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1 Introduction

The idea of the stabilized conforming nodal integration introduced by Chen et al.[1] is to
avoid the integration and evaluation of shape functions at the nodes in the mesh—free method
because direct nodal integration leads to instability of numerical results. Liu et al.[3] extended
this idea to finite element method (FEM) and called this “smoothed finite element method
(SFEM)” with the divided smoothing cells in the elements.

The main feature of SFEM is that this method is suitable for heavily distorted meshes
because this does not need the isoparametric mapping and does not require the derivatives
of the shape functions. The computational cost is relatively lower than for the conventional
FEM at the same accuracy level; moreover, n—sided polygonal elements can be used and the
volumetric locking problem can be handled effectively.

Listed belows are some of the strengths and weaknesses of each SFEM technique: the
node-based smoothed FEM (NS-FEM), the cell-based smoothed FEM (CS-FEM), and the
edge-based smoothed FEM (ES-FEM).

e Volumetric Locking NS-FEM can handle effectively nearly incompressible materials
where Poisson’s ratio v ~ 0.5, while ES-FEM leads the volumetric locking. Combin-
ing NS— and ES-FEM method gives the so—called the smoothing—domain—based selective
ES/NS-FEM which overcomes volumetric locking. In the case of CS-FEM, the volu-
metric locking can be avoided by separating the material property matrix for isotropic
materials into two parts, one relating to the shearing modulus 4 and one relating Lamé’s
parameter A. Then the stiffness matrix can also be split into the respective two parts.

e Upper and Lower Bound Properties In the case of non-homogeneous Dirichlet
boundary conditions and zero external forces, NS-FEM and FEM provide lower and
upper bounds for the exact solution, respectively. If the problem is force driven, i.e. the
Dirichlet boundary conditions are homogeneous, then NS-FEM and FEM provide the
upper and lower bounds, respectively. In general, however, the order of their bounds is
problem dependent. Regarding the solution obtained by ES-FEM, this lies this between
those of the FEM and NS-FEM.

e Static and Dynamic Analyses ES-FEM gives accurate and stable results when solv-
ing either static or dynamic problems, because ES-FEM is not only spatially but also
temporally stable. In contrast, although NS-FEM is spatially stable, it is temporally un-
stable. Therefore, to solve dynamic problems, NS-FEM needs stabilization techniques.
CS-FEM can also be extended to solve dynamic problems.

e Other features In NS-FEM, the accuracy of displacement solutions is at the same level
as for the standard FEM using the same mesh, whereas the accuracy of stress solutions
in energy norm is much higher than for FEM. In terms of the computational time, in
general, ES-FEM is more expensive than the conventional FEM with the same set of
nodes.

2 Finite Element Method Approximation

2.1 Linear Elasticity

The Equilibrium equation in 2D is:
—Vo =f (2.1.1)

The variational form of Eq. (1) is:

is:
— [ Vo -vdQ = / f.vdQ (2.1.2)
Q Q



/U-Vde:/f-de+/ g-vdl (2.1.3)
Q Q I'n

where f is the vector of external body force, g = o - n is the prescribed traction vector on
natural boundary I'n, and v is the test function.
The stress tensor o is:
o =2ue+ Mr(e)l (2.1.4)

where p is the shear modulus and A is Lamé’s parameter, which can be expressed in terms of
Young’s modulus E and Poisson’s ratio v as follows:

E Ev
Py AT e - (2.1.5)

The infinitesimal strain tensor € is:

1 8uz 8uj
— fe. . = 2.1.6
e=teds si=3 (5% + 52 (2.16)
or equivalently:
1
=3 (Vu+ vu') (2.1.7)
In Voigt notation, the stress tensor can be expressed as follows:
011 €11
0922 =C £99 (2.1.8)
012 €12
where C is the elasticity tensor:
204+ A A 0
C= A 2u+A 0 (2.1.9)

The discrete equation of FEM from the Galerkin weak form is:

/Q(Crs(u)-.rs(v)dQ:/Qf-de+/F g-vdl (2.1.10)

FEM uses the following trial and test functions, respectively:
N N
u! (x) = Z wihi, v (x) = Zviwi (2.1.11)
i=1 i=1

Then the standard discretised algebraic system of equations is:
Ku®=b (2.1.12)

where K is the stiffness matrix and b is the element force vector, which have the following
components, respectively:

K = [ Cev)-e(v)a0, 2.1.13)

bz‘ = /in/JZdQ + /FN gwidf (2.1.14)



