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Abstract—Channel estimation attacks can degrade the perfor-
mance of the legitimate system and facilitate eavesdropping. It is
known that pilot contamination can alter the legitimate transmit
precoder design and strengthen the quality of the received signal
at the eavesdropper, without being detected. In this paper, we
devise a technique which employs random pilots chosen from a
known set of phase-shift keying (PSK) symbols to detect pilot
contamination. The scheme only requires two training periods
without any prior channel knowledge. Our analysis demonstrates
that using the proposed technique in a massive MIMO system, the
detection probability of pilot contamination attacks can be made
arbitrarily close to 1. Simulation results reveal that the proposed
technique can significantly increase the detection probability and
is robust to noise power as well as the eavesdropper’s power.

I. INTRODUCTION

There has been growing interest in physical layer security

since the introduction of the degraded wiretap channel and

secrecy capacity by the seminal work of Wyner [1]. Since

then, much work has been reported in the literature from

the viewpoints of both information theory [2]–[4] and signal

processing [5]–[10]. Deviating from the main research efforts

on secrecy capacity without considering on how channel state

information (CSI) is obtained, we are interested the practical

problem of detecting the attack on the channel estimation

process from an eavesdropper. More specifically, we consider a

multiple-antenna (MIMO) precoding system, where the eaves-

dropper (Eve) wants to overhear the communication from the

legitimate transmitter (Alice) to the intended receiver (Bob),

but does not attack Bob directly by, for instance, jamming.

Thus, detecting Eve becomes an important yet difficult task.

The impact of CSI on secrecy has been recently investigated.

A hybrid half-duplex adversary who either jams or eavesdrops

at a given time based on different level of CSI was studied

in [11], which illustrates that the main CSI is more valuable

for the adversary than the jamming CSI in both delay-limited

and ergodic scenarios. Intriguing counter-intuitive results were

given in [12] showing that more knowledge to the eavesdrop-

pers makes them more conservative in their attacks, and thus

less harmful and similarly, providing more knowledge to the

legitimate transmitter makes it more careful and less willing

to transmit, which reduces the expected secrecy capacity.

The need of channel estimation for MIMO precoding sys-

tems has put them at risk of active attack on channel estima-

tion. One such active eavesdropping attack was discussed in

[13], where Eve contaminates the channel estimation phase. In

particular, with a time-division-duplex (TDD) system, where

downlink and uplink channels are considered reciprocal, Eve

can inject the same pilot as Bob in the uplink channel training

phase. If Eve has sufficient transmit power, it can control the

channel estimation result at Alice; this will then change the

matched filter precoding used in the downlink transmission

phase. As such, Eve will not only strengthen its receive signal

but also degrade the signal quality at Bob, which is extremely

harmful for precoding systems. Worse, Eve’s attack cannot be

detected since its behavior is exactly the same as Bob’s.

In this paper, we propose a scheme to detect the presence of

Eve who attacks on the channel estimation using the method

in [13]. The main idea is to utilize random pilots for channel

estimation. We do not use pilot symbols as secret keys, which

are normally known in the standard, but rather assume the set

of pilot symbols to be publicly known. More specifically, we

use phase-shift keying (PSK) symbols as the pilot symbols

which are transmitted randomly. The scalar product between

the received vectors is exploited to detect the presence of Eve.

First, we describe our scheme for any number of antennas at

the base station, and derive a geometric region in the complex

plane based on Gaussian approximation that can be used

for detection. Then the potential of the emerging very large-

scale MIMO (a.k.a. massive MIMO technique) is investigated

for our scheme. Massive MIMO has received great attention

for its impressive gain in throughput and energy efficiency

[14]. Interested readers are referred to a tutorial in [15]. One

property particularly useful to our detection algorithm is that

with massive MIMO, the received thermal noise at Alice in

the uplink can be averaged out so that the detection can be

much simplified with improved performance. We illustrate that

with massive MIMO and large constellation size, Eve can be

detected with a probability arbitrarily close to one.1

The rest of this paper is organized as follows. In Section

II, we introduce our system model. Section III presents our

detection algorithm based on random training along with a

theoretical analysis of its behavior in the presence of received

noise. Based on the theoretical analysis, Section IV constructs

1It is worth noting that when Eve is completely passive without transmitting
any signal, detecting its existence is more difficult. A method was proposed
in [16] to detect passive eavesdropping from the local oscillator power leaked
from Eve’s RF front end. This is beyond the scope of this paper.
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Fig. 1. Alice is a multi-antenna base station sending messages to the intended
user Bob but Eve is the malicious single-antenna eavesdropper.

the detection regions. Section V studies the impact of massive

MIMO on the detection. In Section VI, simulation results are

provided and Section VII concludes the paper.

