

UNIVERSITÉ DU LUXEMBOURG Research Unit in Engineering Sciences (RUES)

Discretisation, Multiscale Mechanics Problems & Surgical Simulation

Stéphane Bordas & Pierre Kerfriden University of Luxembourg and Cardiff University

erc

279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery

UNIVERSITÉ DU LUXEMBOURG Research Unit in Engineering Sciences (RUES)

- A small, young, dynamic university
- 3 languages (English, German, French); bilingual and trilingual degrees
- Strong mathematics and Comp. Sc.
- RUES: 3 professors in computational mechanics, 30 collaborators
- Computational sciences priority 1
- Strong local <u>industry</u>
- Strong and supportive <u>national funding</u>
- 7 EU projects in engineering, of which RealTcut: <u>ERC Starting Grant</u> (Bordas)

- A large, established university (1883)
- 95% 3 or 4* at RAE2008 in Civil
- Over 100 EU projects awarded of which <u>ITN</u>: INSIST
- Mechanics Research: 40 researchers, 14 faculty members
- Advanced manufacturing and characterisation

1997-2003

Advisor: Brian Moran Now vice-provost for faculty affairs at KAUST

M A M

Institute of Mechanics & Advanced Materials

- MSc Geotechnical Engineering
- PhD. Damage Tolerance of Aerospace Structures (XFEM)
- and Biofilm Growth

Post-doc 2003-2006 -

Meshless/XFEM Geomechanics

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Institute of mechanics and advanced materials

Prof. Stéphane Bordas, Director, Extended FEM/ Meshless

Prof. Bhushan Karihaloo Advanced materials. theoretical mechanics

Prof. Feodor

Borodich

Theoretical/Nano

Kennedy Eigenvalue problems, advanced numerical methods

Contact mechanics, tribology

Dr. Paul Howson Transcendental eigenvalue

The institute

- •6 professors, 6 lecturers/senior lecturers
- 10 post-doc fellows
- •17 PhD students
- •~ £1.0M funding annually

Prof. Ray Snidle Contact mechanics, tribology

Motivation: multiscale fracture of engineering structures and materials

Practical early-stage design simulations (interactive)

Reduce the problem size while controlling the error (in QoI) when solving very large (multiscale) mechanics problems

Motivation: multiscale fracture of engineering structures and materials

Solder joint durability (microelectronics), Bosch GmbH

Model reduction 10

Discretization

partition of unity enrichment (enriched) meshless methods ✓ level sets

Error control

✓ multi-scale & homogenisation

decomposition

✓ algebraic model reduction (using POD

✔ Newton-Krylov, "local/global", domai

Isogeometric analysis implicit boundaries

> ✓ XFEM: goal-oriented error estimates used by CENAERO (Morfeo XFEM) \checkmark meshless methods for fracture $\sqrt{\text{error estimation for reduced models}}$

Part I. Streamlining the CAD-analysis transition
Part II. Some advances in enriched FEM
Part III. Application to H cutting of Si wafers
Part IV. Application to interactive cutting sim.

INSIST

erc

Part I. Streamlining the CAD-analysis transition *Coupling, or decoupling?*

Motivation: free boundary problems - mesh burden

CAD to Analysis

One would like to be able to use such a mesh

Superimpose the geometry onto an arbitrary background mesh

Compute interactions between the geometry and the mesh

Perform the analysis

Paradigm 1: Separate field and boundary discretisation

- Immersed boundary method (Mittal, et al. 2005)
- Fictitious domain (Glowinski, et al. 1994)
- Embedded boundary method (Johansen, *et al.* 1998)
- Virtual boundary method (Saiki, *et al.* 1996)
- Cartesian grid method (Ye, *et al.* 1999, Nadal, 2013)
- ✓ Easy adaptive refinement + error estimation (Nadal, 2013)
- ✓ Flexibility of choosing basis functions
- Accuracy for complicated geometries? BCs on implicit surfaces?
- An accurate and implicitly-defined geometry from arbitrary parametric surfaces including corners and sharp edges (Moumnassi, et al. 2011)