2.2 Nonliear Elasticity
2.2.1 Hyperelastic material

In the nonlinear case,

ow

| F (XF )):Vde:/Qf-vdVJr/FNg-vdA (2.2.1)

where the strain energy density function W for incompressible and compressible neo-Hookean
materials are expressed respectively as follows:

W= g (I - 3) (2.2.2)
and u . Lk
W = 5 (Il — 3) + 5 (Ig — 1) — (5 + 5) 11113 (223)
where: )
L =tr(C), b= 3 (tr (C)? —tr (CQ)) , and I3 =det(C) (2.2.4)
The deformation gradient F is:
ox T 6952

To find an approximation solution to the eq. (2.2.1) in the displacement field u, we employ
Newton’s method. An iteration iter+1, knowing the displacement uje, from iteration iter,
find rje; that satisfies:

DR (uiter) * Titer = -R (uiter) (226)
where: W 5
R(u) = (X, F (u) 5 ”z dv / fividV — / gividA (2.2.7)
o OF; I'n
2 .
DR (u)-r a4 Ori Ovi 4y (2.2.8)

o 9F0F o W) 5% 9%,
and 7,75, k, 0l =1,2.

Then:
Uiter+1 = Witer + Titer (229)
Since %);Y =2F %VCV, the energy functional (2.2.7) and its derivatives (2.2.8) take the equivalent
formulations, respectively:
R = [ 22 s Frigs mk v - / FrdV — / gividA (2.2.10)
80” I'y
W ov or OW Ory, Ouy
DR (u)-r = FristFapme +2 av 2.2.11
(u)-r / {ac,jackl Pox; *ax, *7ac;, ox; axj} (22.11)

where the right Cauchy—Green strain tensor C is:
C=F'F (2.2.12)

The resulting algebraic system for the numerical approximation of eq. (2.2.6) is assembled

from the block systems:
K11 Kio uy r1
— 2.2.13
[Km K22][U2] [W} ( )

By taking v = N, we obtain the stiffness matrix Kiter with the following entries:

82)/\/ 8U1 8N1 (3’LL1 (3N1 6W 8N1 8]\71
K= | -2 (5,4 2u) o0 2 2.2.14
1 /Q{acijackl <51 * an> e <5”“ * an> ax, '~ “acy, 0x, axj}dv (22.14)




82W 8u1 6N1 811,2 8N2
Ko=[4—FF+ 01+ =— | = | § — | —=d 2.2.1
2= | Yac,00, < 1t axi) X, ( 2 + an> ox, &V (22.15)

. 82W 61@ aNQ a’LLQ 8N2 8W 8N2 6N2
Ko = /Q {acijackl <52’ * an> ox, <52k * ax,) ox, " 2ac, ox, X, } v (2.2.16)

Similarly, we obtain the load vector with following components:

ow duy \ ON; / /
ri=—[ 2— (1 + — | =—dV N1dV N1dA 2.2.17
1 0290, ( 1 + 8Xi> 7%, + Qfl 1dV + szgl 1 ( )
ow ( Ouz> ONy
rg = — 2—— (09 + — | =——dV + / foNodV + / goNod A 2.2.18
o 0C;j COX; 0X; Q I'y ( )
The stiffness matrix is:
o) ON, duy ON, o ON, Ouq ON,
- 1+38)52 W% (1+3%)% %
- Aus ON, P AN, Oug ON, P AN,
ol ()% BR (%)%
i ON, Ao ON,
PW 4 PW 4 PW g W <1 + %) n FRaY
60%8011 80158022 BC%BCU 80%8021 9 P
92w 22w 92w 02w ouy ONg (1 4 M) 9Ny
9C330CT 9C330C> 9C39CT> 9C330Ch1 0x 9y oy ) oy
50158011 80138022 80138012 30150021 + 09X | Y 09X 0Y
dgelfi— Agfi— Agiiti— Agi it duy INg 1 4 Qug | 9Ng
21 11 21 22 21 12 21 21 i 87)/87 + (97)/ T ]
ow ow ON,
2—80 2—60 0 0 g—x" 0
aNp 8Np 0 0 ) 8Vbl 9 6)/&/2 0 0 Nq 0
+ X oY 9C21 0Ca2 Y dv
0 o %P 2% 0 0 22 oW 0 Ny
x T 7
0 0 2505 255 o 9N
21 22 oYy
(2.2.19)
where p,q =1,2,...,ndof.
The residual force vector is:
242
0 ON, Ouy ON, o ON, Ouq ON,
| Oes) S et (R)® B ||k,
r= Q ug ONp 1_1_@ ONp ug ONp 1_1_@ ONp Qﬁ
0X 09X oy | oy oX oY oy ) 9x %%2
0C1

ON, ON, ON, ON,
2 00 <1+%)—P+23W3“1 24200V 1+%) 2 4o QY Ou O

_ / aC11 X ) X 9Chs Y Y 9C12 Y qv
- AW dug ONp oW Ouy | ONp OW dug ONp oW Ouy | ONp
Q| 250798 ax T 2005, \L T 5Y ) oy T 280, 0% oy T 2005 (1T 3% ) ax
(2.2.20)

where p =1,2,...,ndof.