II. SYSTEM MODEL

Consider a TDD system with a base station Alice, equipped

with M antennas and (possibly) several single-antenna users,

as depicted in Figure 1. Due to TDD, it is sufficient to focus on

one intended user Bob, awaiting information from Alice. Alice

adapts its precoder design to match the channel to Bob for

enhanced performance. Due to reciprocity, channel estimation

can be done in the uplink where Bob sends pilot symbols to

Alice. There exists a malicious single-antenna terminal Eve to

overhear the communication between Alice and Bob.

Let gB = dBhB be the M × 1 vector channel from Bob

to Alice and gE = dEhE be the M × 1 vector channel from

Eve to Alice. The elements in hB and hE are independent

complex Gaussians with zero mean and unit variance, i.e.,

they represent small-scale fading. The scalars dB and dE are

the large-scale fading coefficients for path loss and shadowing.

Understanding the importance of uplink channel estimation,

instead of passively listening to the legitimate transmission, a

more effective strategy for Eve is to contaminate the channel

estimation phase. Next we briefly review a pilot contamination

attack proposed in [13]. At training time slot j, the pilots sent

by Bob and Eve are pBj ∈ A and pEj ∈ A, respectively, where

A denotes the set of all training symbols. For fixed training

scheme and most practical applications, the pilot set A used by

Bob is publicly known and typically specified in the standard.

Hence, in this case, Eve can transmit the same pilots as Bob,

i.e., pBj = pEj = pj . The received signal at Alice becomes

yj =
√

PBpjdBhB +
√

PEpjdEhE + nj

= (
√

PBdBhB +
√

PEdEhE)pj + nj , (1)

where each element in nj is a complex Gaussian random

variable with zero mean and variance N0. Furthermore, PB

and PE denote the average training power used by Bob

and Eve, respectively. We assume that the large-scale fading

coefficients dB and dE are unknown in advance to Alice.

From (1), it is impossible for Alice to decide whether the

received signal strength is due to Bob’s channel only or Eve’s

as well. If Eve’s channel is strong or its training power is

high, it can dominate the channel estimation at Alice and

even worse, during the transmission phase, Alice will use a

precoder that adapts to this erroneous channel estimate. Thus,

it is necessary for Alice to detect the presence of Eve and

pause any transmission to Bob during Eve’s presence.2

The work in [13] only analyzed error rate performance for

the pilot contamination attack, and outlined a detection scheme

(without analysis) that measures the variance of the received

signal at Alice during a sufficiently long training period.

Instead, we propose an efficient detection scheme that achieves

plausible performance under the pilot contamination attack

with only two training slots. We also rigorously characterize

the performance of the proposed detection algorithm.

III. RANDOM PILOT DETECTION SCHEME

Although it is difficult for Alice to differentiate whether the

pilots are from Bob only or contaminated by Eve, if Alice has

the knowledge of dB and dE , and they differ significantly, sig-

nal strength deviations from what is expected can be observed,

and detection probability increases. Nevertheless, deterministic

knowledge of Bob’s pilots is detrimental for detection of Eve.

Instead, if Bob transmits pilots randomly, then the probability

of observing deviations from the expected signal increases.

This observation forms the basis of our random pilot detection

scheme, which is described next. We want to emphasize that

our scheme does not need the knowledge of dB and dE .

A. Random Pilot Detection Scheme: Noiseless Case

To illustrate the idea, let us first discard the noise in the

received signal. The pilot alphabet A is assumed to be a PSK

alphabet, with N PSK symbols A = {ei2πk/N : 0 ≤ k ≤
N−1}. We assume that 2 training slots are used. Suppose that

Eve is active in both slots. Then the received signals during

the two training slots are, respectively, given by
{

y1 =
√

PBp
B
1
dBhB +

√

PEp
E
1
dEhE ,

y2 =
√

PBp
B
2
dBhB +

√

PEp
E
2
dEhE .