Ex: Moumnassi et al, CMAME DOI:10.1016/j.cma.2010.10.002

Objectives

- insert surfaces in a structured mesh
 - without meshing the surfaces (boundary, cracks, holes, inclusions, etc.)
 - directly from the underlying CAD model
 - model arbitrary solids, including sharp edges and vertices
- keep as much as possible of the mesh as the CAD model evolves, i.e. reduce mesh dependence of the implicit boundary representation

INSIST

Paradigm 2 : IGA

Couple Geometry and Approximation

erc

Approximate the unknown fields with the same basis functions (NURBS, T-splines ...) as that used to generate the CAD model

 $2\overline{3}$

1. Generate a **volume** discretization using the **surface** geometry only?

2. Realistic solids can in general not be represented by only one volume (patch) and multiple patches must be glued together to avoid "leaks" (Nitsche, T-splines, PHT-splines, RL/LR-splines)

3. Refinement must be done everywhere in the domain (T, PHT... splines)

Isogeometric Analysis with BEM

Non-uniform rational B-splines

Knot vector

a non-decreasing set of coordinates in the parametric space.

Properties of NURBS

0.9

0.8

0.7

0.6

0.4

0.3

 $N_{a,p}(\xi)_{0.5}$

• Partition of Unity

$$\sum_{i=1}^{n} R_{i,p}(\xi) = 1$$

- Non-negative
- *p-1* continuous derivatives
- Tensor product property

$$\mathbf{S}(\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{i=1}^{n} \sum_{j=1}^{m} R^{1}_{i,p}(\boldsymbol{\xi}) R^{2}_{j,q}(\boldsymbol{\eta}) \mathbf{B}_{i,j}$$
$$\sum_{i=1}^{n} \sum_{j=1}^{m} R^{1}_{i,p}(\boldsymbol{\xi}) R^{2}_{j,q}(\boldsymbol{\eta}) = \left(\sum_{i=1}^{n} R^{1}_{i,p}(\boldsymbol{\xi})\right) \left(\sum_{j=1}^{m} R^{2}_{j,q}(\boldsymbol{\eta})\right)$$

NURBS to T-splines

Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W. Sederberg. Isogeometric analysis using T-splines. CMAME, 199(5-8):229–263, 2010.

IGABEM formulation

Regularised form of boundary integral equation for 2D linear elasticity

$$\int_{\Gamma} \mathbf{T}(\mathbf{s}, \mathbf{x}) [\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{s})] \, \mathrm{d}\Gamma(\mathbf{x}) = \int_{\Gamma} \mathbf{U}(\mathbf{s}, \mathbf{x}) \mathbf{t}(\mathbf{x}) \, \mathrm{d}\Gamma(\mathbf{x})$$

where ${\bf x}$ and ${\bf s}$ are field point and source point respectively, ${\bf u}$ and ${\bf t}$ are displacement and traction around the boundary, ${\bf T}$ and ${\bf U}$ are fundamental solutions.

Discretise the geometry and solution field using NURBS

$$\mathbf{x} = \sum_{A=1}^{n_A} N_A(\xi) \mathbf{B}_A = N_A(\xi) \mathbf{B}_A$$
$$\mathbf{u} = \sum_{A=1}^{n_A} N_A(\xi) \mathbf{u}_A = N_A(\xi) \mathbf{u}_A$$
$$\mathbf{t} = \sum_{B=1}^{n_B} N_B(\xi) \mathbf{t}_B = N_B(\xi) \mathbf{t}_B$$

Nuclear reactor

Dam

Propeller: NURBS would require several patches - single patch T-splines

Part II. Some recent advances in enriched FEM

Faculty of Sciences, Technology and Communication

Handling discontinuities in isogeometric

formulations

Faculty of Sciences, Technology and Communication

with Nguyen Vinh Phu, Marie Curie Fellow

Discontinuities modeling

$$\mathbf{u}^{h}(\mathbf{x}) = \sum_{I \in \mathcal{S}} R_{I}(\mathbf{x}) \mathbf{u}_{I} + \sum_{J \in \mathcal{S}^{c}} R_{J}(\mathbf{x}) \Phi(\mathbf{x}) \mathbf{a}_{J}$$

