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Course description

Course name

Differential Geometry

ECTS

5

Teaching units

45 hours, 4 TU on even weeks and 2 on odd weeks

Course type

Interactive lectures and exercise sessions

Prerequisites

None

Learning outcomes

On successful completion of the course, the student should be able to:

(i) Explain the main definitions and results of Differential Geometry

(ii) Comment on new concepts, like the category of smooth manifolds, embedded subman-
ifolds, smooth scalar observables, their derivatives, vector bundles and vector fields,
differential equations on manifolds, tensor fields, Lie derivatives, differential forms,
integral calculus on manifolds...

(iii) Apply the new techniques and solve related problems

(iv) Structure the acquired abilities and summarize essential aspects adopting a higher
standpoint

(v) Give a talk for peers or students on a related topic and write scientific texts or lecture
notes, observing modern standards in scientific writing, in Didactics and in Pedagogy
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(vi) Provide evidence for mastery of the Mathematical Method

Objective

The objective is to provide students with the opportunity to become familiar with a very
active area of mathematics that has wide application throughout science. Beyond this goal,
special emphasis is placed on the mathematical method, i.e., the optimal technique for
learning and applying mathematics, especially with regard to solving real-life problems us-
ing mathematical tools. This method is actually the most important goal of any course in
mathematics.

Description

Differential Geometry has applications in numerous areas of science, including Einstein’s
general relativity, string theory, black holes and galaxy clusters, probability, engineering,
economics, modeling and design, wireless communications and image processing, biology,
chemistry, geology... The main concept of Differential Geometry is differential and in par-
ticular smooth manifolds – roughly, higher-dimensional analogs of curves and surfaces. In
general relativity, for example, the Universe is often modeled as a four-dimensional smooth
manifold equipped with a specific metric. To be able to work scientifically in these new
spaces, a generalization of fundamental chapters of mathematical analysis, such as differ-
ential calculus and integration theory, is required.

Audience

A special emphasis of this geometry course is on communication skills and the math-
ematical method. Therefore, the course is enriching for students of the Master’s Degree
in Secondary Education in Mathematics as well as for students of the Master’s Degree in
Mathematics.

Evaluation

Oral exam

Warning

The script is aimed at students who have attended the oral lectures. The notes are in
standard mathematical text form and only partially take into account the pedagogical ap-
proach of the lectures.



Chapter 1
Nonlinear Analysis

The trilogy of theorems we discuss in this chapter will be used throughout the course
and in particular in the sections on embedded submanifolds of Cartesian space.

1 Preliminaries

1.1 Taylor’s theorem

Let us first fix the notations. If f ∈ Ck(Ω), k ≥ 1, Ω ⊂ Rp open, and if α = (α1, . . . , αp) ∈ Np

is a multi-index of order |α| := α1 + . . .+ αp ≤ k, we set

∂αx f := ∂α1

x1 . . . ∂
αp

xp f

and
α! := α1! · . . . · αp! .

Similarly, if h ∈ Rp, we write
hα := (h1)α1 · . . . · (hp)αp .

Taylor’s theorem can now be formulated as follows:

Theorem 1 (Taylor’s theorem). If f ∈ Ck(Ω,R), k ≥ 1, Ω ⊂ Rp open, and if, for a given x ∈ Ω

and a given h ∈ Rp, the segment {x + th : t ∈ [0, 1]} is included in Ω, then there exists an
intermediate point x+ θh, θ ∈]0, 1[, between x and x+ h, such that

f(x+ h) =
∑
|α|<k

1

α!
(∂αx f)(x)h

α +
∑
|α|=k

1

α!
(∂αx f)(x+ θh)hα .

Observe that, in the case p = 1, we recover the well-known formula

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + . . .+

1

(k − 1)!
f (k−1)(x)hk−1 +

1

k!
f (k)(x+ θh)hk .

1
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1.2 The Cauchy-Schwarz inequality

We also recall the Cauchy-Schwarz inequality. If x, x′ ∈ Rp, then

|⟨x, x′⟩| ≤ |x| · |x′| , (1)

where ⟨x, y⟩ denotes the standard scalar product in Rp and |x|, |x′| the corresponding norm
(of course |⟨x, x′⟩| denotes the absolute value (standard norm in R) of the scalar product).

1.3 Vector-valued functions of several variables

A function f : Ω ⊂ Rp → Rq from an open subset Ω of Rp to Rq is of class Ck, k ≥ 0,
(resp., of class C∞ – we also say smooth) if and only if its canonical coordinate functions
f i : Ω ⊂ Rp → R, i ∈ {1, . . . , q}, are all of class Ck (resp., smooth) in Ω. The derivative of
f ∈ C1(Ω,Rq) at x0 ∈ Ω is the linear map

f ′(x0) =
((
∂xjf i

)
(x0)

)
ij
: Rp → Rq. (2)

A function f : Ω1 ⊂ Rp → Ω2 ⊂ Rp is a diffeomorphism of class Ck, k ≥ 1 – we also say
a coordinate transformation of class Ck – if f : Ω1 → Ω2 is a bijection, f ∈ Ck(Ω1,Rq), and
f−1 ∈ Ck(Ω2,Rp).

2 Banach fixed point theorem

Let f : S → S be a map from a set S to itself. A fixed point of f is an element s ∈ S such
that f(s) = s. A fixed point theorem provides conditions under which f has at least one or a
unique fixed point.

In the Banach fixed point theorem, S is a complete metric space. A metric space is a set S
endowed with a metric or distance d, i.e. a map d : S × S → R+, such that, for any s, t, u ∈ S,

1. d(s, t) = 0 if and only if s = t,

2. d(s, t) = d(t, s), and

3. d(s, u) ≤ d(s, t) + d(t, u).

In a metric space S, we can define the concept of limit of a sequence of points. A sequence
sn ∈ S converges to s ∈ S if the sequence d(sn, s) of real numbers converges to 0, when
n → +∞. If it exists, the limit of a sequence sn is unique. Indeed, if s, t are two limits, it
follows from the properties of d that

d(s, t) ≤ d(sn, s) + d(sn, t)→ 0
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so that s = t.

A sequence sn of a metric space S is a Cauchy sequence if d(sp, sq) → 0, when inf(p, q) →
+∞. Of course, any converging sequence sn → s is a Cauchy sequence, since

d(sp, sq) ≤ d(sp, s) + d(sq, s)→ 0 ,

when inf(p, q)→ +∞. A metric space is called complete, if the converse holds true, i.e. if any
Cauchy sequence converges.

Theorem 2. In a complete metric space S (with metric d), any contraction – i.e. any map
f : S → S for which there exists θ ∈ [0, 1[ such that, for any s, t ∈ S,

d(f(s), f(t)) ≤ θ d(s, t) –

has a unique fixed point s. Moreover, s can be found as follows: start with an arbitrary element
s0 ∈ S and define a sequence sn = f(sn−1), n ≥ 1; this sequence converges to the fixed point s.

Proof. We first prove uniqueness. Let s, t be two fixed points. Then

d(s, t) = d(f(s), f(t)) ≤ θ d(s, t) ,

so that (1− θ)d(s, t) = 0 and s = t.

As for existence, we will prove that the sequence constructed in the statement of the
theorem is a Cauchy sequence and that its limit is a fixed point.

For that purpose let us first recall the following result regarding the geometric series:
+∞∑
n=1

θn =
θ

1− θ
,

if |θ| < 1; it follows that the sequence of partial sums is a Cauchy sequence.
Note now that

d(sn+1, sn) = d(f(sn), f(sn−1)) ≤ θ d(sn, sn−1) ≤ . . . ≤ θnd(s1, s0) .

Hence, for p ≤ q,
d(sp, sq) ≤ d(sp, sp+1) + d(sp+1, sp+2) + . . .+ d(sq−1, sq)

≤ (θp + θp+1 + . . .+ θq−1)d(s1, s0)→ 0 ,

when inf(p, q)→ +∞, so that the sequence sn is Cauchy and converges to a limit s.
To see that this limit s is a fixed point, observe first that f is continuous. Indeed, if x→ x0

in S, then
d(f(x), f(x0)) ≤ θ d(x, x0)→ 0 .

Therefore,
s← sn = f(sn−1)→ f(s) ,

so that f(s) = s, in view of the uniqueness of a limit.
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3 Implicit function theorem

3.1 Statement and proof

Example 1. Let f(x, y) = y − sin y − x. It is not possible to solve the equation f(x, y) = 0

explicitly with respect to y, i.e. to compute a solution of the type y = g(x). However, it can
easily be seen that, for any x ∈ R, the function f(x,−) is continuous and strictly increasing,
and more precisely that it is a bijection f(x,−) : R → R. This means that the equation
f(x, y) = 0 has, for any x ∈ R, a unique solution y = g(x), which, since it is not known
explicitly, is called the implicit function defined by the equation f(x, y) = 0.

More generally, let Ω1 ⊂ Rp and Ω2 ⊂ Rq be two open subsets, and let f : Ω1 × Ω2 → Rq be
a function. The objective of the implicit function theorem is to solve the equation f(x, y) = 0

implicitly in the form y = g(x), and to study the differentiability of g for a given differentiability
of f . Note that f(x, y) = 0 contains q scalar equations and that y contains q scalar unknown
variables, so that the stated problem actually makes sense.

Theorem 3 (Implicit function theorem). If

f : Ω1 × Ω2 ⊂ Rp × Rq → Rq

is of class Ck, k ≥ 1, and if, for some (x0, y0) ∈ Ω1 × Ω2, the derivative (∂yf)(x0, y0) (which is a
q × q matrix with entries in R) is invertible, then the equation

f(x, y) = f(x0, y0)

can be solved implicitly with respect to y in a neighborhood of (x0, y0).
More precisely, there exist open neighborhoods ω1 ∋ x0 in Ω1 and ω2 ∋ y0 in Ω2, as well as

a function g : ω1 → ω2 of class Ck, such that

x ∈ ω1, y ∈ ω2, f(x, y) = f(x0, y0)⇔ x ∈ ω1, y = g(x) .

Eventually, the derivative of the implicit function g : ω1 ⊂ Rp → ω2 ⊂ Rq can be obtained from
the derivatives of the given function

f : Ω1 × Ω2 ⊂ Rp × Rq → Rq :

for any x ∈ ω1, we have

∂xg = − (∂yf)
−1(x, g(x)) (∂xf)(x, g(x)) . (3)

Proof. Let us first observe that we can, without loss of generality, assume that (x0, y0) = (0, 0)

and that f(x0, y0) = f(0, 0) = 0. Indeed, otherwise we use the coordinate transformation
x = x0 +X, y = y0 + Y , so that f(x, y) = f(x0, y0) reads

F (X,Y ) := f(x0 +X, y0 + Y )− f(x0, y0) = 0 .
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(It is easily checked that the new function F (X,Y ) verifies the conditions of the theorem for
Ω1 × Ω2 replaced by (Ω1 − x0)× (Ω2 − y0) and for (x0, y0) replaced by (0, 0).)

The basic idea of the proof is to introduce an auxiliary function that will allow to reduce
the problem to an application of Banach’s fixed point theorem. Indeed, if we consider the
auxiliary function

ϕ(x, y) = y − (∂yf)
−1(0, 0)f(x, y) ∈ Ck(Ω1 × Ω2,Rq) , (4)

we have
f(x, y) = 0⇔ ϕ(x, y) = y ,

so that instead of looking for the solutions of f(x, y) = 0, we now look for the fixed points of
the parametric function ϕ(x,−).

The main condition in the Banach fixed point theorem is the requirement that ϕ(x,−) be
a contraction, i.e. that

|ϕ(x, y)− ϕ(x, y′)| ≤ θ |y − y′| ,

with θ ∈ [0, 1[ (although the appropriate complete metric space will be found not until later,
it is already clear from the context that the good notion of distance is the standard metric
of Rq).

We now prove this inequality. Since y0 = 0 ∈ Ω2 ⊂ Rq, there exists an open ball b(0, η) :=
{y ∈ Rq : |y| < η} centered at 0, η > 0, such that b(0, η) ⊂ Ω2. For any x ∈ Ω1 and any
y, y′ ∈ b(0, η), we then have, in view of Taylor’s theorem applied at order k = 1,

ϕi(x, y′)− ϕi(x, y) =
q∑

k=1

(∂ykϕi)(x, z)(y′k − yk) ,

where z is intermediate between y and y′, so that |z| < η (we omit the dependence of z on i

and x). It now follows from the Cauchy-Schwarz inequality (1) that

|ϕi(x, y′)− ϕi(x, y)| = |
q∑

k=1

(∂ykϕi)(x, z)(y′k − yk)|

≤
√∑

k

(
(∂ykϕi)(x, z)

)2 |y′ − y| ≤ sup|z|≤η

√∑
k

(
(∂ykϕi)(x, z)

)2 |y′ − y| ,
as any R-valued function that is continuous on a compact subset of Rq is bounded on this
subset. When passing to the squares, we get

|ϕi(x, y′)− ϕi(x, y)|2 ≤

(
sup|z|≤η

∑
k

(
(∂ykϕi)(x, z)

)2) |y′ − y|2
≤

(
sup|z|≤η

∑
ik

(
(∂ykϕi)(x, z)

)2) |y′ − y|2 ,
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since the square of the supremum is the supremum of the squares (the same holds true for
the square root). Sum now over i,

q∑
i=1

|ϕi(x, y′)− ϕi(x, y)|2 ≤ q

(
sup|z|≤η

∑
ik

(
(∂ykϕi)(x, z)

)2) |y′ − y|2 ,
and pass to the square root,

|ϕ(x, y′)− ϕ(x, y)| ≤ √q

sup|z|≤η

√∑
ik

(
(∂ykϕi)(x, z)

)2 |y′ − y|
=
√
q
(
sup|z|≤η ||∂zϕ(x, z)||

)
|y′ − y| ,

if x ∈ Ω1 and |y|, |y′| ≤ η (possibly modulo replacement of η by a smaller η).
Observe now that it follows from Definition (4) that

(∂zϕ)(0, 0) = id−(∂zf)−1(0, 0) (∂zf)(0, 0) = 0 .