(2)

Next, we form the (scaled) inner product of the two received

vectors:

zE
12

4
=

y∗
1
y2

M
=

1

M

(

√

PBp
B
1
dBhB +

√

PEp
E
1
dEhE

)∗

(

√

PBp
B
2
dBhB +

√

PEp
E
2
dEhE

)

(3)

where the superscript (·)∗ denotes Hermitian conjugate. In-

stead, if Eve is not active, the cross product y∗
1
y2/M becomes

z12
4
= PB

(pB
1
)∗(pB

2
)d2B‖hB‖2
M

. (4)

2Note that this argument assumes perfect synchronization of Eve and Bobs’
transmissions. Any synchronization imperfections could potentially be useful
in the detection process, but they are out of scope in this work.
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Fig. 2. Geometrical interpretation of the random pilot detection scheme. In
the figure, Eve is detected since zE

12
is not located on one of the 4 dotted

lines defined by a PSK symbol and the origin.

We have the following discussion based on (3) and (4).

• In the absence of Eve, Alice receives z12 = y∗
1
y2/M ,

which is a scaled PSK symbol.

• If Eve is present, then Alice receives zE
12

= y∗
1
y2/M .

Hence, for Eve to remain undetected, zE
12

must be a scaled

PSK symbol. Geometrically, this means that zE
12

must lie

in one of the N/2 lines (henceforth called PSK lines)

defined by the origin and each PSK symbol. See Figure

2.

With these observations in mind, the detection procedure can

be formulated as: if y∗
1
y2 is on a PSK line, Eve is absent;

otherwise, Eve is present. The following theorem characterizes

the detection performance of the proposed scheme.

Theorem 1. In the absence of noise, Eve can be detected with

probability 1− 1

N .

Proof: It follows that

zE
12

=
1

M
(pB

1
)∗pB

2
(
√

PBdBhB +
√

PEp
E
1
(pB

1
)∗dEhE)

∗

(
√

PBdBhB +
√

PEp
E
2
(pB

2
)∗dEhE). (5)

The product
√
PB(p

B
1
)∗pB

2
is a scaled PSK symbol. Hence,

in order for zE
12

to be a scaled PSK symbol, the angle of the

vector scalar product in (5) must equal the angle of some PSK

symbol. Due to the randomness of hB and hE , if pE
1
(pB

1
)∗ 6=

pE
2
(pB

2
)∗, the angle of the above vector scalar product will,

with probability one, not be equal to the angle of any PSK

symbol. As such, zE
12

will not be a scaled PSK symbol with

probability one. Instead, if pE
1
(pB

1
)∗ = pE

2
(pB

2
)∗, zE

12
will be a

scaled PSK symbol for any realization of hB and hE . Hence,

for Eve to remain undetected, Eve’s pilot in the second time

slot must equal pE
2

= pE
1
(pB

1
)∗pB

2
. Since pE

1
(pB

1
)∗pB

2
is a

random PSK symbol, Eve must guess the pilot pE
1
(pB

1
)∗pB

2
.

Thus, the probability of Eve remaining undetected is 1/N , i.e.,

the detection probability is 1− 1/N .

Theorem 1 shows that by increasing the alphabet size, the

detection probability converges to 1 if no noise is present. Note

that no information about the large-scale fading coefficients is

assumed, and this holds throughout this paper.

B. Random Pilot Detection Scheme: Noisy Case

So far, we have assumed that noise was not present. Next,

the impact of noise, hence the model in (1), is considered.

If Eve is not contaminating, the scalar product z12 becomes

z12 =
PBd

2

B‖hB‖2
M

(pB
1
)∗pB

2
+ n12. (6)

where

n12 =
√

PBdB(p
B
1
)∗
h∗

Bn2

M
+
√

PBdBp
B
2

n∗
1
hB

M
+

n∗
1
n2

M
(7)

is the equivalent noise. The distribution of n12 is complicated

and in the following lemma we study its property in the large

antenna case.

