the indifference threshold d4 is supposed to have been set to 0.01 by the
DM. To encode them, an R variable representing the indifference threshold is
first created:

> delta.phi <- 0.01
The inequalities discussed above are then encoded into a 4 row R matrix:

> Asp <- rbind(c(1,2,-delta.phi), c(2,1,-delta.phi),
c(3,4,-delta.phi), c(4,3,-delta.phi))

each row corresponding to a constraint of the form ¢, (i) — ¢m,(j) > ¢,
cel0,1].

The LP approach is then invoked by typing
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> 1p2 <- lin.prog.capa.ident(5,2,A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)

into the R terminal. The minimum variance and minimum distance routines
are called similarly.

The Shapley values of the 2-additive solutions are:

S P E M En
LP 0.23 0.23 0.18 0.18 0.18
MV 0.22 0.21 0.18 0.17 0.22
MD 0.22 0.21 0.18 0.17 0.22

As expected, the solutions satisfy the constraints additionally imposed by the
DM.

The overall values computed using the Choquet integral w.r.t. the 2-additive
solutions are given in the following table:

S P E M En Mean LP MV MD
18 11 11 11 18 13.8 16.03 15.12 14.84
18 11 18 11 11 13.8 15.52 14.62 14.34
11 11 18 11 18 13.8 15.01 14.12 13.84
18 18 11 11 11 13.8 14.50 13.62 13.34
11 11 18 18 11 13.8 13.99 13.12 12.84
18 18 11 11 11 12.4 13.48 12.62 12.34
11 11 18 11 11 12.4 12.97 12.12 11.84

0 H O QA0 T e
> 00 00 0 00

This time, the three methods give more similar overall values. This was to be
expected as the problem is more constrained.

The interaction indices of the 2-additive capacities obtained by means of the
LP, minimum variance and minimum distance methods are respectively given
in the three tables below:

[LP] S P E M En
S NA -0.27 -0.17 0.00 -0.03
P -0.27 NA 0.00 0.16 -0.04
E -0.17 0.00 NA -0.12 -0.06
M 0.00 0.16 -0.12 NA -0.07
En -0.03 -0.04 -0.06 -0.07 NA

MV] S P E M En
S NA -0.21 -0.05 -0.06 0.10
P -0.21 NA 0.01 0.15 -0.03
E -0.05 0.01 NA -0.12 0.05
M -0.06 0.15 -0.12 NA -0.01
En 0.10 -0.03 0.05 -0.01 NA
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[MD] S P E M En
S NA -0.21 -0.04 -0.07 0.10
P -0.21 NA 0.03 0.18 -0.01
E -0.04 0.03 NA -0.10 0.09
M -0.07 0.18 -0.10 NA 0.00
En 0.10 -0.01 0.09 0.00 NA

As one can see, statistics (S) negatively interacts with almost all the sub-
jects, which again is not in accordance with the orientation of the institution.
Indeed, one would expect statistics (S) to be complementary with all sub-
jects except probability (P). Once more, in the perspective of an interactive
approach, this can be corrected by imposing additional constraints on the in-
teraction indices as we will see in the next section.

9.3.4 Additional constraints on the interaction indices

Assume finally that, in order to be in accordance with the orientation of the
institution, the DM imposes that subjects within the same group® have to
interact in a substitutive way, whereas two subjects from different groups have
to interact in a complementary way. This additional preferential information
is translated by means of the following constraints:
P E M En |
B R N o R

s

P

—1< Im, (BM) < =67 87 <Im,(EEn)<1 | E
67 < Imy (MEn) <1 | M

where &y, supposed set to 0.05, is a threshold defined by the DM to be inter-
preted as the minimal absolute value of an interaction index to be considered
as significantly different from zero.

