Corrections of exercises 6-9

Exercise 6

a) As U and V are subgroups, they both contain the neutral element e of G, so $e \in U \cap V$. We have to show that if x and y belong to $U \cap V$, then so does $x y^{-1}$. Since U is a subgroup of G :

$$
x \in U \cap V \text { and } y \in U \cap V \quad \Rightarrow \quad x \in U \text { and } y \in U \quad \Rightarrow \quad x y^{-1} \in U
$$

and similarly, ince V is also a subgroup of G :

$$
x \in U \cap V \text { and } y \in U \cap V \quad \Rightarrow \quad x \in V \text { and } y \in V \quad \Rightarrow \quad x y^{-1} \in V
$$

Thus

$$
x \in U \cap V \text { and } y \in U \cap V \quad \Rightarrow \quad x y^{-1} \in U \text { and } x y^{-1} \in V \quad \Rightarrow \quad x y^{-1} \in U \cap V
$$

b) Let a be an element of $U \cap V$. Then $a \in U$ so the order of a divides the order of U. Similarly, the order of a has to divide the order of V. So the order of a has to be a common divisor of $\# U$ and $\# V$, but the only common divisor of those two numbers is supposed to be 1 , which implies that the order of a is exactely 1 i.e. $a=e$. Thus

$$
\operatorname{gcd}(\# U, \# V)=1 \Rightarrow U \cap V=\{e\}
$$

Exercise 7

a) Let a_{1} be a generator of G_{1} and a_{2} be a generator of G_{2}. We claim that (a_{1}, a_{2}) is a generator of $G_{1} \times G_{2}$. As $G_{1} \times G_{2}$ as order $n_{1} n_{2}$, it suffices to show that $\left(a_{1}, a_{2}\right)$ as order $n_{1} n_{2}$. Suppose that $\left(a_{1}, a_{2}\right)^{k}=(e, e)$ for somme positive integer k. Then $\left(a_{1}^{k}, a_{2}^{k}\right)=(e, e)$ thus $a_{1}^{k}=e$ and $a_{2}^{k}=e$. But a_{1} has order n_{1} so n_{1} divides k, and a_{2} has order n_{2} so n_{2} divides k. Since $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, this implies that $n_{1} n_{2}$ divides k. Thus, the order of $\left(a_{1}, a_{2}\right)$ is $n_{1} n_{2}$.
b) $C_{2} \times C_{2}$ has order $2 \times 2=4$. If it was cyclic, it would contain an element of order 4 . But for any a and b in C_{2},

$$
(a, b)^{2}=\left(a^{2}, b^{2}\right)=(e, e)
$$

because C_{2} has order 2. Thus, any element od $C_{2} \times C_{2}$ has order at most 2 , so there is no element of order 4 in it, which implies that it cannot be cyclic.

Exercise 8 Let a be a generator of G. If $H=\{e\}$, then H is clearly cyclic. If $H \neq\{e\}$, then we can consider the smallest non-zero integer k such that a^{k} belongs to H. We claim that $H=<a^{k}>$. Indeed, any element b of $H-\{e\}$ can be written has $b=a^{i}$ or a^{-i} for some positive integer i. Consider the euclidean division of i by k :

$$
i=k q+r \quad 0 \leqslant r<k
$$

Then

$$
a^{r}=a^{i-k q}=a^{i}\left(\left(a^{k}\right)^{-1}\right)^{q}=b^{ \pm 1}\left(\left(a^{k}\right)^{-1}\right)^{q}
$$

Since b and a^{k} belong to H, so does $a^{r}=b^{ \pm 1}\left(\left(a^{k}\right)^{-1}\right)^{q}$. Thus $a^{r} \in H$ and $r<k$ so r has to be zero otherwise it would be contradictory with the minimality assumption on k. This implies that $b=a^{ \pm i}=\left(a^{k}\right)^{q}$ for some $q \in \mathbb{Z}$, which implies that $H \subset<a^{k}>$. The inverse inclusion is obvious, so $<a^{k}>=H$ which proves that H is cyclic, generated by a^{k}.

Exercise 9

a) Notice that $10^{i}=1 \bmod 3$. As $a=\sum_{i=0}^{n} a_{i} 10^{i}$ we have

$$
a=\sum_{i=0}^{n} a_{i} \bmod 3
$$

Thus

$$
3\left|a \quad \Leftrightarrow \quad a=0 \bmod 3 \quad \Leftrightarrow \quad \sum_{i=0}^{n} a_{i}=0 \bmod 3 \quad \Leftrightarrow \quad 3\right| \sum_{i=0}^{n} a_{i}
$$

b) $10^{i}=1 \bmod 9$ and $10^{i}=(-1)^{i} \bmod 11$.