Hence, ||∂zϕ(x, z)|| is a positive continuous function in Ω1 ×Ω2, which vanishes at (0, 0): in a
sufficiently small neighborhood

{x ∈ Ω1 : |x| ≤ η} × {z ∈ Ω2 : |z| ≤ η}

of (0, 0) this function is smaller than any strictly positive constant, in particular smaller
than 1

2
√
q > 0 (if the radius η that appears here and the radius η that appeared above are not

equal, we replace both by their infimum). It follows that

|ϕ(x, y′)− ϕ(x, y)| ≤ √q
(
sup|z|≤η ||∂zϕ(x, z)||

)
|y′ − y| ≤ 1

2
|y′ − y| , (5)

if |x|, |y|, |y′| ≤ η.

The latter result means that, for any x such that |x| ≤ η, the map ϕ(x,−) is a contraction,
but we still have to check that ϕ(x,−) maps b := {y ∈ Rq : |y| ≤ η} to itself, and that b is a
complete metric space. The last requirement is satisfied, since any compact metric space is
complete. As for the first, observe that, for any (x, y) ∈ Ω1 × Ω2, we have

|ϕ(x, y)| ≤ |ϕ(x, y)− ϕ(x, 0)|+ |ϕ(x, 0)| . (6)

In view of the contraction property,

|ϕ(x, y)− ϕ(x, 0)| ≤ 1

2
|y| ≤ 1

2
η , (7)

if |x|, |y| ≤ η. Further, as ϕ(x, 0) is continuous at 0 and ϕ(0, 0) = 0, we have

|ϕ(x, 0)| ≤ 1

2
η , (8)
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provided |x| is small enough, say |x| ≤ η′ ≤ η. It follows from (6), (7), and (8) that

|ϕ(x, y)| ≤ η , if |x| ≤ η′, |y| ≤ η . (9)

Finally, if we set b := {x ∈ Rp : |x| ≤ η′}, the map ϕ(x,−) is, in view of (5) and (9), for any x ∈ b,

a contraction
ϕ(x,−) : b→ b

from the complete metric space b = {y ∈ Rq : |y| ≤ η} into itself.

It now follows from Banach’s fixed point theorem that, for any x ∈ b, ϕ(x,−) has a unique
fixed point in b. When denoting this point by g(x), we get a map g : b → b. A refinement of
the fixed point theorem – that we omit here for simplicity – shows that this map g is actually
continuous. Hence, we get

x ∈ b, y ∈ b, f(x, y) = 0⇔ x ∈ b, y ∈ b, ϕ(x, y) = y ⇔ x ∈ b, y = g(x) .

It suffices now to consider the open neighborhood ω1 := g−1b ⊂ b (resp., ω2 := b) of 0 ∈ Rp

(resp., 0 ∈ Rq). Indeed, it is easily seen that

x ∈ ω1, y ∈ ω2, f(x, y) = 0⇔ x ∈ ω1, y = g(x) .

This completes the proof of the implicit function theorem, except that we have still to show
that g : ω1 → ω2 is of the same class Ck as f , and that we must explain the derivation formula
for implicit functions. We will not give the proof regarding the differentiability of g. As for the
derivative of g, remark that f(x, g(x)) = 0, for all x ∈ ω1. It then follows from the derivation
theorem for composite functions that, in ω1,

(∂xf)(x, g(x)) + (∂yf)(x, g(x)) ∂xg = 0 .

Since ∂yf is invertible at (0, 0), i.e. since the continuous function det(∂yf) does not vanish
at (0, 0), this determinant remains nonzero in ω1 × g(ω1) (possibly modulo replacement of ω1

by a smaller ω1 – note that g(0) = 0 and that g is continuous). Therefore, for any x ∈ ω1,

∂xg = − (∂yf)
−1(x, g(x)) (∂xf)(x, g(x)) .

There exist refinements of the implicit function theorem that we do not mention in these
lecture notes.

3.2 Application

It can be shown that the integration of the differential equation

x(cos
y

x
)y′ = y(cos

y

x
)− x , (10)
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can be reduced to the integration of the equation

x− Ce− sin y
x = 0 , (11)

where C is an arbitrary nonzero constant.

We first study Equation (11) using the implicit function theorem (ImFT). Set

f(x, y) = x− Ce− sin y
x .

For any C ∈ R× := R \ {0}, we have f ∈ C∞(R× × R). Further, for any (x, y) ∈ R× × R,

f ′x(x, y) = 1− Ce− sin y
x (cos

y

x
)
y

x2

and
f ′y(x, y) = Ce− sin y

x (cos
y

x
)
1

x
.

The ImFT allows to solve, implicitly and locally, the equation f(x, y) = f(x0, y0), hence, the
equation (11), i.e. f(x, y) = 0, if we find a point (x0, y0) ∈ R× × R such that f(x0, y0) = 0, i.e.
if we find a specific solution of Equation (11) (and if, in addition, the conditions of the ImFT
are satisfied). The specific solution (C, 0) ∈ R× × R is readily guessed. Since f ′y(C, 0) = 1 ̸= 0

the ImFT applies: there is a neighborhood ω1 ∋ C, a neighborhood ω2 ∋ 0, and an implicit
function g ∈ C∞(ω1) such that, for any x ∈ ω1,

f(x, g(x)) = 0, i.e, x− Ce− sin
g(x)
x = 0 . (12)

We now show that, in conformance with our above remark, g(x) is in ω1 also a solution
of Equation (10). Observe first that, for all x ∈ ω1,

g′(x) = −
1− Ce− sin

g(x)
x (cos g(x)

x ) g(x)x2

Ce− sin
g(x)
x (cos g(x)

x ) 1x

= −
1− (cos g(x)

x ) g(x)x

cos g(x)
x

,

in view of the ImFT and Equation (12). Hence, g(x) is actually a solution of (10) in ω1 ∋ C. It
follows that Equation (10) admits a solution in a neighborhood of any nonzero real number
C.

3.3 Exercises

1. The integration of the differential equation

xy′(2y − x) = y2 (13)

can be reduced to the integration of the equation

y2 − xy − Cx = 0 , (14)
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where C denotes an arbitrary real constant.

a. Prove that, for C ̸= 0, Equation (14) defines an implicit function g1 (resp., g2) from a
neighborhood of C into a neighborhood of 1+

√
5

2 C (resp., 1−
√
5

2 C), and show that g1 (resp., g2)
is a solution of Equation (13) in a neighborhood of C.

b. Solve Equation (14) explicitly with respect to y (what is possible in the present exam-
ple) and verify that Equation (13) actually admits two solutions in the neighborhood of any
nonzero C.

2. The integration of the differential equation

xyy′ = x2 + y2 (15)

can be reduced to the integration of the equation

y2 − 2x2 ln | x
C
| = 0 , (16)

where C is an arbitrary strictly positive constant.

a. Prove that Equation (16) defines an implicit function g1 (resp., g2) from a neighborhood
of eC into a neighborhood of eC

√
2 (resp., −eC

√
2), and show that g1 (resp., g2) is a solution

of Equation (15) in a neighborhood of eC.

b. Solve Equation (16) explicitly with respect to y (what is possible in the present example)
and verify that Equation (15) actually admits two solutions in the neighborhood of eC.

4 Inverse function theorem

4.1 Statement and proof

The next proposition is well-known:

Proposition 1. If f : Ω1 ⊂ Rp → Ω2 ⊂ Rq, where Ω1 and Ω2 are open in Rp and Rq respectively,
is a diffeomorphism of class C1, then, for any x0 ∈ Ω1, the derivative f ′(x0) : Rp → Rq is a
vector space isomorphism, p = q, and

(f−1)′(f(x0)) = (f ′(x0))
−1.

Proof. Indeed, as f ◦ f−1 = idΩ2 and f−1 ◦ f = idΩ1 , we have

f ′(x0) ◦ (f−1)′(f(x0)) = idRq and (f−1)′(f(x0)) ◦ f ′(x0) = idRp .

Conversely,
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Theorem 4 (Inverse function theorem). If f : Ω ⊂ Rp → Rq is of class Ck, k ≥ 1, and if
f ′(x0), x0 ∈ Ω, is a vector space isomorphism, then p = q, and there is an open subset ω ∋ x0
and an open subset ω′ ∋ f(x0), such that f : ω → ω′ is a diffeomorphism of class Ck. Moreover,
for any y ∈ ω′,

(f−1)′(y) = (f ′(x))−1 , (17)

where x is of course the point x = f−1(y) that corresponds to y.

Remark that it thus follows from the invertibility (nonsingularity) of the derivative f ′(x0) =
(∂xf)(x0) of f at a point x0, that the original function f is locally a diffeomorphism. This is
actually the best possible result, since it is clear that the derivative of a function at a point
encodes information about the behavior of the original function only in the neighborhood of
the considered point.

Proof. The main challenge in the proof of the inverse function theorem (InFT) is actually to
show that f is locally invertible, i.e. that the equation y = f(x) can locally be solved with
respect to x. It thus suffices to apply the ImFT to

ϕ(x, y) = y − f(x) : Ω× Rp → Rp ,

but be aware of the fact that, as we solve with respect to x, the roles of x and y are exchanged
in comparison with previous applications of the ImFT.

Set y0 := f(x0), and note that ϕ ∈ Ck(Ω× Rp,Rp), that

(∂xϕ)(x0, y0) = −(∂xf)(x0) = −f ′(x0)

is invertible, and that ϕ(x0, y0) = 0, so that the ImFT solves the equation ϕ(x, y) = 0, i.e. y =

f(x), with respect to x: there exists an open neighborhood ω1 ∋ x0 in Ω, an open neighborhood
ω2 ∋ f(x0) in Rp, as well as a function g ∈ Ck(ω2, ω1) such that

x ∈ ω1, y ∈ ω2, y = f(x)⇔ y ∈ ω2, x = g(y) ,

or, equivalently,
x ∈ ω1, f(x) ∈ ω2, y = f(x)⇔ y ∈ ω2, x = g(y) ,

or, as well,
x ∈ ω1 ∩ f−1(ω2), y = f(x)⇔ y ∈ ω2, x = g(y) .

Since f is in particular continuous, the intersection ω1 ∩ f−1(ω2) is open in Ω, and the
preceding conclusion, together with the facts that f and g are of class Ck, thus means that
f is a diffeomorphism of class Ck from the open neighborhood ω := ω1 ∩ f−1(ω2) of x0 onto
the open neighborhood ω′ := ω2 of f(x0). As for Formula (17), it suffices to differentiate the
equality f(g(y)) = y, y ∈ ω′. Indeed, we then get

f ′(g(y)) ◦ g′(y) = idRp ,
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so that, since g = f−1, we obtain

(f−1)′(y) = (f ′(f−1(y)))−1 ,

for any y ∈ ω′.

4.2 Exercise

Prove that if f : Ω ⊂ Rp → Rp is of class C1 and f ′(x) is, for any x ∈ Ω, a vector space
isomorphism (i.e. is bijective / invertible / nonsingular – since f ′(x) is a linear map by
definition), then f is an open map, i.e. a map that sends open subsets of Ω to open subsets
of Rp.

Hint: To show that f(O), O open in Ω, is open in Rp, it suffices to prove that, for any
y0 ∈ f(O), there is an open neighborhood of y0 that is contained in f(O). To see this, it
suffices to apply the InFT to a preimage x0 of y0 and to f restricted to O.

5 Constant rank theorem

5.1 Subimmersions, immersions, submersions

We need some prerequisites.

Definition 1. Let f : Ω ⊂ Rp → Rq be of class C1. For any x0 ∈ Ω, the rank ρx0
f of f at x0 is

the rank ρ(f ′(x0)) of the linear map or matrix f ′(x0).

A well-known result of Linear Algebra states that, for any linear map ℓ ∈ HomF(V, V
′)

between two vector spaces V and V ′ over a field F, we have

ρ ℓ := dim im ℓ = dimV − dimker ℓ, (18)

where notation is self-explaining.

Exercise. Prove that if ℓ ∈ HomF(V, V
′) and ℓ′ ∈ HomF(V

′, V ′′), then

ρ(ℓ′ ◦ ℓ) ≤ inf(ρℓ, ρ ℓ′) .