2.2.2 Numerical examples

Expressing the first derivative of all the static invariants VW with respect to C, by the chain
rule, we obtain:
oW _owon  owol, | owol;
oC 09I, 0C = 09I, 0C = 0I3 0C
oW ow ow

=— 1+ — (LI-C)+ —I3C! 2.2.21
oI, +612(1 )+8133 ( )
where:
oL 0Cw . .
ac — a0, koK

=) Okidkj = > Ol =1-T=1,
k k
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hence:

and

since

c!=

0ls 0
256 = ac, (Cok = CpClp)

8Ckk 0Cpq 0Cpq
250, O (ac” Cov+ Coye

= 2Itr (C) — (0pi0qiCop + Cpglqidpi)

= 2Itr (C) — (Cji + Cji)

0l

ac = Itr (C) Cji

=Ttr (C) - CY = Itr (C) - C

it follows that:

ol C22C33 — C32C23 (31023 — C21C33 (21032 — C31C22
7C C11033 — C31C13  C31C12 — C11C32
symm. C11C2 — C91C12
Cii Cip Ciz ]
Co1 Cop (o
C31 C3z Cs3
1 C22C33 — C32C23 31003 — C91C33  C91C32 — C31C
= JetC = C11C33 — U31C13  C31C12 — C11C32
Symn. C11C2 — C91C12
013 1 1
= I13C™
e = (detC)C! = Iy

Ineq. (2.2.1), [ f-vdV and fFN g - vdA are zeros for the simple shear problem, therefore the
left—hand side of eq. (2.2.1) can be expressed:

ow

ow
ow ow
/ < 5C Vu) :VvdV = — 2%1 VvdV

For eq. (2.2.24), we take v = N, where N are the shape functions.

/2Vu VNdV = — /21 VNdV

Using Einstein summation, eq. (2.2.25) can be expressed as follows:

and

Firstly we consider the leftfhand side of eq. (2.2.26) with the displacement u

OW du; ON LW ON
o 0Cy; 0X; 0X; o200, ox,
OW duy ON LW . ON

2 d  bgied
o 0Cy; 0X; 0X; L 200, % 0%, v

(X1) direction,

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

in the horizontal

ow 8u1 8]\7 dV B 2 ow (9111 8Nq dv +/ ow aul 8]\7
0 a0, 0%, 0%, T 9C1, 0X, OX, 9C1, 0X, 0X,
ow 8u1 6N ow 8u1 6Nq
9.9.9
+ 9Co; 0Xs OX, 0Chs 0%, 0K,V (22:28)

6



where
ndof

u] = E Ulep
p=1

thus:
ou 9N, ow
X, ~ 2 X, %,
and
ndof
Up = Z ngNp
p=1
thus:
S ndof O
0X, Z 2an 0X,

=> u

ndof

ndof

; “2p 6‘X

Hence, the left-hand side of eq. (2.2.26) can be written as follows:

ON,
P5X,

5 OW 0Ou; ONy
Q BC’U 0X; 0X;
ndof 8N ON. ndof E)N IN.
q 293 2 / q
acn / Z o, ox, Y F2a0k Z o, 9%,
ndof ndof
ON, ON, ON,, ON,
Ny gy 499 —4d
ac21 / Z Y A o / Z %y 5%,
and similarly the left-hand side of eq. (2.2.27) is
BW 8112 %
Q aCij 0X; 0X;
ndof ndof
/ Z ON, 8Nq dv + 2 / Z ON, 8Nq
acn 5 9%, dChs 5%, 5%,
ndof ndof
ON, ON, ON,, ON,
N gy 499 —4d
aczl / Z Y A o / Z 5% 5%,
where ¢ = 1,...,ndof.
The right-hand side of eq. (2.2.26) can be expressed:
(‘3W ON, oW ON, (‘9W ON,
0 —2dV = 2 —Laqv — —Lav
0200, iox, aC1; 0X, 29Chs 0
and similarly the right-hand side of eq. (2.2.27) is:
8W ON, OW ON, (‘9W ON,
0oi——2dV = 2 —1qv — —Lav
0200, i ox, 9Cy1 0X, 2 9Chs 01X,
where ¢ = 1,...,ndof.