Lemma 1. For a given realization of hB , define

sM
4
=

N0

M2
(MN0 + 2PBd

2

B‖hB‖2).

Then

lim
M→∞

n12√
sM

d→ CN (0, 1).

Proof: Due to space limitation, we sketch a brief outline

of the proof only. First of all, write

n12 =
1

M
(n1 +

√

PBdB(p
B
1
)hB)

∗(n2 +
√

PBdBp
B
2
hB)

− PBd
2

B(p
B
1
)∗pB

2
‖hB‖2. (8)

The scalar product in (8) is between two independent Gaussian

vectors, with means
√
PBdB(p

B
1
)hB and

√
PBdBp

B
2
hB , and

both with variance N0, respectively. Hence, the mean of n12 is

E{n12} = 0. Also, n12 is a sum of M complex-valued normal

product Gaussian variables. It can be shown that the Lyapunov

condition in the Lyapunov central limit theorem is satisfied for

the forth moment for this sum. Thus, we can conclude that in

the limit M → ∞, this sum converges to a complex Gaussian

random variable with mean 0 and variance sM .

Lemma 1 shows that for a fixed channel realization, the in-

terference variable n12 converges (in distribution) to a complex

Gaussian variable with zero mean and variance sM . Results in

Figure 3 verify that this approximation is justified for as few as

M = 5 antennas. Combining (6) and Lemma 1, it holds that in

the absence of Eve, z12 equals a scaled PSK symbol disturbed

by complex Gaussian noise with zero mean and variance sM .

On the other hand, if Eve is contaminating the pilots, the

cross product zE
12

equals

zE
12

=
1

M

(

√

PBp
B
1
dBhB +

√

PEp
E
1
dEhE

)∗

(

√

PBp
B
2
dBhB +

√

PEp
E
2
dEhE

)

+ nE
12
, (9)
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Fig. 3. The cumulative density functions (cdf) of the real-valued part
Re{n12} of n12 and a Gaussian cdf with mean 0 and variance sM in Lemma
1. In this plot, PBd2

B
‖hB‖2 = 713.1196 and M = 5. The complex-valued

part of n12 gives the same cdf as the real-valued part. As seen, the empirical
cdf of Re{n12} coincides with a Gaussian cdf, as predicted by Lemma 1.

where the equivalent noise is

nE
12

=
1

M

(

√

PBdB(p
B
1
)∗h∗

Bn2 +
√

PEdE(p
E
1
)∗h∗

En2

+
√

PBdBp
B
2
n∗

1
hB +

√

PEdEp
E
2
n∗

1
hE + n∗

1
n2

)

. (10)

Similar to Lemma 1, we can prove the following result.

Lemma 2. Define

sEM
4
=

N0

M2
(MN0 + ‖

√

PBdBp
B
1
hB +

√

PEdEp
E
1
hE‖2

+ ‖
√

PBdBp
B
2
hB +

√

PEdEp
E
2
hE‖2). (11)

For a fixed realization of the pilots and the channels,

lim
M→∞

nE
12

√

sEM

d→ CN (0, 1). (12)

Lemma 2 shows that for a given realization of the pilots and

the channels, the interference nE
12

converges (in distribution)

to a complex Gaussian variable with zero mean and variance

sEM . As with n12, nE
12

can be approximated very well with its

limiting distribution for as few as 5 antennas.

Applying the same analysis in the proof of Theorem 1, if

pE
1
(pB

1
)∗ = pE

2
(pB

2
)∗, then zE

12
will be equal to a scaled PSK

symbol plus nE
12

. The variance of nE
12

can be larger or smaller

than the variance of n12, depending on the pilots and the

channel realizations. Hence, in this case, the situation is similar

as that in the absence of Eve, and the probability of detecting

Eve decreases. On the other hand, if pE
1
(pB

1
)∗ 6= pE

2
(pB

2
)∗, zE

12

will be equal to a symbol different from a PSK symbol plus

nE
12

; the variance of nE
12

will vary in the same way as in the

previous case. However, the probability of detecting Eve will

now increase, since the probability of zE
12

not being a scaled

PSK symbol is larger.