Apply this result and show that the rank is invariant under diffeomorphisms, i.e. if Ω1, Ω2

(resp., Ω3, Ω4) are open in Rp (resp., Rq), if ϕ : Ω1 → Ω2 and ϕ′ : Ω3 → Ω4 are diffeomorphisms
of class C1, and if f : Ω2 → Ω3 is of class C1, then for any x ∈ Ω1,

ρx(ϕ
′ ◦ f ◦ ϕ) = ρϕ(x)f. (19)
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Definition 2. Let f : Ω ⊂ Rp → Rq be of class C1. Then f is an immersion (resp., a submersion)
at a point x0 ∈ Ω, if its derivative f ′(x0) at x0 is injective (resp., surjective), i.e. if ρx0f coincides
with the dimension of the source space (so that p ≤ q) (resp., the dimension of the target
space (so that q ≤ p)). Further we say that f is an immersion (resp., a submersion), if it is an
immersion (resp., a submersion) at any point x0 ∈ Ω.

Exercise. Prove that
f : R× × R ∋ (ρ, θ) 7→ (ρ cos θ, ρ sin θ) ∈ R2

is an immersion and a submersion. Conclude that f is locally a diffeomorphism (recall also
the open subsets of R2 between which the transition f from polar to cartesian coordinates
is usually considered).

Remark that, the rank is lower semi-continuous, i.e. that, in a neighborhood of any
point, it cannot decrease. It follows that the rank of an immersion or a submersion at x0 is
locally constant at x0, i.e. constant in a neighborhood of x0.

Definition 3. A map f : Ω ⊂ Rp → Rq of class C1 is a subimmersion at a point x0 ∈ Ω (resp.,
subimmersion), if its rank is locally constant at x0 (resp., locally constant).

Thus, immersions and submersions are special subimmersions.

5.2 Statement and proof

We are now prepared to state the constant rank theorem. It claims that any subimmer-
sion f , i.e. any function of locally constant rank ρ, has locally, up to diffeomorphisms of the
source and the target, the very simple canonical form

f(x1, . . . , xp) = (x1, . . . , xρ, 0, . . . , 0) .

Theorem 5. Let f : Ω ⊂ Rp → Rq be a subimmersion of class Ck, k ≥ 1, at x0 ∈ Ω. Then, there
are open subsets

U ∋ x0, U ′ ⊃ f(U) ∋ f(x0), ω ⊂ Rp, ω′ ⊂ Rq ,

and diffeomorphisms ϕ : U → ω and ϕ′ : U ′ → ω′ of class Ck, such that, for all x := (x1, . . . , xp) ∈
ω, (

ϕ′ ◦ f ◦ ϕ−1
)
(x1, . . . , xp) = (x1, . . . , xρ, 0, . . . , 0), (20)

where ρ = ρx0f . Further,(
ϕ′ ◦ f ◦ ϕ−1

)
(ω) = {y ∈ ω′ : yρ+1 = . . . = yq = 0}. (21)
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Observe that the requirement that f must be a subimmersion at x0 is necessary in view
of the diffeomorphism invariance of the rank.

Let us also mention that if the subimmersion f is an immersion (resp., a submersion) at
x0, the rank ρx0

f coincides with the dimension of the source space, what entails that p ≤ q

(resp., target space, what entails that q ≤ p), and the source (resp., target) diffeomorphism
can be suppressed. Hence, the local canonical form of an immersion is

(ϕ′ ◦ f) (x1, . . . , xp) = (x1, . . . , xp, 0, . . . , 0) ∈ Rq, (22)

and the local canonical form of a submersion is(
f ◦ ϕ−1

)
(x1, . . . , xp) = (x1, . . . , xq) ∈ Rq. (23)

Observe that in Equation (22) (resp., Equation (23)), the function “f ” is linear and injective
(resp., linear and surjective). As f ′(x0) is also a linear injection (resp., a linear surjection),
these results show that, up to a diffeomorphism, the behavior of f in the neighborhood of
x0 is the same as that of its derivative f ′(x0) at x0.

Proof. Since ρx0f = ρ((∂xf)(x0)) = ρ, the Jacobian matrix (∂xf)(x0) contains a nonvanishing
subdeterminant of dimension ρ × ρ. We can assume without loss of generality that this
subdeterminant occupies the left top corner (otherwise it suffices to exchange the variables).
It is therefore natural to introduce the following notation:

Rp ∋ x = (x′, x′′) ∈ Rρ × Rp−ρ, Rq ∋ y = (y′, y′′) ∈ Rρ × Rq−ρ, and

Rq ∋ f(x) = (f ′(x′, x′′), f ′′(x′, x′′)) ∈ Rρ × Rq−ρ .

Now
det((∂x′f ′)(x0)) ̸= 0

(let us emphasize that here f ′ is not the derivative of f ).
Set now

ϕ(x′, x′′) = (f ′(x′, x′′), x′′) . (24)

The function ϕ is actually a diffeomorphism of class Ck from an open neighborhood U of x0
to an open neighborhood ω of ϕ(x0). In view of the inverse function theorem, it suffices to
check that (∂xϕ)(x0) is nonsingular. This requirement is obviously satisfied, since

(∂xϕ)(x0) =

(
(∂x′f ′)(x0) (∂x′′f ′)(x0)

0 id

)
.

We now have
(f ◦ ϕ−1)(f ′(x′, x′′), x′′) = (f ′(x′, x′′), f ′′(x′, x′′)) ,
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so that, when denoting the new coordinates (f ′(x′, x′′), x′′) by (u′, u′′), we get, for any u =

(u′, u′′) ∈ ω,
(f ◦ ϕ−1)(u′, u′′) = (u′, g(u′, u′′)) , (25)

where
g(u′, u′′) = f ′′(ϕ−1(u′, u′′)) ∈ Rq−ρ .

We have still to use the assumption that ρxf = ρ, for any x ∈ U (modulo a possible
replacement of U by a smaller U ). Since the rank is invariant under diffeomorphism, we
have as well

ρ = ρ(u′,u′′)(f ◦ ϕ−1) = ρ(∂(u′,u′′)(f ◦ ϕ−1)) = ρ

(
idρ×ρ 0

∂u′g ∂u′′g

)
,

for any (u′, u′′) ∈ ω. It follows that ∂u′′g = 0, for all u = (u′, u′′) ∈ ω. Indeed, if at some u ∈ ω,
one of the entries of ∂u′′g, say ∂u′′jgi, does not vanish, then the subdeterminant(

idρ×ρ 0

∗ ∂u′′jgi

)

of dimension (ρ+1)×(ρ+1) is nonzero. Since this is a contradiction, ∂u′′g = 0 at all the points
u ∈ ω. It follows that g is independent of u′′. Here we actually apply the well-known result
stating that, if all the derivatives ∂xif , i ∈ {1, . . . , p}, of a differentiable function f vanish in a
connected open subset O ⊂ Rp, then this function f is constant in O. To exclude all problems
related to connectedness, we observe that ω ∋ ϕ(x0) contains a neighborhood of ϕ(x0) of the
type ω′ × ω′′, ω′ ⊂ Rρ, ω′′ ⊂ Rp−ρ connected, and we replace ω by the smaller ω := ω′ × ω′′ and
U by the smaller U := ϕ−1(ω′ × ω′′). Now, for any fixed u′ ∈ ω′, all the derivatives ∂u′′jgi of gi

vanish in the connected ω′′, so that gi is constant in ω′′; eventually g is independent of u′′ in
ω = ω′ × ω′′, i.e. g = g(u′), u′ ∈ ω′ ⊂ Rρ.

Set now
ψ(y′, y′′) = (y′, y′′ − g(y′)) . (26)

Observe that ψ ∈ Ck(ω′×Rq−ρ,Rq) and that ∂yψ is nonsingular at any y = (y′, y′′) ∈ ω′×Rq−ρ.
Since ψ is thus an open map, it is obvious that ψ is a diffeomorphism of class Ck from
ω′×Rq−ρ onto ψ(ω′×Rq−ρ) (its inverse is given by ψ−1(v′, v′′) = (v′, v′′+g(v′))). It finally follows
from (25) that, for any u ∈ ω = ω′ × ω′′,

(ψ ◦ f ◦ ϕ−1)(u′, u′′) = (u′, 0) . (27)

This completes the proof of the first part of the constant rank theorem. As for the second
part, the inclusion ⊂ is obvious. To find the inclusion ⊃ it suffices to chase through the
main equations of the proof (and to note that in the proof notation is different from that in
the statement of the theorem).
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The proof of the fact that, in case f is an immersion (resp., a submersion), the source
(resp., target) diffeomorphism can be avoided (see remark below the constant rank theorem),
is not instructive and will not be given here.





Chapter 2
Topological spaces

We assume that the reader is already familiar with topological spaces. Since manifolds
are specific topological spaces, the most important definitions are recalled below, also to
ensure independent readability of the present text.

1 Sets
In the following, we need some set theoretical concepts.

The basic operations on sets, the union and the intersection, can be extended in an
obvious way to families (Si)i of subsets of a given set S. These generalizations have sim-
ilar properties than the underlying usual operations. For instance, the union (resp. the
intersection) is distributive with respect to the intersection (resp. the union), and the com-
plement of a union (resp. an intersection) coincides with the intersection (resp. the union)
of the complements. Nevertheless the empty family of subsets of S deserves some attention,
as the union (resp. the intersection) of the empty family (Si)i∈∅ is the empty subset (resp.
the total set S).

Further, the properties of images and preimages also apply to these extensions. Let us
recall that if f denotes a map f : S → S′ from a set S to a set S′, and if X,X ′ ⊂ S and
Y, Y ′ ⊂ S′, we have

f−1(Y ∪ Y ′) = f−1(Y ) ∪ f−1(Y ′), f−1(Y ∩ Y ′) = f−1(Y ) ∩ f−1(Y ′), f−1(S′ \ Y ) = S \ f−1(Y ) (1)

and

f(X ∪X ′) = f(X) ∪ f(X ′), f(X ∩X ′) ⊂ f(X) ∩ f(X ′), f(S \X) ⊃ f(S) \ f(X). (2)

Moreover,
f−1(f(X)) ⊃ X and f(f−1(Y )) ⊂ Y. (3)

Of course, if f is a bijection, we get

f(X ∩X ′) = f(X) ∩ f(X ′) and f(S \X) = S′ \ f(X),

since (f−1)−1 = f, as well as

f−1(f(X)) = X and f(f−1(Y )) = Y .

17
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2 Exercise
Prove the preceding results.

3 Topological Spaces
Often problems and their solutions do not depend on the exact shape of an involved ob-

ject, but on the way the object is composed, that is, on its topological structure. For example,
the square and the circle have the same topological structure, while a circle and a line have
a different topological structure. Similarly, a strip whose ends have been glued together
and the Möbius strip where the ends have been glued together only after half a turn are
not topologically equivalent. Intuitively, two “spaces” have the same topological structure or
are topologically equivalent if one can be deformed into the other without cutting or gluing.
Therefore, even a coffee mug and a donut are equivalent from the point of view of topology,
since a sufficiently flexible donut can be reshaped into a coffee mug by forming a handle
from one of its halves and a cylinder from the other, and then making an indentation in the
cylinder.

The mathematical concept that best abstracts the idea of a reversible deformation that
does not involve cutting or gluing is – as is easy to understand – a continuous bijective map-
ping whose inverse is also continuous. Such a mapping is called a homeomorphism. Since
the natural generalization of the ordinary idea of a continuous function is the requirement
that the preimage of an open subset is also open, we must first define open subsets. In the
Cartesian space Rn, the standard definition is that a subset Ω ⊂ Rn is open if every point
x ∈ Ω is the center of a sphere that is contained in Ω. These subsets of Rn have basic prop-
erties: every union (resp. every finite intersection) of open subsets is again an open subset.
These minimal requirements lead to the definition of open subsets or – better – a topology
in more abstract spaces than Rn.

Definition 1. A topological space is a set X together with a collection T of subsets of X that
satisfies the following axioms:

• (O1) The total set X is an element of T .

• (O2) The union of every collection of sets in T is also in T .

• (O3) The intersection of two sets in T is in T .

The collection T is called a topology on X and the elements of X are called points. The sets in T

are referred to as open sets and their complements in X are the closed sets. Let us mention that
the union of the empty collection is the empty set and the intersection of the empty collection
is X.

Remarks.

• Axioms (O1) and (O3) can be replaced by a unique axiom, say (O′
1), which asks that

every finite intersection of elements of T be again an element of T .

• There is a dual definition of a topological space based upon the fundamental properties
of closed subsets.
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• In the following a topological space will be denoted by (X,T ) or simply by X, if no
confusion regarding the considered topology is possible.

Examples.

• The discrete topology of a set X is the topology in which every subset of X is open.

• The trivial topology of X is the topology in which only the empty set and the whole
space X are open.

• The standard topology of R is made of the unions of the bounded open intervals. If
the unions of the subsets of a collection satisfy the defining axioms (O1) − (O3) of a
topology, we call these subsets, a basis of the topology.

• Every metric space can be given the metric topology, in which the basic open sets are
the open balls defined by the metric.

• The Zariski topology of R2 is defined by means of its closed subsets, which are just the
plane R2 itself, every algebraic curve p(x, y) = 0, where p denotes a polynomial, every
point, as well as all finite unions of such subsets. This topology can be extended to Rn

and to more general spaces, and is of special importance in Algebraic Geometry.

Definition 2. A map f : X → Y from a topological space X to another topological space Y is
continuous if, for every open subset V of Y , the preimage

f−1(V ) := {x ∈ X : f(x) ∈ V }

is an open subset of X. The set of continuous maps between the topological spaces X and
Y is denoted by C0(X,Y ). A continuous map ϕ : X → Y is a homeomorphism if it is bijective
and its inverse is continuous as well. Two topological spaces related by a homeomorphism are
topologically equivalent.