Therefore we can obtain the matrix form:

o[ ]-]

where X = X7 and Y = Xo.

—fy
—fy

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)



The stiffness matrix K (left-hand side of eq. (2.2.37)) is:

oW [ AN, dN, oW [ AN, dN.
— 9 p gy 4o p ONq 4y
aCn Jo 0x ox @ Tacy Jo 9x oy

OW [ ONyONy (. ) OW [ N, 0N,
901 Jo OY 0X 9Ca Jo DY OY

and the right-hand side of eq. (2.2.37) is:

OW [ ON, oW [ ON,
fy = —2 — 24V -2 -1 2.2.
X aCn Jo 0X V=256 q Y v (2:2:39)

oW [ BN, oW [ 9N,
0C9 Q@Tdv 28022 QaTdV (2.2'40)

Eq. (2.2.38) can be written in the following matrix form:

ON, 0N, 250 240 o
K- [ [ % % ]| 5 || &

Ng
0C21 0C22 e

K

+2 av (2.2.38)

fy =

av (2.2.41)

Therefore the stiffness matrix can be expressed:

ON, ON, oW ow ON,
0 0 % Y 0 0 2%%1 2%%2 0 q
0 0 2 28022 0 -

(2.2.42)

ON, ON, 0 0
K€:/[ &Xg) 8Yp 0 0 ] 23021 28022 0 0 8Yq 0 dv
Q

where p,q = 1,2,...,ndof.
Note: u¢ = (u)"
As the same way, the right—hand side of eq. (2.2.37) also can be presented as:

ow
ONp  ONp 0 0 2%%1
fe:_/g 6(;( 85 ON, 9Ny %& dv, p=12,...,ndof (2.2.43)
0X oY 208%
0C22

Simple shear: substituting eq. (2.2.3) into eq. (2.2.21), we obtain:

ow u oW oW Kk wook\ 1
=t =0, and Z=2-(L40) = 2.2.44
o 2 on 0 M o T2 5ta)y (2.2.44)
Therefore, eq. (2.2.21) can be expressed equivalently as:
ow  u K [T AN | 1
— ==1 - — (— 7) — ) I 2.2.4
aC 2 +<2 23 13> 3C (22.45)

where I} = 3+ k2 = I, and I3 = 1, and the inverse of the right Cauchy-Green strain tensor is

0 [ 1+ —k
C = [ _k 1 (2.2.46)

and then we obtain:

oW ul[1 0 pl1+k2 k] pl| -k k

80_2{0 1}_2[ -k 1 | 2] k 0 (2.247)
So we obtain the first Piola—Kirchhoff stress:

ow 1 klpl[ -k k 0 k
T o LI L I



Thus, the Cauchy stress is:

 peT . | O ET[1T O] [K K
oc=J PF —,u[k 0 PR Bt Tl B (2.2.49)

We assume prescribed displacement on all boundaries, and the deformation gradient and the
right Cauchy—Green strain tensor are respectively:

1 k
F= [ 0 1 } (2.2.50)
T | 10 1 k] |1 k
C=F F—[k 1][0 L=k 2 (2.2.51)
We use the prescribed displacement £ = 1.0 and then the deformation gradient F is
1 k 11
p=[1H]o[1 ] eas

Simple tension: the deformation gradient, the left and right Cauchy—Green strain tensors
for simple tension are

| Ja O _ [0 _
F_{O fb}7 and b_FFT_{O sz]_FTF_C (2.2.53)

and the inverse of the right Cauchy—Green strain tensor is:

0 %

b

1
cl= [ 7z 0 ] (2.2.54)

The strain invariants are given by:
I =2by + by, Iy =03 +2biby, and I3 =b2by

Hence, eq. (2.2.45) can be expressed as follows:

W  u K [T AN | 1
aC _2I+<2_<2+2> 13>I3C

pl[10 K o oky 1 4.9 % 0
“3lo 1" 2_<2+2>f§fb2 Jali | & (22.55)

We use Lamé’s constant, p = 0.6 and x = 1.95 and the deformation gradient F is:

(2.2.56)

P [ 08944 0
| 0 12879

3 Smoothed Finite Element Method Approximation

3.1 Linear Elasticity

The infinitesimal strain tensor from Eq. (6) is assumed to be the smoothed strain on the
smoothing domain €0, associated with node k:

e (uh) ~ &8 (xy) = /Q e(x)® (x)dQ, Vx e (3.1.1)

by = [ L[240
& (Xk) = /Qk 5 ((%zj + oz, P (xp) dS2 (3.1.2)