NURBS basis functions enrichment functions

- 1. E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C. Hsu. X-FEM in isogeometric analysis for linear fracture mechanics. IJNME, 87(6):541–565, 2011
- 2. S. S. Ghorashi, N. Valizadeh, and S. Mohammadi. Extended isogeometric analysis for simulation of stationary and propagating cracks. IJNME, 89(9): 1069–1101, 2012.
- 3. D. J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM. IJNME, 83(6):765–785, 2010.
- 4. A. Tambat and G. Subbarayan. Isogeometric enriched field approximations. CMAME, 245–246:1–21, 2012.

Delamination analysis with cohesive elements (standard approach)

Isogeometric cohesive elements

- C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes. An isogeometric approach to cohesive zone modeling. IJNME, 87(15):336–360, 2011.
- 2. V.P. Nguyen, P. Kerfriden, S. Bordas. Isogeometric cohesive elements for two and three dimensional composite delamination analysis, 2013, Arxiv.

Isogeometric cohesive elements: advantages

- Direct link to CAD
- Exact geometry
- Fast/straightforward generation of interface elements
- Accurate stress field
- Computationally cheaper

- 2D Mixed mode bending test (MMB)
- 2 x 70 quartic-linear B-spline elements
- Run time on a laptop 4GBi7: 6 s
- Energy arc-length control

V. P. Nguyen and H. Nguyen-Xuan. High-order B-splines based finite elements for delamination analysis of laminated composites. Composite Structures, 102:261–275, 2013.

ffset curve

Isogeometric cohesive elements: 2D example

- It is straightforward to vary (1) the number of plies and 2) # of interface elements:
- Suitable for parameter studies/design
 Solver: energy-based arc-length method (Gutierrez, 2007)

Isogeometric cohesive elements: 2D example

Isogeometric cohesive elements: 3D example with shells

Isogeometric cohesive elements: 3D examples

Isogeometric cohesive elements

Future work: model selection (continuum, plate, beam, shell?)

Part III. Application to multi-crack propagation

with Danas Sutula, President Scholar

Faculty of Sciences, Technology and Communication

Model

Soitec

Modeling cavities by zero thickness surfaces

- discontinuities in the displacement field Linear elastic fracture mechanics (LEFM)
- infinite stress at crack tip, i.e. *singularity*

XFEM formulation

Discretization: XFEM

Soitec

Introduced by Ted Belytschko (1999) for elastic problems

Plate with 300 cracks - vertical extension BCs

Example #1

Crack growth: classical approach (LEFM)

Evaluation of stress intensity factors (SIF)

• The interaction integral (Yau 1980)

(1) – from current solution(2) – known auxiliary solution

Crack growth criterion for mixed mode fracture

Direction that maximises the energy release (Nuismer 1975)

$$\frac{k_I^2(K_I, K_{II}, \theta_{inc}) + k_{II}^2(K_I, K_{II}, \theta_{inc})}{E'} = G_c$$

 $I^{(1+2)} = \int_{\Omega} \left(\sigma_{ij}^{(1)} \frac{\partial u_i^{(2)}}{\partial x_1} + \sigma_{ij}^{(2)} \frac{\partial u_i^{(1)}}{\partial x_1} - W^{(1+2)} \delta_{1j} \right) \frac{\partial q}{\partial x_j} \mathrm{d}\Omega = \frac{2}{E'} (K_I^{(1)} K_I^{(2)} + K_{II}^{(1)} K_{II}^{(2)})$

Crack growth direction

orthogonal to maximum hoop stress

$$\theta_c(K_I, K_{II}) = 2 \tan^{-1} \left[\frac{1}{4} \left(\frac{K_I}{K_{II}} - \operatorname{sign}(K_{II}) \sqrt{\left(\frac{K_I}{K_{II}} \right)^2 + 8} \right) \right]$$