To encode this additional preferential information, an R variable represent-
ing the threshold is first created:

> delta.I <- 0.05
The constraints discussed above are then encoded into a 10 row R matrix:

> Aii <- rbind(c(1,2,-1,-delta.I), c(1,3,delta.I, 1),
c(1,4,delta.I,1), c(1,5,delta.I,1),
c(2,3,delta.I,1), c(2,4,delta.I, 1),
c(2,5,delta.I,1), c(3,4,-1,-delta.I),
c(3,5,delta.I,1), c(4,5,delta.I,1))

each row corresponding to a constraint of the form a < I,,,(ij) < b, a,b €
[-1,1].

1Recall that the three groups of subjects are {S, P}, {E, M}, and {En}.
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There are no 2-additive capacities compatible with these additional con-
straints. The order of k-additivity is then incremented and the LP method is
invoked by typing:

> 1p3 <- lin.prog.capa.ident(5,3, A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.interaction.interval = Aii)

The minimum variance and minimum distance routines are called similarly.

The Shapley values and the interaction indices of the three 3-additive solu-
tions are given in the four following tables:

S P E M En
LP 0.23 0.23 0.16 0.16 0.22
MV 0.23 0.22 0.18 0.18 0.20
MD 0.22 0.21 0.18 0.19 0.21
[LP] S P E M En
S NA -0.30 0.05 0.05 0.12
P -0.30 NA 0.07 0.14 0.05
E 0.05 0.07 NA -0.24 0.05
M 0.05 0.14 -0.24 NA 0.05

En 0.12 0.05 0.05 0.05 NA

[MV] S P E M En
S NA -0.13 0.05 0.05 0.05
P -0.13 NA 0.05 0.05 0.05
E 0.05 0.05 NA -0.05 0.05
M 0.05 0.05 -0.05 NA 0.05

En 0.05 0.05 0.05 0.05 NA

[MD] S P E M En
S NA -0.21 0.05 0.05 0.05
P -0.21 NA 0.05 0.05 0.05
E 0.05 0.05 NA -0.12 0.05
M 0.05 0.05 -0.12 NA 0.05

En 0.05 0.05 0.05 0.05 NA

As expected, the constraints additionally imposed by the DM are satisfied.
The overall values computed using the Choquet integral w.r.t. the 3-additive
solutions are given in the following table:
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S P E MEn Mean LP MV MD
18 11 11 11 18 13.8 14.06 14.26 14.45
18 11 18 11 11 13.8 13.55 13.76 13.95
11 11 18 11 18 13.8 13.04 13.26 13.45
18 18 11 11 11 13.8 12.53 12.76 12.95
11 11 18 18 11 13.8 12.02 12.26 12.45
18 18 11 11 11 12.4 11.51 11.76 11.95
11 11 18 11 11 12.4 11.00 11.26 11.45

e H O Qa0 TP
S 00 00 00 00 0

We hereby conclude the process of the modelling of the DM’s preferences.
In the following section we imagine a scenario where the DM considers that
the 3-additive solutions above are too complex and where he prefers to have a
simpler description of his preferences. In such a case, the DM has to take into
account that some of his preferences will be violated.

9.3.5 A simpler solution

Assume that for the sake of simplicity the DM absolutely wants a 2-additive
solution for the problem described in the previous subsections. In that case, it
is possible to use the generalised least squares method described in Section 7.2.4
to obtain an approximate solution.

First of all, the weak order over the students has to be encoded into a 6 row
R matrix:

> rk.proto <- rbind(c(1,2), c(2,3), c(3,4), c(4,5), c(5,6), c(6,7))

The integers correspond to the line indices of the alternatives a, b, ¢, d, e, f
and ¢ in the matrix C defined in Section 9.3.1.

The generalised least squares method can then be called by typing:

> gls <- ls.ranking.capa.ident(5, 2, C, rk.proto, 0.5,
A.Shapley.preorder = Asp,
A.interaction.interval = Aii)

The first argument sets the number of criteria, the second the desired order of
k-additivity, the third the matrix containing the partial evaluations, the fourth
the matrix containing the weak order and the fifth argument is the value of
the threshold §,. The last two arguments contain the matrices encoding the
additional constraints on the Shapley value and on the interaction indices re-
spectively.