IV. CONSTRUCTION OF DETECTION REGIONS

The results in the previous section suggest how to construct

the detection regions, i.e., the regions in which Alice decides

whether Eve is contaminating or not, depending on if the scalar

product y∗
1
y2/M is outside or inside the detection region,

respectively. Since the scalar product z12 in (6) equals the

sum of a PSK symbol scaled with cB = PBd
2

B‖hB‖2/M and

Gaussian noise, Alice decides that Eve is not contaminating

if the scalar product y∗
1
y2/M is within a certain distance

r(cB) from some PSK line. r(cB) needs to increase with the

scaling cB , because the variance sM of the Gaussian noise n12

increases with cB . From the signal space perspective, Gaussian

noise corresponds to a circle centered around 0 with radius√
sM . This property leads us to construct r(cB) as3

r(cB) = c

√

N0(MN0 + 2cB)

M
, (13)

Different values of the constant c will give smaller or larger

detection regions. This parameter is fine-tuned in Section VI

in order to achieve the best performance.

In order to detect Eve, Alice performs the following proce-

dure for each realization of the scalar product y12 = y∗
1
y2/M :

Set p = 1.

For each PSK symbol q ∈ A
Define f(x)

4
= |y12 − xq| − r(x).

If there is an x such that f(x) < 0, set p = 0.

Otherwise continue.

End

If p = 1 after the above procedure completes, Alice decides

that Eve is present; otherwise, it decides that Eve is not

present. The geometrical interpretation of this procedure is to

check whether there is a PSK symbol scaled with x, for which

y12 is inside a circle with radius r(x) centered at this scaled

PSK symbol. In other words, it checks whether y12 is inside

the detection region defined by the distance function r(x).

V. ENHANCED DETECTION USING MASSIVE MIMO

Massive MIMO has received increasing attention lately. The

main idea is to let the number of antennas at Alice, M , go

to infinity. This is especially useful if unwanted interference

is given by scalar products of independent vectors with zero

mean, since the strong law of large numbers indicates that this

type of interference goes to 0 as M approaches infinity. As

a result, the interference can be removed. On the other hand,

desired random quantities, such as received signal power, con-

verge to non-zero scalar numbers. Beside these nice properties,

simple transmission and detection schemes can be used to

achieve the optimal performance [15].

We will now investigate how our random pilot detection

scheme can be enhanced by massive MIMO in the presence

of noise. To this end, we study z12 and zE
12

in the noisy case,

when M → ∞. The strong law of large numbers implies

3Finding the optimal expression of r(cB) is left for future work.



that the scalar product between different vectors in (6) and

(9), converges to 0. Conversely, ‖hB‖2/M and ‖hE‖2/M
converge to 1. Hence, it holds that

lim
M→∞

z12 = pB
1
(pB

2
)∗d2B (14)

and

lim
M→∞

zE
12

= pB
1
(pB

2
)∗d2B + pE

1
(pE

2
)∗d2E . (15)

Note that as before, in the absence of Eve, (15) is a scaled

PSK symbol. Similarly to Theorem 1, we have the following

theorem about the detection probability.

Theorem 2. When M → ∞, Eve can be detected with

probability 1− 2/N .

Proof: Write (15) as

lim
M→∞

zE
12

= pB
1
(pB

2
)∗(d2B + (pB

1
)∗pB

2
pE
1
(pE

2
)∗d2E). (16)

Eve will be undetected if the angle of the above product is

that of a PSK symbol. Since dB and dE are random variables,

the probability of this event is 0 if (pB
1
)∗pB

2
pE
1
(pE

2
)∗ 6= ±1.

Instead, if (pB
1
)∗pB

2
pE
1
(pE

2
)∗ = ±1, the angle of the product is

always a PSK symbol. Hence, for Eve to remain undetected, in

the second time slot it must guess the pilot pE
2
= (pB

1
)∗pB

2
pE
1

or pE
2
= −(pB

1
)∗pB

2
pE
1

, which happens with probability 2/N .

Thus, the detection probability is 1− 2/N .

Comparing Theorems 1 and 2, we see that the probability of

not detecting Eve is doubled with massive MIMO. However,

as in the noiseless case, the detection probability can be made

arbitrarily close to 1 by increasing the alphabet size. Moreover,

this performance is guaranteed for any noise power and that

only two training slots are needed to achieve this performance.