Crack growth: classical approach (LEFM)

• Energy release rate w.r.t crack increment direction:

$$Gs_i = -\frac{\partial \Pi}{\partial \theta_i}$$

• The rates of the energy release rate are given by:

$$Hs_{i,j} = \frac{\partial Gs_i}{\partial \theta_j} = -\frac{\partial^2 \Pi}{\partial \theta_i \partial \theta_j}$$

• where, in a discrete setting, the potential energy is:

$$\Pi = \frac{1}{2}u'Ku - u'f$$

• The discrete potential energy:

$$\Pi = \frac{1}{2}u'Ku - u'f$$

• The discrete energy release rate:

$$Gs_{i} = -\frac{1}{2}u'\delta_{i}Ku + u'\delta_{i}f - \delta_{i}u'(Ku - f)$$

$$Gs_{i} = -\frac{1}{2}u'\delta_{i}Ku + u'\delta_{i}f , \text{ where } \delta_{i} = \frac{\partial}{\partial\theta_{i}}$$

• The rates of the energy release rate

$$Hs_{ij} = -\left(\frac{1}{2}u'\delta_{ij}^2Ku - u'\delta_{ij}^2f\right) - \delta_j u'\left(\delta_iKu - \delta_if\right) \text{, where } \delta_{ij} = \frac{\partial^2}{\partial\theta_i\theta_j}$$
$$Hs_{ij} = -\left(\frac{1}{2}u'\delta_{ii}^2Ku - u'\delta_{ii}^2F\right) + (\delta_jKu - \delta_jf)'K^{-1}(\delta_iKu - \delta_if)$$

• The discrete potential energy:

$$\Pi = \frac{1}{2}u'Ku - u'f$$

• The discrete energy release rate:

$$Gs_i = -\frac{1}{2}u'\delta_i Ku + u'\delta_i f - \delta_i u'(Ku - f)$$

$$Gs_i = -\frac{1}{2}u'\delta_i Ku + u'\delta_i f$$

The rates of the energy release rate

$$\delta u = -K^{-1}(\delta K u - \delta f)$$

$$Hs_{ij} = -\left(\frac{1}{2}u'\delta_{ij}^{2}Ku - u'\delta_{ij}^{2}f\right) - \underbrace{\delta_{j}u}(\delta_{i}Ku - \delta_{i}f)$$
expensive
$$Hs_{ij} = -\left(\frac{1}{2}u'\delta_{ii}^{2}Ku - u'\delta_{ii}^{2}F\right) + \underbrace{(\delta_{j}Ku - \delta_{j}f)}(K^{-1}(\delta_{i}Ku - \delta_{i}f))$$
remote interaction

- Energy minimization w.r.t. to a finite crack propagation
 - The growth direction is given by satisfying: $\partial \Pi / \partial \theta_i = 0$
 - Using the maximum hoop-stress criterion as initial guess

Part IV. Application to surgical simulation

with Institue of Advanced Studies (iCube, University of Strasbourg, France: Hadrien Courtecuisse), INRIA, SHACRA Team (Stéphane Cotin, Christian Duriez); Karol Miller, UWA.

Faculty of Sciences, Technology and Communication

RealTcut

Interactive multiscale cutting simulations

erc

The ERC RealTcut project

Approach

Concrete objective: compute the response of organs during surgical procedures (including cuts) in real time (50-500 solutions per second)

Two schools of thought

- constant time
 - accuracy often controlled visually only
- model reduction or "learning"
 - scarce development for biomedical problems
 - no results available for cutting

First implicit, interactive method for cutting with contact

[Courtecuisse et al., MICCAI, 2013] Collaboration INRIA

Proposed approach: maximize accuracy for given computational time. Error control

A semi-implicit method for real-time deformation, topological changes, and contact of soft tissues

Paper ID: 269

Pioneering research and skills

MAM

Institute of Mechanics

& Advanced Materials

RU WALES

SEVENTH FRAMEWORK PROGRAMME

Acknowledgements

The Leverhulme Trust

IDEAS

65

TWO POST DOCS TWO FACULTY POSITIONS AVAILABLE

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -Fortran 2003, C++

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS DOWNLOAD @ http://cmechanicsos.users.sourceforge.net/