Often axioms (O1)− (O3) are too weak to allow efficient investigation of a given problem.
We then add additional requirements, such as e.g. the condition that the topology must
admit a countable basis of open subsets, see above (let us recall that a set E is countable
if there is a bijection ϕ : E → P , where P ⊂ N). A topological space with a countable basis
of open subsets is said to be second countable. Another type of frequently used restrictions
are separation axioms. They allow distinguishing e.g. distinct points by topological means,
in particular separating points by neighborhoods.

Definition 3. In a topological space X, a neighborhood of a subset P is a subset N , such that
N ⊃ U ⊃ P , where U is an open subset of X.

In particular, any open subset that contains P is a neighborhood of P .

In the following, we essentially use Hausdorff’s separation axiom (Felix Hausdorff, 1868 –
1942, German mathematician) and work in Hausdorff spaces, in which points can actually
be separated by neighborhoods. This implies for instance uniqueness of limits of sequences.

Definition 4. A topological space is a Hausdorff space if any two distinct points admit disjoint
neighborhoods.
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Examples.

• Almost all spaces encountered in mathematical analysis are Hausdorff. Of course, all
metric spaces, in particular Rn, are Hausdorff spaces.

• But then we also understand that pseudometric spaces are typically not Hausdorff.
Also the Zariski topology of R2, see above, does not satisfy Hausdorff’s axiom. Indeed,
two non empty open subsets are never disjoint, as the complement of their intersection,
i.e. the union of their complements is, by definition of the topology, a finite union of
algebraic curves and points.

4 Exercises
1. Let S be a subset of a topological space X. The collection of traces S ∩ U on S of the

open subsets U of X is a topology on S. We refer to this topology as the induced or
relative topology and to a subset endowed with the relative topology as a topological
subspace. Prove that the topology axioms actually hold true.

2. Prove that any subspace of a Hausdorff (resp. second countable) space is itself Haus-
dorff (resp. second countable). We say that the Hausdorff property (resp. the existence
of a countable basis) is hereditary.

3. Let B be a collection of subsets of a set X. Prove that X has a unique topology with
basis B if and only if any finite intersection of elements of B is a union of elements of
B, i.e. if and only if X is a union of elements of B and any intersection of two elements
of B is a union of elements of B. Hint: Use the fact that the axioms (O1) − (O3) are
equivalent to (O′

1), (O2).

4. Let
(Xi, Ti)i , i ∈ I := {1, . . . , n} , n ∈ N∗ ,

be a finite number of topological spaces. We denote by X := Πi∈IXi the Cartesian
product of the Xi . Prove that the subsets O := Πi∈IOi , Oi ∈ Ti , form a basis of a
topology T of X. In the following, we refer to (X,T ) as the product space and to T as
the product topology. Hint: It suffices to observe that

(ΠiOi) ∩ (ΠjΩj) = Πk(Ok ∩ Ωk) .

5. Prove that if f ∈ C0(X,Y ) and g ∈ C0(Y,Z), then g ◦ f ∈ C0(X,Z), where X,Y, Z denote
of course topological spaces.

6. Let X and Y be topological spaces, let f : X → Y , and let S (resp. S′) be a topological
subspace of X (resp. of X ′, such that f(X) ⊂ S′). Prove that, if f ∈ C0(X,Y ), then the
restriction of f to S is f |S ∈ C0(S, Y )

(resp. f ∈ C0(X,Y ) ⇔ f ∈ C0(X,S′) ) .



Chapter 3
Manifolds

1 Smooth Manifolds
Manifolds are higher dimensional (dimension n ≥ 0) analogs of curves (n = 1) and sur-

faces (n = 2). They are of importance in most branches of Mathematics and numerous areas
in Theoretical Physics, e.g. in Mechanics, General Relativity, String Theory, ...

We often tend to think of manifolds as “surfaces” that are embedded in a Cartesian space
and more precisely as embedded submanifolds of Rn. However, manifolds are in fact more
abstract objects. For instance, space-time is a 4-dimensional (pseudo-Riemannian) manifold
that exists without living in a bigger space.

In order to understand the definition of a manifold, consider the 2-dimensional sphere
S2 ⊂ R3, say the surface of the Earth. A subset Uα ⊂ S2 can be represented by a chart,
mathematically a bijection φα : Uα → φα(Uα) ⊂ R2. Hence, a sphere or—more generally—a
manifold looks locally like (a subset of) a Cartesian space, but its global structure is more
complicated.

In order to represent it completely, we need a family of charts, i.e. an atlas (Uα, φα)α.
Obviously, the region Uα ∩ Uβ ⊂ S2 can be mapped to R2 by both charts,

φα : Uα → φα(Uα) ⊂ R2 and φβ : Uβ → φβ(Uβ) ⊂ R2.

The map
φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβ(Uβ ∩ Uα)

is the transition map from chart (Uα, φα) to chart (Uβ , φβ). Transition maps encode the
information how the manifold can be reconstructed from its parts by gluing them together.

Further, it is natural to think that in the case of the sphere or even of a more general
“smooth manifold” the chart maps φα : Uα → φ(Uα) ⊂ R2 should be “smooth” bijections with
“smooth” inverse, i.e. diffeomorphisms, so that the transition maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uβ ∩ Uα)

are diffeomorphisms as well. However, as Uα ⊂ S2 is not an open subset of a Cartesian space,
smoothness of φα : Uα → φα(Uα) has no meaning so far, even if we assume that φα(Uα) ⊂ R2

is open. On the other hand, smoothness of

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uβ ∩ Uα) ,

21
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φα(Uα) ⊂ Rn φβ(Uβ) ⊂ Rn

M

Uα Uβ

m

y = (y1, ..., yn)
x = (x1, ..., xn)

φβ

φα

φβ ◦ φ−1
α

Figure 1: Manifold and charts

which is a map between two subsets of R2, is a well-known concept, at least if we assume
that φα(Uα ∩ Uβ) ⊂ R2 and φβ(Uβ ∩ Uα) ⊂ R2 are open subsets.

Hence, the following definitions.

Definition 1. A chart of a set M is a pair (U,φ), where φ : U → φ(U) ⊂ Rn is a bijection from
a subset U ⊂M onto an open subset φ(U) ⊂ Rn. The components of the image

φ(m) = (φ1(m), . . . , φn(m)) =: x = (x1, . . . , xn)

of a point m ∈ U are the coordinates of m in the considered chart or coordinate system.

Definition 2. A smooth n-dimensional atlas (n ∈ N) of a setM is a collection of charts (Uα, φα)α
of M , such that

• the Uα cover M ,

• the images φα(Uα ∩ Uβ) are open in Rn, and

• the transition or coordinate transformation maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) 7→ φβ(Uβ ∩ Uα)

are smooth.

Examples.

1. Every n-dimensional real vector space V admits a smooth n-dimensional atlas. It suf-
fices to choose a basis (ei)i and to consider the isomorphism

φ : V ∋ v =
∑
i

xiei 7→ x := (x1, . . . , xn) ∈ Rn .
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Observe that this atlas is made of a unique chart. In particular, for V = Rn, we may
take the global chart (Rn, id). Also any open subset Ω ⊂ Rn admits such an atlas (Ω, id).

2. The sphere
Sn−1 = {x ∈ Rn :

∑
i

(xi)2 = 1} ⊂ Rn

has a smooth (n−1)-dimensional atlas. In order to simplify notations, consider the case
n = 3. We set x := x1 , y := x2 z = x3 . The atlas is made for instance of the six charts
induced by the two projections φ1± : (x, y, z) → (y, z) onto the hyperplane x = 0 of the
two hemispheres without boundary H1± defined by this hyperplane, and the similar
projections φ2± and φ3± . Indeed, the (Hi± , φi±)i are charts the domains of which cover
S2. Moreover, the image φ2+(H2+ ∩H1−) for instance, is the set

Ω2+1− = {(x, z) : x2 + z2 < 1, x < 0} ,

which is open in R2, and

φ1−(φ
−1
2+ (x, z)) = (

√
1− x2 − z2, z)

is a smooth bijection between the open subsets Ω2+1− and Ω1−2+ , the inverse of which
is smooth as well.

3. The extended complex plane M = C ∪ {∞} admits an atlas with two charts, U1 = C,
φ1(z) = (x, y) ∈ R2 and U2 = (C \ {0}) ∪ {∞}, φ2(z) = 1/z, where it is understood that
1/z is viewed as an element of R2 and that 1/∞ = 0. Further, the image φ1(U1 ∩ U2) for
instance, is R2 \ {0} and the transition map

φ2(φ
−1
1 (x, y)) = (

x

x2 + y2
,

−y
x2 + y2

)

is a smooth permutation of R2 \ {0}, the inverse of which is also smooth.

4. The n-dimensional real projective space RPn has an n-dimensional smooth atlas that
contains n+ 1 charts. This case will be detailed in the lectures.

If we add a geographic chart to a geographic atlas, we get of course another, maybe even
better, atlas. The union of a mathematical chart (U,φ) of a set M and a mathematical atlas
(Uα, φα)α of M is again an atlas if and only if the φ(U ∩ Uα) and the φα(Uα ∩ U) are open
subsets of Rn and the transition maps φ ◦ φ−1

α and φα ◦ φ−1 are smooth on their domains.

Definition 3. A chart and an atlas of a set M (resp. two atlases of M) are compatible if their
union is an atlas of M .

On the one hand, compatibility of atlases is obviously an equivalence relation. On the
other, we implicitly think of an “n-dimensional smooth manifold” as a set endowed with
an n-dimensional smooth atlas. However, the “manifold” is completely and equivalently
represented by each atlas of a same equivalence class. Hence, the following definition.

Definition 4. An n-dimensional smooth manifold is a set together with an equivalence class
of n-dimensional smooth atlases.
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To define a smooth manifold structure on a set M , we consequently only need to specify
one atlas ofM , which then in turn defines an equivalence class. The preceding definition just
means that the same smooth structure on M can be defined by many atlases. For instance,
the global charts (V, φ) and (V, φ′) of a finite-dimensional real vector space V induced by two
bases (ei)i and (e′i)i form two equivalent atlases, which therefore define the same smooth
manifold structure on V . Indeed, the transition map φ′ ◦ φ−1 maps the coordinates x of a
vector v in the basis (ei)i onto the coordinates x′ = A−1x of v in (e′i)i , where A is the transition
matrix from the first to the second basis.

Let us explicitly mention that all manifolds considered below are smooth and finite-
dimensional. Further, instead of manifold structure, we also use the terminology smooth
structure and differentiable structure.

We already mentioned that the coordinate maps

φα : Uα ∋ m 7→ (φ1
α(m), . . . , φn

α(m)) = (x1, . . . , xn) ∈ φα(Uα)

should be diffeomorphisms between the manifolds Uα and φα(Uα), but that the concept of
smooth map between manifolds is not yet defined. Actually, the map φα can even not yet be
a homeomorphism, as so far we have no topology on Uα or M . We now show that an atlas
of M defines a topology on M that only depends on the smooth structure of M , i.e. on the
considered equivalence class of atlases.

Definition 5. Let M be a manifold and let (Uα, φα)α be an atlas of M . A subset W ⊂M is an
open subset of M , if all its representations φα(W ∩Uα) ⊂ Rn are open in the metric topology of
the Cartesian space Rn.

Theorem 1. The collection of open subsets of a manifold M , defined in Definition 5 by means
of an atlas of M , is a topology on M that is independent of the considered atlas.

Proof. Let (Wi)i be a family of open subsets of M . Due to the properties of images, we have

φα(∪iWi ∩ Uα) = ∪i φα(Wi ∩ Uα)

and
φα(∩iWi ∩ Uα) = ∩i φα(Wi ∩ Uα).

The conclusion regarding the topological structure follows if we interpret the family of Wi as
finite in the second case.

As for the independence of the atlas chosen in the equivalence class of the manifold, it
suffices to show that any open subsets of the topology T2, defined by another compatible
atlas (Va, ψa)a of M , is an open subset in the topology T1 defined by (Uα, φα)α and vice versa.
Let us for instance prove that W ∈ T1 is open in T2, i.e. that ψa(W ∩ Va) is open in Rn.

Any y ∈ ψa(W ∩ Va) is the image ψa(x) of some x ∈W ∩ Va. As we have for sure to use the
compatibility of the two atlases, observe that there is Uβ that contains x, so that

y ∈ ψa(W ∩ Uβ ∩ Va) ⊂ ψa(W ∩ Va) .

If we prove now that (U,φ) := (W ∩Uβ , φβ |W∩Uβ
) is a chart that is compatible with the “corre-

sponding” atlas (Uα, φα)α, then, since compatibility is an equivalence, it is also compatible
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with the atlas (Va, ψa)a, and therefore ψa(U ∩ Va) = ψa(W ∩ Uβ ∩ Va) is open in Rn, which
completes the proof.