Node k Domain &, Boundary I', Boundary I, Edge k Domain Q,
A\ /

(a) NS-FEM (b) ES-FEM

Figure 1: (a) n—sided polygonal and triangular elements, and the smoothing domains associ-
ated with node k for NS-FEM, (b) triangular element with the smoothing domains associated
with edge k for ES-FEM

where ® (xj) is the smoothed gradient operator and satisfies following properties:

/ B (x) dQ = 1 (3.1.3)
Q
O (x) = { (IJ/A’“ i;g: (3.1.4)

where A, = ka d€) is the area of smoothing domain §2; and applying the divergence
theorem, the smoothed strain is obtained as follows:

& (x) = jk/g e (x)dQ = jik/F n (xz) u" (x) dT (3.1.5)
206 = g [ (ubny 05+ s ) ) ar (.16

where I'y, is the boundary of the smoothing domain € and n (xj) is the outward normal
vector matrix on the boundary T'.
The 2D outward normal vector matrix is:

n (xp)
n(xg) = 0 ng (x) (3.1.7)
n9 (Xk) ni (Xk)
where n, = n; and ny = no.
In NS-FEM, the trial function u® (x) and the force vector b are calculated as for FEM.

Substituting eq. (11) into eq. (20), the smoothed strain can be written in terms of the nodal
displacements as follows:

e (xx) = > By(xp)u} (3.1.8)
1€Gy

where G}, is a set of nodes in which the associated smoothing domain covers node k,

hT _ [+h sh o=
g = [5}1“1,532,25?2] . uf = [uig, ugg] (3.1.9)

and the smoothed displacement-strain matrix B (x1,) in 2D can be expressed as follows:

B[l (Xk) _ 0

B/ (xx) = 0 Bz (xk) (3.1.10)
Bra (xx) Bn (x)

10



where
1

A

where I is the set of all interior nodes such that I': supp (¢7) N T = ().
The linear system to solve is:

Bri (xi) = ¢1( ) ni (x)dI (3.1.11)

Ku" =b (3.1.12)

where the smoothed stiffness matrix K is assembled by a similar process as in FEM:

Ny,
(BT xi) CB; (xk)) Ay (3.1.13)
k=1
Np, Nib
bi= Y (Wi (%) f (%) Ap + > (i (x) g (x)) 55 (3.1.14)
k=1 k=1

where N,, is the number of nodes, IV, is the number of nodes on the natural boundary, and
si are the weights associated with the boundary point.

3.2 Geometric nonlinearity

The nonlinear system to solve is: 3 R
K" =b - R (3.2.1)

where the smoothed tangent stiffness matrix is Kfan — Kmat 4 K8 and the material stiffness
matrix K™ can be expressed as follows:

Nn Nn
Rt = [ BicBya =Y [ BICBwe =Y BICBA (3.22)
k=1 k k=1

where C is the elasticity tensor from eq. (2.1.9), N, is the number of nodes and the area of
subcell A;, is given by:

1o
A = /Q Q2 = ¢ ZAj (3.2.3)
k j=1

The smoothed strain—displacement matrix By is:

€
N

~ 1 1
By = — ZABE . 3.24
0 Ak;3 70,7 ( )

where nf is the number of elements sharing target node k and matrix Bg for the linear
triangular element )¢ in 2D problem is given by:

Fi1by Fo1by F11by Fo1by F11b3 Fo1b3
B, = Fiaeq Faey Fiaco Fagco Fiacs Faes
Fiicr + Fiaby  Faoby + Forer Fiico + Fiobas  Foobe + Foica Frics + Fiabs  Fagbs + Foics
(3.2.5)
where b; and c; are
b; = 1 L ) =1,2,3 3.2.6
j—QAf(yk*yz), ¢j = 2Ae($z*$k) j=12,3, (3.2.6)

and Fj; is the deformation gradient:

ox\ 7’ (1—1—@) 9u Fi1 Fi
Fe = [ 2= — oX Y, = 3.2.7
(%) = [ "5 o |-l m] e

11



where subscript j varies from 1 to 3, and k and [ are determined by cyclic permutation in the
order of j,k,l. For example, if j =1, then k=2, =3 orif j =2, then k =3, 1 = 1. Af, the
area of the linear triangular element €)Y, is:

1 Lz
Afzidet 1 x2 yo (3.2.8)

1 z3 w3

Similarly, the geometric stiffness matrix K& is:

N, Nn,
Reeo — / 38310 =Y / 578340 = S 37§34, (3.2.9)
Q k=1" 2 k=1
where smoothed strain-displacement matrix B3 is:
A R
b= > 4555 (3.2.10)
i=1
and matrix B is given by:
by 0 b 0 b3 O
e C1 0 (&) 0 C3 0
B=1y by 0 by O bs (3.2.11)
0 C1 0 (&) 0 C3
and matrix S for the node-based smoothing domain is:
e S Sz 00
TR L ; Siz2 S 0 0
S=1- Z; gAS) and 87— TF NE oo (3.2.12)
= 0 0 Si2 S
The smoothed internal force vector R can be expressed as follows:
~ Nn ~ ~
R=Y B, {s} Ay (3.2.13)
k=1
where .
{S} - 1§:1A6{S}e (3.2.14)
=4 2 345 g 2.

The entries Sy of matrix S¢ in eq. (3.2.12) are derived from the second Piola—Kirchhoff stress
tensor {S€}, and the second Piola—Kirchhoff stress tensor of the element is:

511 Ell
(S ={ Sy »=C{ Ep (3.2.15)
S12 2F12

where the entries of Ej; are derived from the Green—Lagrange strain tensor E€ of the element:

Ei1 Eig 1 T
E° = =—((F®) " F¢ -1 3.2.16
[ Es Eo } 2 <( ) ) ( )

12



- Boundary k

(a) ES-FEM (b) NS-FEM

Figure 2: (a) the smoothing domains for the smoothed deformation gradient F for ES-FEM,
(b) the smoothing domains for the smoothed deformation gradient F for NS-FEM

3.3 Material Nonlinearity

For the material nonlinearity, the smoothed deformation gradient F in ES-FEM is given by
Appendix B:

. 1 _

F(x;) = / F (xx) ® (xx) dQ2 (3.3.1)

Ax Ja,

Eq. (2.2.6) can be expressed as the same way in standard FEM:

DR (uiter) “Titer = — R (uiter) (332)

where oW 9

~ v;

R (u) = — (X,F (u LdQ —/ 0, — / v;dD 3.3.3
W= [ 55, (XF@) gga— | s X (3.33)

DR(u) r= [ ———
Q OF;j0Fy
where ¢, 7, k,l = 1,2, and Uijter+1 = Uiter + Titer-
The energy functional and its derivatives can be taken the equivalent formulations:

Fw (X," (u)) Ore i 4 (3.3.4)

X, 0X;

. ow (%k
R (u) —/928% <Fm%>dﬂ—/gfmd9—/m givydl’ (3.3.5)

—_—~— —~—

92W ES or oW [ or \ [ Oux
DR(u) r= | 4—— | F;—L2 || Fyp— | +2— < )( >d§2 3.3.6
(w)-x 0 8C¢j0kz< pax)( k8X1> aC;; \0X; ) \ 09X, (3.3.6)

where the smoothed right Cauchy—Green tensors C is:

C=F'F (3.3.7)

From eqs. (3.2.1), (3.3.5) and (3.3.6), the smoothed material stiffness matrix K™ is

Nn Nn
Kmet — / BICBy2 =S / BICBQ = S BICBAy, (3.3.8)
Q k=17 % k=1
where the smoothed neo-Hookean model C is
oW < - - 2 /- . 2 - > 1
4———: = OixBi1 + Biidi — = | Biidw + 0B + —trB ;0 —
9C;Ch | Oik Dyl 0jk — 3 ( Okl j k:l) 9 Okl 7z
Yk (2j - 1) T80, (3.3.9)
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where the left Cauchy—Green tensor B = FFT and J :~det]§‘.
Similarly the smoothed geometric stiffness matrix K& and the smoothed internal force
vector R are

Np Np,
Reeo — / 57§40 = / 778340 = S 37834, (3.3.10)
2 k=1 k=1
and
~ N7L ~ ~
R= BO{S}Ak. (3.3.11)
k=1

3.4 Numerical examples
We represent numerical results of Dirchlet and Neumann BCs for simple shear and simple

tension problems in the neo-Hookean material.