VI. NUMERICAL RESULTS

To evaluate the performance of our detection scheme, we

simulate the detection probability and the false-alarm proba-

bility. False-alarm probability is defined as the probability of

detecting Eve, given that Eve is not present. A high false-

alarm probability results in pausing periods for Alice even in

the absence of Eve, which decreases the average throughput to

Bob. Hence, a high detection probability and a low false-alarm

probability is the desired goal for detection schemes.

Figure 4 shows the detection and false-alarm probabilities

versus SNR of our scheme for 8 antennas at Alice, N = 4 and

N = 8 PSK, and different transmission power at Eve. Here,

SNR is defined as SNR = PB/N0. Moreover, we assume a

large-scale fading scenario as in [13], i.e., dB = dE = 1.

As expected, the detection probability increases with SNR,

while the false-alarm probability decreases; in the high SNR

region, we obtain the performance of Theorem 1. Increasing

the alphabet size deteriorates the performance for small SNRs,

but improves it for high SNRs due to Theorem 1. Interestingly,

when Eve’s transmit power is much larger than Bob’s, our

scheme provides excellent performance. The reason is that Eve

“reveals” itself more, and our scheme has the ability to identify

this. Hence, beside being robust to noise, it is also robust to

power variations in Eve.
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Fig. 4. Detection (DP) and false-alarm (FAP) probabilities vs. SNR. The
detection probability increases with SNR, while the false-alarm probability
decreases. Larger alphabets converge to a larger value, but at a slower pace
than smaller alphabets. Moreover, the scheme is robust to power variations at
Eve as demonstrated by the curve with circular markers.

Emulating a massive MIMO scenario, Figure 5 shows the

impact of large antennas on our detection scheme. In the limit

of infinite antennas, we obtain the performance given by The-

orem 2. Compared to Figure 4, the performance is improved

with many antennas. Note that the false-alarm probability is

roughly almost 0 for all curves. Larger alphabets give better

performance for high SNR, but they have a slower convergence

rate. However, increasing the number of antennas to M = 400
gives better convergence rate, which is demonstrated by the

black curve for N = 64 (this curve would converge slower

to its limit for M = 200). Note that the curves are above

the 1 − 2/N probability in Theorem 2. The reason for this

is that M is still a finite number, and thus the scalar product

h∗

BhE/M between Bob’s and Eve’s channels is not exactly 0.

Therefore, when SNR → ∞, the performance is governed by

Theorem 1 instead. Hence, as a result, a detection probability

larger than 1 − 2/N can be achieved for high SNRs. As in

Figure 4, increasing Eve’s transmission power makes it easier

to detect her presence. Note that the black curve confirms the

results in Theorems 1 and 2, namely that our scheme can

achieve detection probabilities arbitrarily close to 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented novel detection schemes based

on random pilots to combat the pilot contamination attack

by a malicious user. The detection schemes require only two

training slots to perform detection at the base station without

any prior channel knowledge; thus only a small overhead is

incurred. In the absence of noise (high SNR regime) and with

large alphabet cardinality, we have revealed that our scheme

achieves perfect detection. For a finite number of antennas and

with the presence of additive white Gaussian noise, we also

studied the detection region. Simulations results have shown

that the detection scheme provides a high detection probability

and low false alarm probability. The detection problem is
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Fig. 5. Detection (DP) and false-alarm (FAP) probabilities vs. SNR for M =
200 and M = 400. The detection probability increases with SNR, while the
false-alarm probability is 0. Larger alphabets have slower convergence rate,
which can be improved by increasing the number of antennas at Alice. All
curves converge to their limit 1 − 1/N predicted by Theorem 1, since the
scalar product h∗

B
hE/M is not exactly 0 for M = 200 and M = 400.

further enhanced by massive MIMO techniques and it is shown

that our scheme again achieves perfect detection.

This area is not well explored. Future work includes the

study of the optimal distance expressions for r(d2B‖hB‖2)
for the finite case, which is crucial for the performance of

the detection scheme. Another important direction is to study

the impact of the training phase duration on the performance.

A training duration of K slots gives
(

K
2

)

different scalar

products, from which more information can be deduced about

Eve’s presence at a cost of increased overhead and complexity.
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