Note first that (U,φ) := (W ∩Uβ , φβ |W∩Uβ
) is a chart since W ∈ T1. As for the compatibility,

we have to show that φα(Uα ∩U) and φ(U ∩Uα) are open in Rn and that φ ◦ φ−1
α and φα ◦ φ−1

are smooth on their domains. We prove the last pair of assertions. As

φ(U ∩ Uα) = φβ(W ∩ Uβ ∩ Uα) = φβ(W ∩ Uβ) ∩ φβ(Uα ∩ Uβ),

where the first (resp. second) image is open due to the fact that W ∈ T1 (resp. the definition
of an atlas), the first statement follows. The second is also clear, because φα ◦ φ−1 is the
restriction of φα ◦ φ−1

β to the preceding open subset.

We are now prepared to prove the expected

Theorem 2. Let M be a manifold and let (Uα, φα)α be an atlas of M . Every coordinate map
φα : Uα → φα(Uα) is a homeomorphism (it is of course understood that Uα and φα(Uα) carry
the topologies that are induced by those of M and Rn respectively).

Proof. First consider an open subset of a topological space and provide it with the induced
topology. Then the open subsets of this topological subspace are exactly the open subsets
of the whole topological space that are included in the subspace.

Let W be an open subset of Uα . As

(φ−1
α )−1(W ) = φα(W ) = φα(W ∩ Uα) ⊂ φα(Uα)

is open, the map φ−1
α is continuous.

Take now an open subset Ω of φα(Uα). In order to see that φ−1
α (Ω) ⊂ Uα is open, we have

to show that φβ(φ
−1
α (Ω) ∩ Uβ) is open in Rn. Since we must of course use the transition

diffeomorphism, it is natural to write

φβ(φ
−1
α (Ω) ∩ Uβ) = φβ(φ

−1
α (Ω) ∩ Uα ∩ Uβ)

= φβ(φ
−1
α (Ω) ∩ φ−1

α φα(Uα ∩ Uβ)) = φβφ
−1
α (Ω ∩ φα(Uα ∩ Uβ)).

The conclusion that φα is continuous now follows from the fact that the transition diffeo-
morphism is also a homeomorphism.

2 Exercises
1. Prove that every open subset U of every manifold M is a manifold, and more precisely

that, if (Uα, φα)α is an atlas of M , the restrictions (U ∩Uα, φα|U∩Uα
)α form an atlas of U .

2. Show that if M (resp. M ′) is a manifold of dimension n (resp. n′) with atlas (Uα, φα)α
(resp. (U ′

β , φ
′
β)β), then M ×M ′ is an (n+ n′)-dimensional manifold for the atlas

(Uα × U ′
β , φα × φ′

β)(α,β) .

We refer to M ×M ′ equipped with this differential structure as the product manifold
M ×M ′.
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3. The torus T 2 := S1 × S1, where S1 ⊂ R2 is the circle with center (0, 0) and radius 1, is a
manifold of dimension 2, and, more generally, the “n-dimensional” torus Tn := (S1)×n

is an n-dimensional smooth manifold.

4. The manifold topology can be defined just as well as the topology for which the chart do-
mains are a basis. Prove that the unions of the chart domains actually form a topology
and that this topology coincides with the above-defined manifold topology.

3 Submanifolds of Rn

Submanifolds of Rn are an important class of manifolds. Actually every abstract manifold
can be viewed as submanifold of a Cartesian space with sufficiently high dimension.

The next subsection is a summary of the results now needed from Chapter 1, which we
recall here for simplicity.

3.1 Subimmersions, immersions, submersions, diffeomorphisms
Definition 6. A map f : Ω ⊂ Rp → Rq from an open subset Ω of the Cartesian space Rp to the
Cartesian space Rq is smooth if and only if its canonical coordinate functions f i : Ω ⊂ Rp → R,
i ∈ {1, . . . , q}, are all smooth in Ω. The derivative of f at x0 ∈ Ω is the linear map

f ′(x0) =
((
∂xjf i

)
(x0)

)
ij
: Rp → Rq. (1)

Definition 7. Let f : Ω ⊂ Rp → Rq be a smooth map. For every x0 ∈ Ω, the rank ρx0f of f at x0
is the rank ρ(f ′(x0)) of the linear map or matrix f ′(x0).

A well-known result from Linear Algebra states that, for every linear map ℓ ∈ HomF(V, V
′)

between two vector spaces V and V ′ over a field F, we have

ρ ℓ := dim im ℓ = dimV − dimker ℓ, (2)

where notations are self-explaining.

Exercise. Prove that if ℓ ∈ HomF(V, V
′) and ℓ′ ∈ HomF(V

′, V ′′), then ρ(ℓ′◦ℓ) ≤ inf(ρℓ, ρ ℓ′). Apply
this result and show that the rank is invariant under diffeomorphisms, i.e. if Ω1, Ω2 (resp.
Ω3, Ω4) are open in Rp (resp. Rq), if φ : Ω1 → Ω2 and φ′ : Ω3 → Ω4 are diffeomorphisms, and if
f : Ω2 → Ω3 is smooth, then for every x ∈ Ω1, we have

ρx(φ
′ ◦ f ◦ φ) = ρφ(x)f. (3)

Definition 8. Let f : Ω ⊂ Rp → Rq be smooth. The map f is an immersion (resp. a submersion)
at a point x0 ∈ Ω if its derivative f ′(x0) at x0 is injective (resp. surjective), i.e. if ρx0f coincides
with the dimension of the source space (so that p ≤ q) (resp. the dimension of the target space
(so that q ≤ p)). The map f is an immersion (resp. a submersion), if it is an immersion (resp.
a submersion) at every point x0 ∈ Ω .

Notice that the rank is lower semi-continuous, i.e. that in a neighborhood of any point
it cannot decrease. It follows that the rank of an immersion or a submersion is locally
constant, i.e. constant in a neighborhood of any point.
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Definition 9. A smooth map f : Ω ⊂ Rp → Rq is a subimmersion at a point x0 ∈ Ω (resp.
subimmersion) if its rank is locally constant at x0 (resp. locally constant).

Therefore immersions and submersions are special subimmersions. We are now pre-
pared to recall the Constant Rank Theorem, see lectures in Analysis. It states that every
subimmersion has locally, up to diffeomorphisms of the source and the target, a very simple
canonical form.

Theorem 3. Let f : Ω ⊂ Rp → Rq be a subimmersion at x0 ∈ Ω. Then there are open subsets

U ∋ x0, U
′ ⊃ f(U) ∋ f(x0), ω ⊂ Rp, ω′ ⊂ Rq

and diffeomorphisms φ : U → ω and φ′ : U ′ → ω′, such that, for all x := (x1, . . . , xp) ∈ ω, we
have (

φ′ ◦ f ◦ φ−1
)
(x1, . . . , xp) = (x1, . . . , xρ, 0, . . . , 0) , (4)

where ρ = ρx0f . Further(
φ′ ◦ f ◦ φ−1

)
(ω) = {y ∈ ω′ : yρ+1 = . . . = yq = 0} . (5)

Note that the requirement that f be a subimmersion at x0 is necessary because of the
diffeomorphism invariance of the rank.

Remember that if the subimmersion f is an immersion (resp. a submersion) at x0, the
rank ρx0

f coincides with the dimension of the source space, which entails that p ≤ q (resp.
of the target space, which entails that q ≤ p), and the source (resp. target) diffeomorphism
can be suppressed. Hence, the local canonical form of an immersion is

(φ′ ◦ f) (x1, . . . , xp) = (x1, . . . , xp, 0, . . . , 0) ∈ Rq (6)

and the local canonical form of a submersion is(
f ◦ φ−1

)
(x1, . . . , xp) = (x1, . . . , xq) ∈ Rq. (7)

Observe that in Equation (6) (resp. Equation (7)), the map “f” is linear and injective (resp.
linear and surjective). As f ′(x0) is also a linear injection (resp. a linear surjection), these
results show that, up to a diffeomorphism, the behavior of f in the neighborhood of x0 is
the same as that of its derivative f ′(x0) at x0.

The previous results concern functions f the derivative f ′(x0) of which is a linear injection
or a linear surjection. The next theorem, called Inverse Function Theorem, asserts that
functions f such that f ′(x0) is a linear bijection, i.e. a vector space isomorphism, are locally
at x0 diffeomorphisms. More precisely, we have the

Theorem 4. If f : Ω ⊂ Rp → Rq is smooth and if f ′(x0), x0 ∈ Ω, is a vector space isomorphism,
then p = q and there is an open subset U ∋ x0, such that f(U) is open and f : U → f(U) is a
diffeomorphism.

The Inverse Function Theorem is actually a consequence of the Constant Rank Theorem.

Proof. Since f is both an immersion and a submersion at x0, it follows from the above re-
marks that p = q. Moreover, Equation (5) implies that f(U) = U ′, which is open, and Equation
(4) entails that φ′ ◦ f ◦ φ−1 = idω, so that f = φ′−1 ◦ φ, which is a diffeomorphism between U

and f(U).



Manifolds, Norbert Poncin 28

The reverse result is also valid:

Proposition 1. If f : Ω1 ⊂ Rp → Ω2 ⊂ Rq, where Ω1 and Ω2 are open in Rp and Rq respectively,
is a diffeomorphism, then, for every x0 ∈ Ω1, the derivative f ′(x0) : Rp → Rq is a vector space
isomorphism, p = q, and

(f−1)′(f(x0)) = (f ′(x0))
−1.

Proof. Indeed, as f ◦ f−1 = idΩ2
and f−1 ◦ f = idΩ1

, we have

f ′(x0) ◦ (f−1)′(f(x0)) = idRq and (f−1)′(f(x0)) ◦ f ′(x0) = idRp .

3.2 Embedded submanifolds of Rn

There exist several more or less restrictive concepts of submanifolds. Embedded sub-
manifolds of Rn provide examples of (sub)manifolds that live in a Cartesian space Rn and
carry the relative topology. Although we will not study submanifolds of an arbitrary man-
ifold M , we would like to mention that such general submanifolds may be endowed with a
richer topology than the one inherited from M and even need not always be subsets of M .

Take two positive integers p ≤ n . The definition of an embedded p-dimensional subman-
ifold N of Rn requires that locally N ⊂ Rn looks like Rp × {0} ⊂ Rn.

Definition 10. A subset N ⊂ Rn is an embedded p-dimensional submanifold of Rn, if, for
every x ∈ N , there is an open subset U ∋ x of Rn and a diffeomorphism f : U ⊂ Rn → f(U) ⊂
Rn, f(U) open, such that f(U ∩N) = f(U) ∩ (Rp × {0}).

To clarify the naturalness of the next theorem, we remind the reader that there are two
natural approaches to “surfaces” in Rn. For instance, in R2, the circle with center (0, 0) and
radius 1 can as well be described by the Cartesian equation x2 + y2 = 1 as by the parametric
representation (x, y) = (cos t, sin t), t ∈ [0, 2π[ .

Let us briefly examine further examples. If we write m = (x, y, z), the system of equations

f1(m) = ax+ by + cz + d = 0 and f2(m) = a′x+ b′y + c′z + d′ = 0 ,

where a, b, c, d, a′, b′, c′, d′ ∈ R, defines a line L in R3, if the derivatives (f1)′(m) ∈ R3∗ and
(f2)′(m) ∈ R3∗ are linearly independent. Note that L = ∩2

i=1(f
i)−1{0} and that the number of

equations coincides with the codimension of L. On the other hand,

(x, y, z) = (a cos t, a sin t, bt), a, b ∈ R+
0 , t ∈ R ,

is the parametric representation of a helix H with radius a that rises by 2πb units per turn.
Observe that the map

ψ : R ∋ t→ (a cos t, a sin t, bt) ∈ H

is a bijection and an immersion, and that the number of parameters gives the dimension of
H.

In view of the above, the following theorem seems perfectly logical:

Theorem 5. Let N ⊂ Rn be a subset of Rn. The next four statements are equivalent:
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• N is an embedded p-dimensional submanifold of Rn.

• For every x ∈ N , there is an open subset U ∋ x of Rn and n− p smooth functions

f i : U ⊂ Rn → R, i ∈ {1, . . . , n− p},

such that the derivatives

(f i)′(x) ∈ Rn∗, i ∈ {1, . . . , n− p},

are linearly independent and

U ∩N = ∩n−p
i=1 (f

i)−1{0} .

• For every x ∈ N , there is an open subset U ∋ x of Rn and a submersion f : U ⊂ Rn →
Rn−p, such that

U ∩N = f−1{0} .

• For every x ∈ N , there are open subsets U ∋ x of Rn and Ω ∋ 0 of Rp, as well as a
homeomorphism ψ : Ω ⊂ Rp → U ∩ N ⊂ Rn, which is smooth, is an immersion at 0, and
maps 0 to x.

Observe that all assertions of this theorem are local. The second and third statements,
which are equivalent (it suffices to set f = (f1, . . . , fn−p)), correspond to the aforemen-
tioned description by Cartesian equations. The fourth item is consistent with the possi-
bility of parametric representations. Further, it is understood that in the requirement that
ψ : Ω ⊂ Rp → U ∩N ⊂ Rn be a homeomorphism, the subset U ∩N ⊂ Rn is endowed with the
relative topology. The immersion-condition in the last item is essential. This will follow from
the proof of the theorem, but can also be seen from the example ψ : R ∋ t→ (t2, t3) ∈ R2 (the
subset N := ψ(R) ⊂ R2 does not satisfy the conditions of Definition 10 at (0, 0) ∈ N and ψ is
not an immersion at 0).