Although we know from the previous subsections that there are no 2-
additive capacities compatible with the imposed constraints, this method pro-
vides a solution with a non zero objective function as we could have expected.
The following table gives the aggregated overall values {C,, (u(x))}zeo in the
last column and the overall values {y(z)}.co in the last but one column:
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S P E M En Mean y GLS
18 11 11 11 18 13.8 13.94 13.67
18 11 18 11 11 13.8 13.44 13.44
11 11 18 11 18 13.8 12.94 12.81
18 18 11 11 11 13.8 12.44 12.57
11 11 18 18 11 13.8 11.94 11.81
18 18 11 11 11 12.4 11.44 11.57
11 11 18 11 11 12.4 10.94 11.21

e O Qa0 TP

As one can see, the ranking provided by the DM is not violated but the minimal
threshold 4, is not always respected (for example C.,, (f) = Cy, (9) < 6,). The
Shapley value and the interaction indices of this 2-additive solution are:

S p E M En
0.23 0.22 0.17 0.16 0.22

S P E M En
S NA -0.22 0.05 0.05 0.14
P -0.22 NA 0.06 0.09 0.06
E 0.05 0.06 NA -0.08 0.15
M 0.05 0.09 -0.08 NA 0.05
En 0.14 0.06 0.15 0.05 NA

which as expected satisfy the constraints imposed by the DM. It is now up to
the DM to evaluate if the violation of d, does not deteriorate significantly the
overall quality of the numerical representation of his preferences.
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In the final chapter of this work, our objective is to give a synthesised view of
the results presented in this work, to underline again the different connections
between the three parts and to show the new questions which have arisen dur-
ing our research activities.

Consequently, this chapter is built as follows. In the first section we sum-
marise the structure of the work and present our achievements. Then, in the
second section, we show perspectives for our future research activities, and we
draw some conclusions in the last section.

Summary of the main achievements

In the first part of the work, we introduced the reader to a particular plan
of attack to MCDA problems, namely the constructive approach. Via inter-
actions between the main actors of the decision process, it helps to construct
and uncover the DM’s preferences simultaneously with the determination of
the recommendation. Then, we delimited our field of research in a constructive
framework, to what we call progressive methods. Such methods allow to build
the final recommendation via intermediate partial conclusions, requiring fur-
ther investigations of the problem. In particular we showed the consequences

2 Any advantage has its inconvenients, and reciprocally.

143
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of such methods in both methodological schools of MCDA.

The second part deals with outranking methods for the choice and the k-
chotice problematique. We presented a new and innovative method, called Ru-
BIS , based on the pioneering research around the classical ELECTRE techniques.
Via five extensively discussed pragmatic principles, we determined the math-
ematical construct, namely the outranking hyperkernel, which gives a choice
recommendation in a general outranking digraph. RUBIS fits well in the frame-
work of progressiveness, as it determines the choice recommendation very pru-
dently and requires further interactions from the DM to determine the final
best alternative. In particular, it can be used in problems which contain miss-
ing information or constrained by time or limited economical resources. We
also have discussed the different formulations of the k-choice problematique
and have shown how they can be solved by means of the RUBIS method.

In the third part, we focussed on Multiattribute Value Theory based on
the Choquet integral. First we presented a fuzzy extension of the Choquet in-
tegral, which allows to take into account impreciseness in MCDA problems.
Then, we presented the capacity identification problem along with one of our
contributions, which allows to find a capacity which is “as close as possible” to
the DM’s preferences. We then detailed how different MCDA problematiques
can be solved by means of the previously presented techniques. In particular,
we put our considerations in a progressive context, which permits to refine the
evaluations at later stages of the decision process, if necessary. We finally in-
troduced the Kappalab package which we contributed to develop.