Simple shear: as the same former numerical example of FEM, we use the same prescribed
displacement k£ = 1 for the deformation gradient. Fig. (3) shows the numerical results of
triangular 2 x 2, 3 x 3 and 4 x 4 elements for simple shear with Dirichlet boundary conditions

in nonlinear elasticity.
1 k 11
=0 1]=[01]

Deformed Shape Deformed Shape Deformed Shape
1.2 1.2 1.2
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
=0.2] -0.2! -0.2
0 0.5 1 15 2 0 0.5 1 1.5 2 0 0.5 1 15
(a) 2x2 element (b) 3x3 element (c) 4x4 element

Figure 3: Numerical results of triangular elements for simple shear with Dirichlet BCs in
nonlinear elasticity

Simple tension: for this numerical example, we use Lamé’s constant, u = 0.6 and x = 1.95,
and the prescribed deformation gradient F as the same for FEM:

(08944 0

F 0 1.2879

Figs. (4) and (5) describe the numerical results of triangular 2 x 2, 3 x 3 and 4 x 4 elements
for simple tension with Dirichlet and Neumann boundary conditions in nonlinear elasticity.
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Deformed Shape

Deformed Shape

15 Deformed Shape 15 15

1 1 1

0.5 0.5 0.5

0-4:l.4 =02 0 02 04 06 08 1 12 14 0—0.4 -02 0 02 04 06 08 1 1.2 14 0—0.4 -0.2 0 02 04 06 08 1 1.2 14

(a) 2x2 element (b) 3x3 element (c) 4x4 element
Figure 4: Numerical results of triangular elements for simple tension with Dirichlet BCs in
nonlinear elasticity
Deformed Shape Deformed Shape Deformed Shape

12 1.2 12

1 1 1

08 08 0.8

06 06 0.6

04 0.4 0.4

0.2 0.2 0.2

0

-0.2 0 02 04 06 08 1 1.2 0 0.2 0 02 04 06 08 1 1.2 0 -0.2 02 04 06 08 1 1.2

(a) 2x2 element

(b) 3x3 element

(c) 4x4 element

Figure 5: Numerical results of triangular elements for simple tension with Neumann BCs in

nonlinear elasticity
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A Imposing Dirichlet boundary conditions

A.1 Theorem

Implementing the Dirichlet boundary conditions (BCs) involves modifying the assembled stiff-
ness matrix and right-hand vector of nodal forces by three operations [5]:

1. Move the know products to the right—hand column of the matrix equation;

2. Replace the columns and rows of the stiffness matrix corresponding to the known dis-
placements by zeros, and set the coefficient on the main diagonal to one;

3. Replace the corresponding component of the right-hand column by the specified value
of the displacements.

Consider the following n algebraic equations in the full matrix form:

[ ki1 k2 ks oo ke | uy fi

ko1 koo kos -+ kop U Uy

k31 ks ksz -+ ks uz § = { f3 (A.1.1)
| knl kn2 an et knn | Up, fn

where u; are the global displacement degrees of freedom, f; are the corresponding nodal forces,
and k;; are the assembled coefficients. Suppose that u, = u; is specified. Recall that when the
displacement at a node is known, the corresponding nodal force is unknown, and vice versa.
Set kss = 1 and f; = us; further, set k;s = kg; =0 for i =1,2,...,n and ¢ # s. For s = 2, the
modified equations are:

[ ki 0 kis -+ ki uy A
0 1 0 - 0 U iz
k31 0 kgg -+ kan uz 3 ={ f3 (A.1.2)
L knl 0 kn3 to knn | Un fn
where )
fi = fi — kiotio (1=1,3,4,...,n and i# 2) (A.1.3)

Thus, in general, if us = @y is known, we have:
kss =1, fs = Ug, f’L = f’L - kisﬂ& and kis = k;si =0 (A14)

wherei=1,2,...,s—1,s+1,...,n (i # 2). This procedure is respected for every specified
displacement. Then, the modification for the stiffness equation in eq. (A.1.1) for displacement
BCs procedures the modified system:

A

Ku=f (A.1.5)

System (A.1.5) is solved for the unknown nodal displacements.

A.2 Implementation

In this section, we present how to impose and solve the Dirichlet BCs in the numerical code.
Fig. (6) shows the simple example of the imposing Dirichlet BCs. Stiffness matrix K, dis-
placements u, and force vector f are:

K K12 0 Ui fl
Ko Kap Ko uz =14 fo (A.2.1)
0 Kz Ks3 u3 f3

16



O O —>

§
Node 1 Node 2 Node 3

Figure 6: Simple example for Dirichlet BCs

According to fig. (6), we know as u; = 0 and w3 is prescribed displacement. Thus, eq. (A.2.1)
can be expanded as:

K11 K12 0 Uy fl
Koy Ki Ko uz =14 fo (A.2.2)
0 Ks Ks3 U3 f3

where 4; and %3 are knowns. Hence,
Kyu + Kigug = f1

Koty + Kooug + Koztiz = fo
K3otig + Kssus = f3 (A.2.3)