COMPUTATIONAL MECHANICS DISCUSSION GROUP

Request membership @

http://groups.google.com/group/computational_mechanics_discussion/about

Dr. Pierre Kerfriden

Publications - model reduction

- <u>http://orbilu.uni.lu/handle/10993/12024</u>
- <u>http://orbilu.uni.lu/handle/10993/12012</u>
- <u>http://orbilu.uni.lu/handle/10993/10207</u>
- <u>http://orbilu.uni.lu/handle/10993/12454</u>
- <u>http://orbilu.uni.lu/handle/10993/12453</u>
- <u>http://orbilu.uni.lu/handle/10993/14475</u>
- <u>http://orbilu.uni.lu/handle/10993/10206</u>

Mesh-burden reduction

- <u>http://orbilu.uni.lu/handle/10993/12159</u>
- <u>http://orbilu.uni.lu/handle/10993/14135</u>
- <u>http://orbilu.uni.lu/handle/10993/13847</u>
- <u>http://orbilu.uni.lu/handle/10993/12157</u>
- <u>http://orbilu.uni.lu/handle/10993/11850</u>

Demos

- Surgical simulation
 - <u>http://www.youtube.com/watch?</u>
 <u>v=KqM7rh6sE8s</u>
 - <u>http://www.youtube.com/watch?</u>
 <u>v=DYBRKbEiHj8</u>
- Multi-crack growth
 - <u>http://www.youtube.com/watch?</u>
 <u>v=6yPb6NXnex8</u>
- http://www.youtube.com/watch?

- <u>http://www.youtube.com/watch?</u>
 <u>v=90NAq76mVmQ</u>
- Solder joint durability
 - <u>http://www.youtube.com/watch?</u>
 <u>v=Ri96Wv6zBNU</u>
 - <u>http://www.youtube.com/watch?</u>
 <u>v=1g3Pe_9XN9I</u>

Damage tolerance assessment directly from CAD

- <u>http://www.youtube.com/watch?</u>
 <u>v=RV0gidOT0-U</u>
- <u>http://www.youtube.com/watch?</u>
 <u>v=cYhaj6SPLTE</u>
- <u>http://orbilu.uni.lu/handle/10993/12159</u>
- <u>http://orbilu.uni.lu/handle/10993/14135</u>
- <u>http://orbilu.uni.lu/handle/10993/13847</u>
- <u>http://orbilu.uni.lu/handle/10993/12157</u>

Damage tolerance analysis directly from CAD

• http://orbilu.uni.lu/handle/10993/11850

• P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite Element approach for geometrical design and mechanical analysis. IJNME, 41(3):435–458, 1998.

• F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. IJNME, 47(12): 2039–2072, 2000.

Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang, and G. Subbarayan. CAD, 36(5): 473--486, 2004.

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME, 194(39-41):4135–4195, 2005.
J. A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, 2009. • P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite Element approach for geometrical design and mechanical analysis. IJNME, 41(3):435–458, 1998.

• F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. IJNME, 47(12): 2039–2072, 2000.

Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang, and G. Subbarayan. CAD, 36(5): 473--486, 2004.

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME, 194(39-41):4135–4195, 2005.
J. A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, 2009. R. Alwood, G. Cornes, "A polygonal finite element for plate bending problems using the assumed stress approach", International Journal for Numerical Methods in Engineering, 1(2): 135–149, 1969.

T. Belytschko, Y. Lu, L. Gu, "Element-free Galerkin methods", International Journal for Numerical Methods in Engineering, 37: 229–256, 1994.

T. Belytschko, T. Black, "Elastic crack growth in finite elements with minimal remeshing", International Journal for Numerical Methods in Engineering, 45: 601–620, 1999.

