Corrections of exercises 6-9

Exercise 6

a) As U and V are subgroups, they both contain the neutral element e of G, so $e \in U \cap V$. We have to show that if x and y belong to $U \cap V$, then so does xy^{-1} . Since U is a subgroup of G :

$$x \in U \cap V$$
 and $y \in U \cap V \Rightarrow x \in U$ and $y \in U \Rightarrow xy^{-1} \in U$

and similarly, ince V is also a subgroup of G:

$$x \in U \cap V$$
 and $y \in U \cap V \Rightarrow x \in V$ and $y \in V \Rightarrow xy^{-1} \in V$

Thus

$$x \in U \cap V \text{ and } y \in U \cap V \quad \Rightarrow \quad xy^{-1} \in U \text{ and } xy^{-1} \in V \quad \Rightarrow \quad xy^{-1} \in U \cap V$$

b) Let a be an element of $U \cap V$. Then $a \in U$ so the order of a divides the order of U. Similarly, the order of a has to divide the order of V. So the order of a has to be a common divisor of #U and #V, but the only common divisor of those two numbers is supposed to be 1, which implies that the order of a is exactly 1 i.e. a = e. Thus

$$gcd(\#U, \#V) = 1 \Rightarrow U \cap V = \{e\}$$

Exercise 7

- a) Let a_1 be a generator of G_1 and a_2 be a generator of G_2 . We claim that (a_1, a_2) is a generator of $G_1 \times G_2$. As $G_1 \times G_2$ as order $n_1 n_2$, it suffices to show that (a_1, a_2) as order $n_1 n_2$. Suppose that $(a_1, a_2)^k = (e, e)$ for somme positive integer k. Then $(a_1^k, a_2^k) = (e, e)$ thus $a_1^k = e$ and $a_2^k = e$. But a_1 has order n_1 so n_1 divides k, and a_2 has order n_2 so n_2 divides k. Since $gcd(n_1, n_2) = 1$, this implies that $n_1 n_2$ divides k. Thus, the order of (a_1, a_2) is $n_1 n_2$.
- b) $C_2 \times C_2$ has order $2 \times 2 = 4$. If it was cyclic, it would contain an element of order 4. But for any a and b in C_2 ,

$$(a,b)^2 = (a^2,b^2) = (e,e)$$

because C_2 has order 2. Thus, any element of $C_2 \times C_2$ has order at most 2, so there is no element of order 4 in it, which implies that it cannot be cyclic.

Exercise 8 Let a be a generator of G. If $H = \{e\}$, then H is clearly cyclic. If $H \neq \{e\}$, then we can consider the smallest non-zero integer k such that a^k belongs to H. We claim that $H = \langle a^k \rangle$. Indeed, any element b of $H - \{e\}$ can be written has $b = a^i$ or a^{-i} for some positive integer i. Consider the euclidean division of i by k:

$$i = kq + r \quad 0 \leqslant r < k$$

Then

$$a^{r} = a^{i-kq} = a^{i}((a^{k})^{-1})^{q} = b^{\pm 1}((a^{k})^{-1})^{q}$$

Since b and a^k belong to H, so does $a^r = b^{\pm 1}((a^k)^{-1})^q$. Thus $a^r \in H$ and r < k so r has to be zero otherwise it would be contradictory with the minimality assumption on k. This implies that $b = a^{\pm i} = (a^k)^q$ for some $q \in \mathbb{Z}$, which implies that $H \subset a^k >$. The inverse inclusion is obvious, so $\langle a^k \rangle = H$ which proves that H is cyclic, generated by a^k .

Exercise 9

a) Notice that $10^i = 1 \mod 3$. As $a = \sum_{i=0}^n a_i 10^i$ we have

$$a = \sum_{i=0}^{n} a_i \bmod 3$$

Thus

$$3|a \iff a = 0 \mod 3 \iff \sum_{i=0}^{n} a_i = 0 \mod 3 \iff 3|\sum_{i=0}^{n} a_i|$$

b) $10^i = 1 \mod 9$ and $10^i = (-1)^i \mod 11$.