As for the proof, we already noticed that Item (2) is equivalent to Item (3). Due to the
Constant Rank Theorem, Item (3) leads to a diffeomorphism f : U ⊂ Rn → ω ⊂ Rn, so it
should imply Item (1). As the diffeomorphism f of Item (1) maps U ∩N to the open subset
Ω := f(U) ∩ Rp of Rp, the restriction of its inverse is the homeomorphism ψ needed in Item
(4). Remark that ψ = f−1 ◦ i , where

i : (x1, . . . , xp) ∈ Ω ⊂ Rp → (x1, . . . , xp, 0, . . . , 0) ∈ f(U) ⊂ Rn

is the canonical inclusion, so an immersion. Finally, we will prove, using as above-mentioned
(in particular) the immersion-property, that Item (4) implies Item (2). Hence, we get (2) ⇔
(3) ⇒ (1) ⇒ (4) ⇒ (2), where we still have to explain further the implications (3) ⇒ (1) and
mainly (4) ⇒ (2).

Proof. Implication (3) ⇒ (1). As already said, for every x ∈ N , there are open subsets U ∋ x

and ω in Rn and a diffeomorphism φ : U → ω, such that in ω = φ(U), we have

(f ◦ φ−1)(x1, . . . , xn) = (x1, . . . , xn−p) .

As
U ∩N = {(y1, . . . , yn) ∈ U : f(y1, . . . , yn) = 0} ,
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it follows that
φ(U ∩N) = φ(U) ∩ ({0} × Rp) .

Implication (4) ⇒ (2). Let m ∈ N and let ψ : Ω ⊂ Rp → U ∩ N ⊂ Rn be the corresponding
homeomorphism. As

ψ′(0) : Rp ∋ x′ →
(
A

B

)
x′ =

(
Ax′

Bx′

)
∈ Rn,

where A (resp. B) is a real p×p (resp. (n−p)×p ) matrix, has rank p, we can assume—modulo
a renumbering of the coordinates—that A is nonsingular, so that

π1 ◦ ψ′(0) = (π1 ◦ ψ)′(0) : Rp ∋ x′ → Ax′ ∈ Rp,

where
π1 : Rn = Rp × Rn−p ∋ (x′, x′′) → x′ ∈ Rp

is the canonical projection (we will denote the projection onto Rn−p by π2), is a vector space
isomorphism. It therefore follows from the Inverse Function Theorem that π1 ◦ ψ : Ω ⊂ Rp →
Rp is locally a diffeomorphism or coordinate transformation, i.e. that there are open subsets
ω ∋ 0 and ω′ ∋ m′ = π1(m) of Rp, such that

ψ1 := π1 ◦ ψ : ω ∋ x′ → ψ1(x
′) =: y′ ∈ ω′

is a transformation of coordinates or, better, of parameters. When combining the homeo-
morphism ψ : Ω ∋ x′ → ψ(x′) ∈ U∩N with this transformation of parameters, we get a simpler
parametric representation

ψ ◦ ψ−1
1 : ω′ ∋ y′ = ψ1(x

′) → ψ(x′) = (ψ1(x
′), ψ2(x

′)) = (y′, ψ2(ψ
−1
1 (y′)) ∈ U ′ ∩N,

where U ′ ∋ m is open in Rn and where U ′ ∩N = ψ ◦ψ−1
1 (ω′) is the image of ω′ by the bijection

ψ ◦ ψ−1
1 . It is interesting to observe that U ′ ∩N appears as the graph of ψ2 ◦ ψ−1

1 . In order to
get the equations f i, i ∈ {1, . . . , n− p}, it suffices to set

f i(y) = ψp+i(ψ−1
1 (y′))− yd+i ,

for every
y = (y′, y′′) ∈ U ′′ := U ′ ∩ (ω′ × Rn−p) .

Indeed, the derivatives at m of these smooth functions f i are obviously linearly independent
and

U ′′ ∩N = ∩n−p
i=1 (f

i)−1(0) .

3.3 Embedded submanifolds versus abstract manifolds
It is possible to construct manifolds whose topology is not even Hausdorff or second-

countable. In order to make further progress in our theory, we exclude such exotic cases.

Remark. In the following all manifolds are implicitly assumed to be Hausdorff and second
countable.

We now prove the result mentioned at the beginning of the previous subsection.
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Proposition 2. Any embedded p-dimensional submanifold of Rn is a smooth p-dimensional
manifold whose topology is induced by the topology of Rn.

In view of the above remark, to prove this theorem we must not only construct a smooth
p-dimensional atlas, but we must also show that the topology of the manifold is Hausdorff
and second-countable. However, as these properties are hereditary, the conclusion imme-
diately follows from the fact that Rn is Hausdorff and second countable. For example, the
open spheres b(x, r) of Rn with center x ∈ Qn and radius r ∈ Q form a countable basis of
open subsets of Rn.

Actually, there are no more abstract manifolds than embedded submanifolds of Rn. In-
deed, Whitney’s embedding theorem states (Hassler Whitney, 1907 - 1989, American Mathe-
matician) that any smooth (Hausdorff and second-countable) manifold of dimension p can
be embedded in R2p+1, and even in R2p if p > 2. Consequently, any manifold can be treated, if
we wish, as an object that lives in a larger Cartesian space (although this view is not always
of advantage). The proof of Whitney’s embedding theorem is complicated and will not be
given in these notes.

Hereafter we detail the proof of Proposition 2.

Proof. Let N be an embedded p-dimensional submanifold of Rn. The construction of an
atlas follows from the observation that the parametrizations provided by Item (4) of Theorem
5 clearly correspond to local coordinate maps.

Let x ∈ N . There are open subsets U ′
x ∋ x of Rn and Ωx of Rp, as well as a smooth map

ψx that is a homeomorphism ψx : Ωx ⊂ Rp → U ′
x ∩ N ⊂ Rn and an immersion (it suffices to

restrict the subsets Ωx and U ′
x). Set now

Ux := ψx(Ωx) = U ′
x ∩N and φx = ψ−1

x : Ux ⊂ N → Ωx ⊂ Rp .

The charts (Ux, φx)x∈N form a smooth p-dimensional atlas ofN . Indeed, the family (Ux)x∈N

is a cover of N and the images φx(Ux ∩Uy) are open in Rp. The only problem is to prove that
the transition bijections

φy ◦ φ−1
x : φx(Ux ∩ Uy) → φy(Uy ∩ Ux)

are smooth. Indeed, the source of the bijection

φy = ψ−1
y : U ′

y ∩N ⊂ N → Ωy ⊂ Rp

is not an open subset of a Cartesian space and smoothness of φy has no meaning so far.
The way out is to use the bijections

f : U ′ ∩N → f(U ′ ∩N) = f(U ′) ∩ Rp ⊂ Rp,

which are the restrictions of the diffeomorphisms f : U ′ ⊂ Rn → f(U ′) ⊂ Rn given by Defini-
tion 10. Indeed, when writing

φy ◦ φ−1
x = φy ◦ f−1 ◦ f ◦ φ−1

x = (f ◦ φ−1
y )−1 ◦ (f ◦ φ−1

x ),

we deal with bijections f◦φ−1
z between open subsets of Rp, so that smoothness of the building

blocks of φy ◦ φ−1
x makes sense. The difficulties concerning the matching of the involved
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subsets can be solved via anew restrictions of these. The f ◦ φ−1
z are smooth in Ωz ⊂ Rp and

valued in Rp. Moreover, for every X ∈ Ωy, we have

(f ◦ φ−1
y )′(X) = f ′(ψy(X)) ◦ ψ′

y(X) ∈ EndR(Rp).

As the derivative of ψy is injective and that of f bijective, the map (f ◦ φ−1
y )′(X) is injective

and therefore bijective (since the injectivity of a linear map implies its surjectivity if the di-
mensions of the source and target spaces coincide). It now follows from the Inverse Function
Theorem, that f ◦φ−1

y is a local diffeomorphism. This finally implies that φy ◦φ−1
x is smooth

in the neighborhood of each point.
As for the manifold topology, denote T (N) (resp. I(N)) the manifold topology of N (resp.

the topology induced on N by Rn). From Exercise 4 it follows that T (N) ⊂ I(N). Conversely,
if U ∩N ∈ I(N), i.e. if U is open in Rn, the image

φx(U ∩N ∩ Ux) = ψ−1
x (U ∩ U ′

x ∩N)

is open in Rp, so that, in view of Definition 5, we also get I(N) ⊂ T (N).

3.4 Exercises
1. The preceding result yields that embedded submanifolds of Rn are manifolds that live

in the ambient space Rn and carry the induced topology. The next exercise gives an
example of a manifold that is included in the 2-dimensional Cartesian space and the
topology of which is richer than the relative topology.

Let l1 and l2 be two lines of R2 that intersect at a point x0 . Denote by l−2 and l+2 the
two open half-lines defined by x0 and consider the set N = l1 ∪ l−2 ∪ l+2 . Construct an
(obvious) atlas for N ⊂ R2 and show that the resulting manifold topology is richer than
the induced one.

2. Prove that every manifold is locally compact and locally connected. A bit of topology is
needed to solve this quite simple problem.



Chapter 4
Derivatives of smooth maps

between manifolds

1 Smooth maps between manifolds
In order to do Analysis on manifolds, we must define smoothness of a map between

manifolds.
Take for instance the rotation

f : S1 ∋ m→ f(m) ∈ S1

with center (0, 0) and angle π
2 . In standard polar coordinates, or, more precisely, in coordi-

nate charts

φ : S1 \ {(1, 0)} ∋ m→ θ ∈ ]0, 2π[ and φ′ : S1 \ {(0, 1)} ∋ m→ θ′ ∈ ]
π

2
,
5π

2
[ ,

the rotation f (locally) reads

φ′fφ−1 : R ⊃ ]0, 2π[∋ θ → θ′ = θ +
π

2
∈ R .

The map φ′fφ−1 (note that we omit the symbol for the composition of functions) is the local
form of f in the considered charts.

We say that a map f : M → M ′ between two manifolds M and M ′ is smooth, if, in the
neighborhood of every point of M , it is smooth in coordinates, i.e. it has a smooth local form
φ′fφ−1 :

Definition 1. Let M (resp. M ′) be an n-dimensional (resp. n′-dimensional ) manifold. A map
f : M → M ′ is a smooth map from M to M ′, if for any m ∈ M , there exist charts (U,φ) of M
around m and (U ′, φ′) of M ′ around f(m), such that f(U) ⊂ U ′ and

φ′fφ−1 : φ(U) ⊂ Rn → Rn′

is smooth in the sense of Analysis. The set of smooth maps from the manifoldM to the manifold
M ′ is denoted by C∞(M,M ′) .

The next proposition claims that the existence of charts, in which the local form of f is
smooth, implies that this property holds for all charts.

33
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M

U

m

φ(U) ⊂ Rn
φ′(U ′) ⊂ Rn′

f

φ′fφ−1

yx

φ φ′
M ′

U ′

f(m)

Figure 2: Smooth map between manifolds

Proposition 1. If f : M → M ′ is a smooth map between two manifolds M and M ′, then, for
any charts (U,φ) of M and (U ′, φ′) of M ′, such that f(U) ⊂ U ′, the local form φ′fφ−1 of f is
smooth.

Proof. In order to show that φ′fφ−1 is smooth in φ(U), it suffices to prove that it is smooth
in a neighborhood of every point φ(m0), m0 ∈ U , of φ(U) . Smoothness of f implies that there
are charts (V, ψ) of M around m0 and (V ′, ψ′) of M ′ around f(m0), such that f(V ) ⊂ V ′ and
ψ′fψ−1 is smooth in ψ(V ). In the neighborhood φ(U ∩ V ) of φ(m0), we then have

φ′fφ−1 = (φ′ψ′−1)(ψ′fψ−1)(ψφ−1) ,

so that the LHS is smooth in this neighborhood.

As continuity of a map between manifolds is defined as for any map between topological
spaces, we need to check that smoothness actually implies continuity.

Proposition 2. For all manifolds M and M ′, we have C∞(M,M ′) ⊂ C0(M,M ′), where it is
understood that M and M ′ are endowed with their canonical manifold topology.

Proof. Let f ∈ C∞(M,M ′) and m ∈ M . There are charts (U,φ) of M around m and (U ′, φ′) of
M ′ around f(m), such that f(U) ⊂ U ′ and φ′fφ−1 : φ(U) ⊂ Rn → φ′(U ′) ⊂ Rn′ is smooth and
therefore continuous. As the coordinate maps φ : U → φ(U) are homeomorphisms for the
induced topologies, it follows that the restriction of f to U , i.e.

f |U = φ′−1(φ′fφ−1)φ : U → U ′,

is continuous. Hence, for every m ∈ M , there is Um ∈ Tm(M), such that f |Um
∈ C0(Um,M

′),
where Tm(M) denotes the set of those open subsets of the manifold topology of M that
contain m. But then, if V ∈ T(M ′), we have

f−1(V ) = ∪m∈Mf |−1
Um

(V ) ∈ T(M) ,
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so that f ∈ C0(M,M ′).

Just as for other types of spaces (e.g. vector spaces, topological spaces, ...), there is a
concept of equivalence (isomorphism, homeomorphism, ...) for manifolds. Equivalent or dif-
feomorphic manifolds are manifolds M and M ′ related by a diffeomorphism ϕ :M →M ′, i.e.
a smooth bijection with smooth inverse. We denote by Diff(M,M ′) the set of diffeomorphisms
from M to M ′. Intuitively, two manifolds are diffeomorphic if each one can be smoothly de-
formed to the other.