R. Mittal, G. Iaccarino, "Immersed boundary methods", Annual Review of Fluid Mechanics, 37: 239–261, 2005.

G.R. Liu, K. Dai, T. Nguyen, "A smoothed finite element method for mechanics problems", Computational Mechanics, 39: 859–877, 2007.

LB da Veiga, F Brezzi, LD Marini - Virtual Elements for linear elasticity problems SIAM Journal on Numerical Analysis, 2013.

F. Rizzo, "An integral equation approach to boundary value problems of classical elastostatics", Quart. Appl. Math, 25(1): 83–95, 1967.

R. Glowinski, T. Pan, J. Periaux, "A fictitious domain method for Dirichlet problem and applications", Computer Methods in Applied Mechanics and Engineering, 111(3-4): 283–303, 1994.

C. Song, J. Wolf, "The scaled boundary finite-element method–alias consistent infinitesimal finite-element cell method–for elastodynamics", Computer Methods in Applied Mechanics and Engineering, 147(3): 329–355, 1997.

R. Simpson, S. Bordas, J. Trevelyan, T. Rabczuk, "A two-dimensional isogeometric boundary element method for elastostatic analysis", Computer Methods in Applied Mechanics and Engineering, 209-212: 87–100, 2012.

Isogeometric boundary element analysis using unstructured T-splines MA Scott, RN Simpson, JA Evans, S Lipton, SPA Bordas, TJR Hughes, TW Sederberg Computer Methods in Applied Mechanics and Engineering, 2013. E. Saiki, S. Biringen, "Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method", Journal of Computational Physics, 123(2): 450–465, 1996.

H. Johansen, P. Colella, "A Cartesian grid embedded boundary method for Poisson's equation on irregular domains", Journal of Computational Physics, 147(1): 60–85, 1998.

T. Ye, R. Mittal, H. Udaykumar, W. Shyy, "An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries", Journal of Computational Physics, 156(2): 209–240, 1999.

M. Moumnassi, S. Belouettar, E. Bechet, S. Bordas, D. Quoirin, M. Potier Ferry, "Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces", Computer Methods in Applied Mechanics and Engineering, 200(5): 774–796, 2011.

<u>Outline</u>

- Introduction: Multiscale methods for Fracture
- >Adaptive multiscale method
 - Strategy
 - Fine scale problem
 - Coarse scale problem
 - FE² method
 - Adaptive mesh refinement
 - Coupling fine and coarse discretisations
 - Results
 - L-shape problem
 - Notched bar under Uni-axial tension

Error control in multiscale modelling

Multiscale methods for Fracture

Non-concurrent

Damage zone is modelled by a macroscopic cohesive crack that homogenises the failure zone.

Concurrent

Damage zone is modelled directly at the microscale and coupled to the coarse scale.

Adaptive multiscale method: A Concurrent approach

≻Strategy:

Fine Scale: micro-structure

≻Microscale problem:

$$\int_{\Omega/\Gamma_c} \boldsymbol{\sigma}(\mathbf{u}) : \delta \boldsymbol{\varepsilon} \, \mathrm{d}\Omega + \int_{\Gamma_c} \mathbf{T} \cdot [\![\delta \mathbf{u}]\!] \mathrm{d}\Omega = \int_{\partial \Omega} \mathbf{f} \cdot \delta \mathbf{u} \mathrm{d}\Gamma$$

Orthotropic grains

 $\forall \mathbf{x} \in \Omega / \Gamma_c, \quad \boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}$

Cohesive interface

$$\forall \mathbf{x} \in \Gamma_c, \quad \mathbf{T}_{|_t} = T\left(\left(\llbracket \mathbf{u} \rrbracket_{|_{\mathcal{T}}}\right)_{\mathcal{T} \leq t}\right)$$

Coarse Scale

≻Macroscale problem:

FE² Method
 Based on averaging theorem
 (computational homogenisation)

Adaptive mesh refinement
 Error estimation by Zienkiewicz-Zhu-type recovery technique

