Corrections of exercises 2-4

Exercise 2

a) $X-1$ divides $X^{4}-1$ because

$$
X^{4}-1=(X-1)\left(X^{3}+X^{2}+1\right)
$$

thus

$$
\operatorname{gcd}\left(X^{4}-1, X-1\right)=X-1
$$

b) Apply Euclid's algorithm :

$$
\begin{aligned}
3 X^{3}+2 X+1 & =(3 X+12)\left(X^{2}-4 X\right)+50 X+1 \\
X^{2}-4 X & =\left(\frac{1}{50} X-\frac{201}{50}\right)(50 X+1)+\frac{201}{50}
\end{aligned}
$$

Thus the last non zero residue in Euclid's algorithm is $\frac{201}{50}$ which proves that

$$
\operatorname{gcd}\left(3 X^{3}+2 X+1, X^{2}-4 X\right)=1
$$

Alternative proof : $X^{2}-4 X=X(X-4)$ thus a non constant divisor of $X^{2}-4 X$ has either 0 or 4 as a root. None of them is a root of $3 X^{3}+2 X+1$ thus the can't have a non constant common divisor.

Exercise 3

a) In \mathbb{F}_{p} any non-zero element is invertible thus the group of units has $p-1$ elements. Thus Lagrange's theorem implies that for any unit $a \in \mathbb{F}_{p}-\{0\}$,

$$
a^{p-1}=1
$$

i.e. $a^{p}=a$ that is, a is a root of $X^{p}-X$. As 0 is also obviously a root of $X^{p}-X$, this normalized polynomial of degree p has exactly p different roots in \mathbb{F}_{p} and thus factorizes as

$$
X^{p}-X=\prod_{a \in \mathbb{F}_{p}}(X-a)
$$

1. In $\mathbb{F}_{3}[X]$, since $3=0$ and $2=-1$,

$$
X(X-1)(X-2)=X\left(X^{2}-3 X+2\right)=X\left(X^{2}+2\right)=X^{3}+2 X=X^{3}-X
$$

2. As already said in a), for any a in \mathbb{F}_{p},

$$
a^{p}-a=0
$$

Thus evaluating $X^{p}-X+1$ on a gives 1 which doesn't equal 0 , so this polynomial has no root in \mathbb{F}_{p}.
Exercise 4 (a) $\mathbb{F}_{7}^{*}=\{1,2,3,4,5,6\}$ endowed with multiplication is a cyclic group of order 6 so it's generators are elements which have order exactly 6 and we know from cyclicity (identification with $(\mathbb{Z} / 6 \mathbb{Z},+)$) that there must be two of them, one being the inverse of the other. 1 has order 1 so it's not a generator. $2^{3}=8=1=64=4^{3}$ so 2 and 4 have order two so they are not generators. $6^{2}=36=1$ so 6 has order 2 and is not a generator. Thus the generators must be 3 and 5 . Notice that $3 \times 5=15=1$ so we recover that one is the inverse of the other.
b) We have seen that $1=6^{2}$ is a square. Let's compute directly all squares of non-zero elements of \mathbb{F}_{7} :
$-6^{2}=1$ so 1 is a square,
$-5^{2}=25=4$ so 4 is a square,
$-4^{2}=16=2$ so 2 is a square,
$-3^{2}=9=2$, nothing new,
$-2^{2}=4$ so nothing new,
$-1^{2}=1 \ldots$.
We see that there are 3 squares in \mathbb{F}_{7}^{*} which are 2,4 and 1 .
Notice that $a \mapsto a^{2}$ is a group homomorphism from \mathbb{F}_{7}^{*} to istelf. It's kernel is a subgroup of \mathbb{F}_{7}^{*} so it has order $1,2,3$ or 6 . Since $X^{2}-1$ has at most two roots in \mathbb{F}_{7}, this kernel has in fact order two, it is $\{1,6\}$ Thus we recover that the image (i.e. the subgroup of squares) has order $6 / 2=3$.