As recalled above, chart maps φ : M ⊃ U → φ(U) ⊂ Rn are homeomorphisms, and, as
mentioned in Chapter 3, they should be diffeomorphisms φ ∈ Diff(U,φ(U)). Since U and φ(U)

are manifolds (see Chapter 3, Section 2, Exercise 1), the set Diff(U,φ(U)) is now defined. We
actually have the

Proposition 3. Let M be a manifold and let (Uα, φα)α be an atlas of M . Every coordinate map
(Uα, φα) is a diffeomorphism: φα ∈ Diff(Uα, φα(Uα)) .

Proof. Obvious.

We now examine the smoothness of maps made of smooth building blocks. The proofs of
these results are simple but instructive. They are left to the reader.

Proposition 4. Let M , M ′, and M ′′ be manifolds. If f ∈ C∞(M,M ′) and g ∈ C∞(M ′,M ′′), then
g ◦ f ∈ C∞(M,M ′′).

It is well-known that the restriction of a linear (resp. continuous) map to a vector (resp.
topological) subspace is still linear (resp. continuous), and that a linear (resp. continuous)
map viewed as valued in a vector (resp. topological) subspace that contains all images, is
also linear (resp. continuous) (see e.g. Chapter 2, Section 4, Exercise 6). Similar results are
true in the smooth category.

Proposition 5. Let M (resp. M ′) be a manifold, let f ∈ C∞(Rr,M ′) (resp. f ∈ C∞(M,Rs)),
and let N (resp. N ′) be an embedded submanifold of Rr (resp. of Rs, such that f(M) ⊂ N ′).
Then f |N ∈ C∞(N,M ′) (resp. f ∈ C∞(M,N ′)). Analogous results are valid for f ∈ C∞(M,M ′)

and restrictions of the source (resp. target) manifold to an open subset of M (resp. an open
subset of M ′ that contains f(M)).

The set of smooth functions of a manifold M , i.e. of smooth maps from M to the target
manifold M ′ = R, is denoted by C∞(M). The addition and multiplication of R induce an
addition f+g and a multiplication f.g of functions, as well as a multiplication λf of functions
by reals.

Proposition 6. The set C∞(M) of smooth functions of a manifold M is an associative commu-
tative unital algebra for the canonical operations f + g, λf , and f.g .

The function algebra C∞(M) is actually a fundamental object associated to the manifold
M . Indeed, the algebraic structure of C∞(M) characterizes the manifold structure of M .
More precisely:

Theorem 1. Two manifolds M and M ′ are diffeomorphic if and only if their associative alge-
bras of functions C∞(M) and C∞(M ′) are isomorphic.
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Proof. If ϕ :M →M ′ is a diffeomorphism, then, obviously, the map

ϕ∗ : C∞(M) ∋ f → f ◦ ϕ−1 ∈ C∞(M ′)

is an associative algebra isomorphism. The proof of the converse result is not obvious and
will not be given.

2 Exercises
1. Prove Propositions 4, 5, and 6. Hint: To prove Proposition 4, choose first a chart

(U ′, φ′) around f(m), then a chart (U,φ) around m such that U ⊂ f−1(U ′). In the proof
of Proposition 6, choose the same chart for f and g.

2. Show that the set Diff(M) of diffeomorphisms of M (i.e. from the manifold M to itself)
is a group for the composition of maps.

3. Prove that the projections π1 : M ×M ′ → M and π2 : M ×M ′ → M ′ (M , M ′: manifolds)
are smooth maps (see Chapter 3, Section 2, Exercise 2).

4. Explain that, if f1 ∈ C∞(M1,M
′
1) and f2 ∈ C∞(M2,M

′
2), then

f1 × f2 :M1 ×M2 ∋ (m1,m2) → (f1(m1), f2(m2)) ∈M ′
1 ×M ′

2

is also smooth.

3 Tangent space
In Lagrangian Mechanics, the configurations of a double pendulum, i.e. of a pendu-

lum with another pendulum attached to its end, are described by two angles q = (q1, q2) ∈
[0, 2π] × [0, 2π]. Hence, the configuration space M is [0, 2π] × [0, 2π] modulo identification of
the extreme values 0 and 2π, in other words M = T 2 = S1×S1 ⊂ R3. The representative point
q of the considered dynamical system runs through a curve α : I ∋ t → q(t) ∈ M ⊂ R3 of M ,
where I ⊂ R is the (open) observation interval, and the generalized velocity q̇(0) = dtα|t=0 at
time 0 is a tangent vector of the curve α at the point q(0) = α(0) =: m. Of course, a vector
that is tangent to a curve of M at m is also tangent to the manifold M at m, and the “tangent
space” TmM of M at m can be viewed as the set of the tangent vectors dtα|t=0 of all the curves
α ∈ C∞(I,M) of M , such that α(0) = m.

If M is an abstract manifold that does not sit in an ambient space, our mental picture of
a tangent vector, as well as the definition of the derivative dtα|t=0 of a curve α ∈ C∞(I,M),
where I denotes an open interval of the real line, meet a problem. A natural idea is to look
at a curve α ∈ C∞(I,M) locally, in coordinates φ, and to end up, roughly, with a usual curve
φα ∈ C∞(I,Rn), which has a tangent vector dt(φα)|t=0 . However, obviously, different curves
β ̸= α, i.e. φβ ̸= φα, can have the same tangent vector

dt(φβ)|t=0 = dt(φα)|t=0 .

Therefore, a tangent vector is characterized, not by a single curve, but by a class of curves,
and we can define a tangent vector of an abstract manifold M at a point m ∈M as the class
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[α] of all the curves α ∈ C∞(I,M) of M , such that α(0) = m and whose local forms have the
same tangent vector dt(φα)|t=0 .

φ(U) ⊂ Rn

M

U

TmM

m φ

α
φα

) (
0 RI

φ(m)

φα

φβ

α

β

Figure 3: Tangent space of a manifold

We now make these ideas more precise.

Let m be a point of an n-dimensional manifold M . We denote by C the set of all curves
α ∈ C∞(I,M) of M (where I is an open interval of R that contains 0) that pass through m

at t = 0, i.e. satisfy α(0) = m. Due to the continuity of α, there is, for any charts (U,φ) and
(V, ψ) of M around m, an open interval J ∋ 0 of R, such that

φα ∈ C∞(J, φ(U ∩ V )) and ψα ∈ C∞(J, ψ(V ∩ U)) .

Definition 2. Let M , m, and C be the just defined objects. Two curves α, β ∈ C are tangent at
m, if there is a chart (U,φ) of M around m, such that

dt(φα)|t=0 = dt(φβ)|t=0. (1)

Note that the same condition is then satisfied for every chart (V, ψ) ofM aroundm. Indeed,
we have ψα = (ψφ−1)(φα) in J , so that

dt(ψα)|t=0 = (ψφ−1)′(φ(m)) dt(φα)|t=0 , (2)

and as the same result holds for β, the conclusion follows from Equation (1). It is now clear
that the relation “tangent at m” is an equivalence in C.

Definition 3. The notations are again those introduced above. A tangent vector of M at m is
an equivalence class [α], α ∈ C, of the equivalence relation “tangent at m” in C. The set of all
tangent vectors of M at m is denoted by TmM .
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The mental picture of the preceding construction suggests that every chart (U,φ) of M at
m defines a 1-to-1 correspondence

Tmφ : TmM → Rn

(Tmφ is merely a notation) between the tangent vectors of M at m and the vectors of Rn.

Of course, the set TmM of tangent vectors at m should be a vector space. We will use the
bijection just described to transport the vector space structure of Rn to TmM , i.e. for every
vectors [αi] ∈ TmM , i ∈ {1, . . . , N}, and every real numbers λi ∈ R , we set

∑
i

λi[αi] := (Tmφ)
−1

(∑
i

λi Tmφ[αi]

)
. (3)

Theorem 2. Let (U,φ) be a chart of M around m. The map

Tmφ : TmM ∋ [α] → dt(φα)|t=0 ∈ Rn (4)

is a well-defined bijection. Moreover, the set TmM admits a unique vector space structure, such
that, for every chart (U,φ) of M around m, the bijection Tmφ is a vector space isomorphism.

Proof. It is obvious that Tmφ is well-defined and injective. Let v ∈ Rn and set

α(t) := φ−1(φ(m) + tv) ,

for t close to 0. We have α ∈ C and

Tmφ[α] = dt(φα)|t=0 = v ,

so that Tmφ is also surjective.
We now choose a chart (U,φ) of M around m and define a vector space structure on TmM

via Definition 3, which, of course, turns Tmφ into a vector space isomorphism. If (V, ψ) is
another chart of M around m, the combination of Equations (2) and (4) shows that

Tmψ = (ψφ−1)′(φ(m))Tmφ ,

so that Tmψ is built from two vector space isomorphisms and is therefore itself a vector space
isomorphism. The uniqueness of the vector space structure having the required property is
obvious.

Remark. In view of the preceding theorem, the tangent space TmM of a manifold M at a
point m ∈M is a real vector space with the same dimension as the underlying manifold. For
M = Rn, the isomorphism

TmRn ∋ [α] ≃ dtα|t=0 ∈ Rn (5)

is canonical (the atlas contains only one chart) and we often identify both spaces. If it is
necessary to remember the point at which the vectors are tangent to Rn, we view TmRn as
the space

TmM ≃ {m} × Rn

of vectors of Rn with origin m. A similar identification is used for real finite-dimensional
vector spaces M = V : TmV ≃ V . Further, it is clear from the above definitions that for every
open subset U of a manifold M , we have TmU ≃ TmM , for all m ∈ U – a fact that is also
corroborated by intuition.
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4 Derivative of a smooth map between manifolds
We are now prepared to define the derivative at a point m ∈ M of a smooth map f ∈

C∞(M,M ′) between two manifolds M (dimM = n) and M ′ (dimM ′ = n′). Take a chart (U,φ) of
M at m and a chart (V, ψ) of M ′ at f(m), such that f(U) ⊂ V . Just as the diffeomorphisms
φ ∈ Diff(U,φ(U)) and ψ ∈ Diff(V, ψ(V )) allow us to construct the map

f = ψ−1(ψfφ−1)φ

locally from its coordinate form ψfφ−1 ∈ C∞(φ(U), ψ(V )), the isomorphisms Tmφ ∈ Isom(TmM,

Rn) and Tf(m)ψ ∈ Isom(Tf(m)M
′,Rn′

) allow us to define the derivative

Tmf := (Tf(m)ψ)
−1 (ψfφ−1)′(φ(m)) Tmφ

of f at m by means of the derivative (ψfφ−1)′(φ(m)) ∈ HomR(Rn,Rn′
) of the coordinate form.

Definition 4. Let f ∈ C∞(M,M ′) and m ∈M . If (U,φ) is a chart of M at m and (V, ψ) a chart
of M ′ at f(m), such that f(U) ⊂ V , the derivative or tangent map of f at m is defined by

Tmf := (Tf(m)ψ)
−1 (ψfφ−1)′(φ(m)) Tmφ. (6)

M

U

TmM

m

φ(U) ⊂ Rn
ψ(V ) ⊂ Rn′

f ∈ C∞(M,N)

Tmf linear ?

yx

ψfφ−1 ∈ C∞(φ(U),Rn′
)

φ ψ

N

V

Tf(m)N

f(m)

Figure 4: Derivative of a smooth map

This definition implies that for f = φ ∈ C∞(U,φ(U)), the derivative Tmφ, m ∈ U , given by
Equation (6), coincides with the isomorphism Tmφ, denoted by the same symbol, defined by
Equation (4) and used in Definition (6). Further, it is easily checked that if f ∈ C∞(Ω,Rn′

), Ω
open in Rn, the “Geometry”-derivative Tmf , m ∈ Ω, coincides with the “Analysis”-derivative
f ′(m) ∈ HomR(Rn,Rn′

). As Tmf ,
f ∈ C∞(M,M ′),

m ∈ M , thus extends the usual derivative, it should be a linear map between vector spaces
attached to M and M ′. Indeed, Equation (6) implies that

Tmf ∈ HomR(TmM,T f(m)M
′). (7)
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This last result exhibits the functorial character of T (we encourage the reader to inform
himself about the concepts of category and functor).

Of course, the derivative Tmf of f ∈ C∞(M,M ′) at a point m ∈M should only depend on f

andm, and not on the charts chosen to compute it. To convince oneself of this independence,
it is sufficient to apply the definition to the computation of Tmf [α], [α] ∈ TmM . We get

Tf(m)ψ Tmf [α] = (ψfφ−1)′(φ(m)) Tmφ [α]

= (ψfφ−1)′(φ(m)) dt(φα)|t=0 = dt(ψfα)|t=0 = Tf(m)ψ [fα],

as fα is a curve of M ′ that passes at t = 0 through f(m). Since Tf(m)ψ is an isomorphism,
we get:

Proposition 7. Let f ∈ C∞(M,M ′) and m ∈M . The tangent map Tmf is given in a coordinate-
free way by

Tmf : TmM ∋ [α] → [fα] ∈ Tf(m)M
′.

The next proposition extends the known result concerning the derivation of composite
maps.