Left—hand side of equation with known displacements is moved to right—hand side of equation
to solve unknown,us:

Kigug = f1 — Knua
Kaoug = fo — Koty — Kozt (A.2.4)
Ksous = f3 — K33l (A.2.5)
This process can be written in the MATLAB as follows:

r (iNonFixed) = r (iNonFixed) — k (iNonFixed, iFixDof) x iFixVal

where k is the stiffness matrix, r is the residual vector, iFixVal is the vector containing
the value which the dofs should be fixed in the right order, iFixDof is vector containing the
number of each dofs with non—zero Dirichlet conditions, and iNonFixed is vector containing
the number of each dofs whose value is not fixed to a non—zero value.

B The Smoothed Deformation Gradient
B.1 ES-FEM

If the deformation gradient F is homogeneous on element, the displacement field on single
element can be explained as following [4]:

ug (X) ] _ [ a11 X1+ a12Xs + by ]

X) = B.1.1
u( ) |: U9 (X) a21 X1 + a22X9 + by ( )

where the undetermined coefficients a;; and b;, for 7, j = 1,2, are constant.
The deformation gradient on a triangle AABC for the standard FEM in Figure 7 is

ain +1  ap ]:[(u?—u{‘)/hﬂ (u§ —ui') /h }

F= az1  az +1 (UQB—Uf)/h (u§’ —ug') /h+1

(B.1.2)

For the smoothed deformation gradient F in the smoothing domain €, in Figure 7, the
deformation gradient in the smoothing domain Q}: can be expressed as following;:

1
(u‘f1 +uf + u?) and ug (01) = = (u’z4 +ub + ug) (B.1.3)

(51 (Ol) = 3

W =
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- Boundary &

Figure 7: The smoothing domain €2} = Q,{: + Qi associated edge k for ES-FEM

Substituting eq. (B.1.3) into eq. (B.1.1), the displacement field on mid—point O; is given by

1, 4 B c h h

- — Y A

3(U1 +uy +uy) a113+a123+ 1
h h

g(u’24+u23+ugc) :a21§+a22§+b2

Similarly, the displacement fields on node B and C' can be written as:

ulB =aph+b and ’LLQB = ag1h + bsy

and

ulc =aigh + by and uzc = agoh + bsy

Substituting eq. (B.1.6) into eq. (B.1.5),

ulB — ulc uf — ug
— and as21 — a2 =

ai] —aiz = -
h h

Hence, the displacements on the mid—point O; are given by

uf + ujlB + ulc =aj1h +ai2h+ 3 (u? — algh)

u‘é + ug + ug = as1h + asoh + 3 (ug — aggh)

From eq. B.1.8, the undetermined coefficient a;; are defined as follows:

up —ufl uf —ufl ug —uj ug —uj

a1l = 7h , a2 = 7h , a1 =

T’ azzZT

(B.1.4)

(B.1.5)

(B.1.6)

(B.1.7)

(B.1.8a)
(B.1.8b)

(B.1.9)

Similarly, the undetermined coefficient a;; for triangle ADCB in Figure 7 are given by

C D B D c D B D
Uy —uy Uy — Uy Uy — Uy

] = —- alg = ——— = - agy = ————
h ’ h ’ h ’ h

The smoothed deformation gradient is given by [2]:

Fyba) = o /Q Fiy (k) ® (1) A

(B.1.10)

(B.1.11)



where ® is:

“ 1 0 otherwise

and then,
o f B 08 )
Fiy = {/Ql g;gdfl—k/gz g;gdsz} % (a§2’§+a§2h62>
Fy = {/Ql g;?ldfw/m g;?ldg} % (a;1’;2+a§1’§>
o = - {/Ql g;ngvL/m S;Zdﬁ} 1= % (amhg +a22]§> +1

where A = A1 + A2 = % + % = ’g , and the matrix form is:

B A C D C D
Uy —uy Uy —uy l Uq ul u —’LLl
(et ) (M )

B A C D C B D
Uy —ub uy —uj 1 (ug —us
(5 + ) 2(h+h)+1

i
[N

(B.1.12)

(B.1.13a)

(B.1.13b)

(B.1.13¢)

(B.1.13d)

(B.1.14)

In case the edge is on the boundary, the smoothed deformation gradient F can be described

as following:
B_, A

1

2

1 (uf —ug
2 h

(%)
()

F=

NI—= D=

B.2 NS-FEM

19

(B.1.15)
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