Lack of scale separation RVE cannot be found in the **softening regime**

Coarse Scale: Adaptive mesh refinement

Coarse scale Adaptive mesh refinement

• Error estimation by Zienkiewicz-Zhu-type recovery technique

Fine-Coarse scales Coupling

What is the solution for the FE² shortcoming: "Hybrid Multiscale Method"

•FE² for non-critical region (hierarchical multiscale)

Results: L-shape

Direct Numerical Solution

Adaptive Multiscale method

100X (magnification of displacement)

100X (magnification of displacement)

Adaptive Multiscale Method

An adaptive multiscale method was developed for discrete fracture in polycrystalline materials:

- An unstructured mesh is used for the coarse scale problem
- A local arc-length was used to control crack speed in the fully resolved region.
- A recovery based error indicator was employed to limit discretization error at each time step.

Perspectives

- coarsening once the crack is open
- molecular dynamics at the fine scale

- real-life problems! :)
- coupling with algebraic model reduction (POD)

TWO POST DOCS TWO FACULTY POSITIONS AVAILABLE

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -Fortran 2003, C++

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS DOWNLOAD @ <u>http://cmechanicsos.users.sourceforge.net</u>/

COMPUTATIONAL MECHANICS DISCUSSION GROUP

Request membership @

http://groups.google.com/group/computational_mechanics_discussion/about

Publications - model reduction

- <u>http://orbilu.uni.lu/handle/10993/12024</u>
- <u>http://orbilu.uni.lu/handle/10993/12012</u>
- <u>http://orbilu.uni.lu/handle/10993/10207</u>
- <u>http://orbilu.uni.lu/handle/10993/12454</u>
- <u>http://orbilu.uni.lu/handle/10993/12453</u>
- <u>http://orbilu.uni.lu/handle/10993/14475</u>
- <u>http://orbilu.uni.lu/handle/10993/10206</u>

Mesh-burden reduction

- <u>http://orbilu.uni.lu/handle/10993/12159</u>
- <u>http://orbilu.uni.lu/handle/10993/14135</u>
- <u>http://orbilu.uni.lu/handle/10993/13847</u>
- <u>http://orbilu.uni.lu/handle/10993/12157</u>
- <u>http://orbilu.uni.lu/handle/10993/11850</u>

Demos

- Surgical simulation
 - <u>http://www.youtube.com/watch?</u>
 <u>v=KqM7rh6sE8s</u>
 - <u>http://www.youtube.com/watch?</u>
 <u>v=DYBRKbEiHj8</u>
- Multi-crack growth
 - <u>http://www.youtube.com/watch?</u>
 <u>v=6yPb6NXnex8</u>
- http://www.youtube.com/watch?
 FACULTY VSTTENCE 2005 DECOMPOSITION

- <u>http://www.youtube.com/watch?</u>
 <u>v=90NAq76mVmQ</u>
- Solder joint durability
 - <u>http://www.youtube.com/watch?</u>
 <u>v=Ri96Wv6zBNU</u>
 - <u>http://www.youtube.com/watch?</u>
 <u>v=1g3Pe_9XN9I</u>

Damage tolerance assessment directly from CAD

- <u>http://www.youtube.com/watch?</u>
 <u>v=RV0gidOT0-U</u>
- <u>http://www.youtube.com/watch?</u>
 <u>v=cYhaj6SPLTE</u>
- <u>http://orbilu.uni.lu/handle/10993/12159</u>
- <u>http://orbilu.uni.lu/handle/10993/14135</u>
- <u>http://orbilu.uni.lu/handle/10993/13847</u>
- <u>http://orbilu.uni.lu/handle/10993/12157</u>

Damage tolerance analysis directly from CAD

• http://orbilu.uni.lu/handle/10993/11850

IGA delamination and multi-patch coupling

- Nitsche: <u>http://orbilu.uni.lu/handle/</u>
 <u>10993/14460</u>
- IGA review and implementation: <u>http://</u> orbilu.uni.lu/handle/10993/14191
- Delamination: <u>http://orbilu.uni.lu/handle/</u>
 <u>10993/14468</u>

 review and implementation: <u>http://</u> orbilu.uni.lu/handle/10993/13726