It is worth underlining a few main threads which have guided us through
our work. First of all, the concepts of constructive and progressive MCDA are
inherent to our whole discourse. They have been defined in the first part, but
are quite regularly highlighted in our methodological discussions of Parts II
and III. Then, we have often focussed on the central role of the DM, to show
that he is an incontrovertible element of the MCDA. Finally, we have regu-
larly included some practical considerations in our work, which we regard as
necessary, in order to give a pragmatic justification to our research activities.

Perspectives

Very regularly during our work, new problems and questions arose, some of
which remain completely untouched. Let us mention the most important ones
here, as they can be seen as future perspectives for our research activities:

- In a progressive method, an important condition is the availability of the
DM. It may happen that, for some reasons, at a given moment of the
process, he decides that the final recommendation must be obtained in
the next stage. This requires that the next step of the process is less
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prudent in order to reach the desired objective with absolute certainty.
In particular, it will be interesting to adapt the RUBIS method for the
special one-step choice problem, where the final recommendation needs
to be obtained in a single step.

- After the quite theoretical presentation made in this work, giving a recipe
on how to use the RUBIS method in a real-world situation will be one of
our future tasks.

- As already mentionned, our work on the k-choice problematique has pro-
duced only early results, which require further theoretical and algorithmic
investigations.

- The ranking and the sorting problematiques can probably also be handled
by means of a bipolar-valued outranking relation. A stimulating work
would be to see how these typologies of problems can be dealt within a
progressive framework with such a relation.

- The properties and structure of an outranking relation, built in a bipolar-
valued context, need to be studied in details. It would allow to determine
what types of outranking digraphs can really be generated from perfor-
mance tables.

- We have not discussed robustness issues in this work. Investigating the
quality and the reliability of the obtained solution might be a stimulating
challenge, in both the outranking and the value function framework.

- In particular, the capacity identification methods do not always produce
a unique solution. Investigating the degree of indeterminacy of the results
and the robustness of those methods would be a challenging task, which
we would like to undertake in the future.

- It would be interesting to extend our considerations on impreciseness
modelled by fuzzy numbers to the sorting problematique. In such a
situation, progressiveness could allow to give a more and more precise
structure of the ordered classes.

- Concerning the capacity identification problem, one of our main interests
is linked to the case where the Choquet integral cannot represent the
ranking imposed by the DM. We are currently working on a way to de-
termine a capacity, respecting his initial preferences on the alternatives,
as accurately as possible.

Concluding remarks

In the preface, we have mentionned the difficulty of solving MCDA problems
suffering from impreciseness, missing information and limited economical re-
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sources.

We hopefully have convinced the reader, that progressiveness could be an
appropriate answer to these issues. We have shown that it can be considered as
a general framework, guiding a decision analysis, and which can be put around
different MCDA methods. Besides, we have presented the generic properties
of a progressive context, which clearly depend on the underlying mathematical
algorithms, the methodological school and the problematique which has to be
solved.

Nevertheless, there exists a certain amount of problems which cannot be
solved by a progressive decision analysis. For example, as soon as the recom-
mendation needs to be determined in a single step, progressive decision analy-
sis methods are not appropriate. Consequently, situations involving automatic
decisions generated by a software, might not be considered in a progressive
context.

Any MCDA scholar may already have wondered which method he would
use if he had to solve a progressive decision problem and to which methodolog-
ical school he should stick. In fact, the reader of this work should now agree
that the practice of MCDA is not about adhering to either the American or the
European stream of thought. With this work we have been able to show that
the way of solving a decision problem depends on the available information, on
the objectives, on the possible and potential interactions with the DM and on
the type of process which is eligible.

We think that the selection of a resolution methodology should therefore
be guided by a thorough study of the underlying decision situation, taking into
account all the stakeholders of the process. Consequently, sticking at any cost
to a given MCDA method is certainly a bad option. Either the decision problem
might not be suitable for the selected method or the DM might not be prepared
to answer some preferential questions required by the method. Therefore, this
work’s objective was also an attempt to rub off the dichotomy between the two
methodological MCDA schools by presenting our research in both fields from
a common point of view.
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