Proposition 8. Let f ∈ C∞(M,M ′), g ∈ C∞(M ′,M ′′), and m ∈ M . The derivative at m of
g ◦ f ∈ C∞(M,M ′′), see Proposition 4, is given by

Tm(g ◦ f) = Tf(m)g ◦ Tmf. (8)

Proof. Let [α] ∈ TmM . On the one hand Tm(gf) [α] = [(gf)α], on the other

Tf(m)g Tmf [α] = Tf(m)g [fα] = [g(fα)] .

We also generalize the relations between diffeomorphisms f and isomorphisms f ′(x), see
Chapter 3, Section 3.1, Theorem 4, and Proposition 1.

Proposition 9. If f ∈ Diff(M,M ′), then, for every m ∈M, we have

Tmf ∈ Isom(TmM,Tf(m)M
′) and Tf(m)f

−1 = (Tmf)
−1 .

Proof. We only need to check that the two composite maps built from

Tmf ∈ HomR(TmM,Tf(m)M
′) and Tf(m)f

−1 ∈ HomR(Tf(m)M
′, TmM)

are equal to identity. For instance,

Tmf ◦ Tf(m)f
−1 = Tf(m)(f ◦ f−1) = Tf(m) idM′ = idTf(m)M ′ .

The second verification is similar.

Proposition 10. If f ∈ C∞(M,M ′), m ∈ M and Tmf ∈ Isom(TmM,Tf(m)M
′), there is an open

subset W of M around m, such that f(W ) is open in M ′ and f ∈ Diff(W, f(W )).
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Proof. As Equation (6) yields that

(ψfφ−1)′(φ(m)) ∈ Isom(Rn,Rn′
) ,

the aforementioned Theorem 4 asserts that there is an open subset Ω ∋ φ(m) of φ(U), such
that Ω′ := (ψfφ−1)(Ω) is an open subset of ψ(V ) and ψfφ−1 ∈ Diff(Ω,Ω′). Since the coordinate
maps are also diffeomorphisms, φ ∈ Diff(U,φ(U)) and ψ ∈ Diff(V, ψ(V )), it follows that

f = ψ−1(ψfφ−1)φ ∈ Diff(φ−1(Ω), ψ−1(Ω′)) .

The concept of velocity, see first paragraph, leads to a practical technique for computing
tangent maps. Note that the velocity dtα of a curve α at time t ∈ I is so far only defined
for curves α ∈ C∞(I,Rn) of Rn. Actually we did not make a difference between this tangent
vector dtα ∈ Rn and the derivative α′(t) ∈ HomR(R,Rn), because of the canonical isomorphism
HomR(R,Rn) ≃ Rn. In order to define the velocity dtα of a curve α ∈ C∞(I,M) at t ∈ I, for any

manifold M , note that we should have dtα ∈ Tα(t)M and that Ttα ∈ HomR(R, Tα(t)M).

Definition 5. For every curve α ∈ C∞(I,M) of M and every point t ∈ I, the velocity or tangent
vector dtα of α at t is

dtα := Ttα (1) ∈ Tα(t)M.

Remarks.

1. Let, as usual, f ∈ C∞(M,M ′) and m ∈M , so that Tmf ∈ HomR(TmM,Tf(m)M
′). In order

to compute Tmf (Xm), Xm ∈ TmM , by means of a velocity, we need a curve α ∈ C∞(I,M)

of M that passes through m at t = 0 and whose velocity or tangent vector at t = 0 is
equal to Xm. Indeed, in this case,

Tmf (Xm) = Tα(0)f (dtα|t=0) = Tα(0)f T0α (1) = T0(fα) (1) = dt(fα)|t=0.

The point is that, if M ′ is a vector space or even Rn′ , the map fα ∈ C∞(I,Rn′
) is a map

between (subsets of) Cartesian spaces, and the RHS of the last equation is a derivative
in the sense of Analysis.

2. In view of the identification (5), we have

Tα(0)Rn ∋ [α] = dtα|t=0 ∈ Rn .

This result is also valid for a curve β of an arbitrary manifold M , which is defined on
an interval I ∋ 0. In fact, as just mentioned, if id denotes the curve id : I ∋ t → t ∈ R,
we have

T0R ∋ [id] = dt id |t=0 = 1 ∈ R .

Hence
Tβ(0)M ∋ [β] = [β id] = T0β [id] = T0β (1) = dtβ|t=0 ∈ Tβ(0)M.
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5 Exercises
1. Prove that for every open subset U of a manifold M , the tangent space TmU , m ∈ U , is

isomorphic to the tangent space TmM .
Suggestion: If i : U ↪→ M denotes the canonical injection, it follows from Equation (6)
that Tmi is a canonical isomorphism.

2. We know that if N denotes an embedded submanifold of Rn of dimension p, there is,
for any x ∈ N , an open subset U ∋ x of Rn and a submersion f : U ⊂ Rn → Rn−p, such
that U ∩ N = f−1(0) (resp. there are open subsets U ∋ x of Rn and Ω ∋ 0 of Rp, and a
homeomorphism ψ : Ω ⊂ Rp → U ∩N ⊂ Rn, which is smooth, is an immersion at 0, and
maps 0 to x). Show that, if f (resp. ψ) is such a submersion (resp. immersion), the
tangent space of N at x is given by

TxN = ker f ′(x) (resp. TxN = imψ′(0)). (9)

Suggestion: Observe that the LHS and RHS of Equation (9) are vector spaces of di-
mension p. Hence, it suffices to prove that TxN ⊂ ker f ′(x) (resp. imψ′(0) ⊂ TxN ). In
order to compute f ′(x)(Xx), Xx ∈ TxN , note that Xx = [α] = dtα|t=0, where α is a curve
α ∈ C∞(I, U ∩N), such that α(0) = x (resp. in order to compute ψ′(0)(Rp), remark that

Rp = T0Rp = T0Ω ∋ X = [α] = dtα|t=0 ,

where α is a curve α ∈ C∞(I,Ω), such that α(0) = 0).

3. Prove that the orthogonal group

O(n) = {A ∈ gl(n,R) : ÃA− id = 0}

is an n(n− 1)/2-dimensional, smooth, Hausdorff, and second countable manifold.
Suggestion: As O(n) = f−1(0), where

f : Rn2

∋ A→ ÃA− id ∈ Rn(n+1)/2

(as a matter of fact, the matrix ÃA− id is symmetric), it is enough to ensure that f is a
submersion at any point A ∈ O(n). Indeed, then O(n) is an embedded submanifold of
Rn2 that has the announced dimension, hence, it is a Hausdorff and second countable
manifold. Compute f ′(A)(H), H ∈ Rn2 , with the help of the velocity of a curve. Note
that based on the result obtained, we get f ′(A)(AK) = 2K, for any symmetric matrix K.

6 Tangent and cotangent bundles

6.1 Model of the cotangent space
We already mentioned that the algebra of smooth functions of a manifold M deserves

special attention. In the following, we refer to the tangent map at m ∈ M or derivative at m
of a function f ∈ C∞(M) as the differential of f at m and we write Tmf =: (d f)m. Remark
that

(d f)m ∈ HomR(TmM,R) = T ∗
mM .



Derivatives, Norbert Poncin 43

The dual space T ∗
mM of TmM is called the cotangent space of M at m.

Local coordinates of M around m, say (U,φ = (x1, . . . , xn)), induce a basis of TmM and of
T ∗
mM , by simple transport of the bases of the isomorphic vector spaces Rn and Rn∗. Indeed,

if
ei = (0, . . . , 0, 1, 0, . . . , 0)̃

denotes the ith vector of the canonical basis of Rn and if

εi = (0, . . . , 0, 1, 0, . . . , 0)

is the ith vector of the dual basis in Rn∗, since

Tmφ ∈ Isom(TmM,Rn) and Tm̃φ ∈ Isom(Rn∗, T ∗
mM),

the vectors
ti := (Tmφ)

−1ei and ci := Tm̃φε
i

are bases of the tangent and cotangent spaces respectively. These bases are dual, as

ci(tj) = Tm̃φε
i((Tmφ)

−1ej) = εi(Tmφ (Tmφ)
−1ej) = δij ,

where δij is Kronecker’s symbol.
Since xi = φi = εi ◦ φ : U → R is a smooth function xi ∈ C∞(U), we have

(d xi)m = Tφ(m)ε
i ◦ Tmφ = εi ◦ Tmφ = Tm̃φε

i = ci.

Hence the

Proposition 11. If (U,φ = (x1, . . . , xn)) is a coordinate chart of M , and if we write d xi instead
of

(d xi)m = Tm̃φε
i ,

the differentials (d x1, . . . , d xn) form a basis of the cotangent space T ∗
mM of M at every point

m ∈ U .

Recall that in the previous proposition the dependence of d xi on m is implicit. This sim-
plifying convention is prevalent in textbooks.

In Differential Geometry we prefer global viewpoints to computations in local coordinates.
Nevertheless, local computations are important.

In order to find the local coordinate form of the differential of a function f ∈ C∞(M),
remember first that if V is a real finite-dimensional vector space with basis ei and if ℓ ∈ V ∗ is
a linear form in the vector space V ∗ with dual basis εi, we have ℓ =

∑
i ℓ(ei)ε

i. When working
in a chart (U,φ = (x1, . . . , xn)) of M and applying the preceding remark to (d f)m ∈ T ∗

mM , with
m ∈ U , so that (t1, . . . , tn) is a basis of TmM and (d x1, . . . , d xn) a basis of T ∗

mM , we get

(d f)m =
∑

i(d f)m(ti)d x
i =

∑
i(fφ

−1)′(φ(m)) Tmφ (ti)d x
i

=
∑

i(fφ
−1)′(φ(m))(ei)d x

i =
∑

i ∂xi(fφ−1)|φ(m)d x
i.

In a chart, we can identify points m with their coordinates

(x1, . . . , xn) = (x1(m), . . . , xn(m)) = φ(m) .

We then recover the concept of differential known from Mechanics:



Derivatives, Norbert Poncin 44

Proposition 12. Let f ∈ C∞(M) and let (U, (x1, . . . , xn)) be a coordinate chart of M . For every
m ∈ U , the differential of f at m is given by

(d f)m =
∑
i

∂xif |md xi. (10)

Corollary 1. The differential at m ∈M ,

dm : C∞(M) ∋ f → (d f)m ∈ T ∗
mM,

is a linear operator that satisfies the Leibniz rule, i.e., for every f, g ∈ C∞(M), we have

d(f.g)m = (d f)m.g(m) + f(m).(d g)m .

Moreover dm vanishes on functions that are constant in an open neighborhood of m.

Note that the last property implies that dm is a local operator, i.e. that the value of dm
only depends on the values of f around m, or, more precisely, that, if f = g (resp. f = 0) in
an open neighborhood of m, then (d f)m = (d g)m (resp. (d f)m = 0).

The differential dm at m leads to a model of the cotangent space T ∗
mM , m ∈M. Indeed, as

dm is a linear operator, it induces a vector space isomorphism

d̃m : C∞(M)/ker dm → im dm ⊂ T ∗
mM .

If dm is surjective, the LHS quotient is a model of T ∗
mM .

Theorem 3. Let M be a smooth manifold of dimension n and let m ∈M . The differential dm at
m induces an isomorphism between the real n-dimensional cotangent vector space T ∗

mM and
the quotient space of the vector space of smooth functions of M by the vector subspace ker dm
of those functions whose differential at m vanishes:

T ∗
mM ≃ C∞(M)/ker dm . (11)

Remark. Bump functions and partitions of unity (we encourage the reader to familiarize
themselves with these concepts) are crucial technical tools that make it possible to move
from local considerations to global ones. For every smooth manifold M (let us stress that the
Hausdorff property is of importance here), every point m ∈M , and every open neighborhood
U of m, there is a smooth function γ ∈ C∞(M), valued in [0, 1], with support

supp γ = {m ∈M : γ(m) ̸= 0} ⊂ U ,

and which is equal to 1 in a neighborhood of m. Such functions are referred to as bump
functions or plateau functions. The existence of plateau functions will not be proven in
these notes.

In the following we give the proof of Theorem 3.

Proof. Let (U,φ = (x1, . . . , xn)) be a chart of M around m. For every

αm =
∑
i

αi,md x
i ∈ T ∗

mM, αi,m ∈ R ,

the function l ∈ C∞(U), l(x) =
∑

i αi,mx
i, has differential (d l)m = αm. If γ is a plateau function

with support in U and value 1 around m, we have f := γl ∈ C∞(M) and (d f)m = (d l)m =

αm.
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6.2 Model of the tangent space
In Mechanics, we associate to every vector a directional derivative:

v⃗ 7→(
f 7→ v⃗ · ∇⃗f =

∑
i v

i∂xif
)
.

The extension of this construction to tangent vectors in TmM , m ∈M , leads to an algebraic
characterization of the tangent space.

Let Xm ∈ TmM and f ∈ C∞(M). As (d f)m ∈ T ∗
mM , we have Xm(d f)m ∈ R. In order to

see that this corresponds to the just mentioned directional derivative, it suffices to write the
last value in local coordinates (U,φ = (x1, . . . , xn)) of M around m. As Xm =

∑
iX

i
mti and

(d f)m =
∑

j ∂xjf |md xj , we get

Xm =
∑

iX
i
mti 7→(

f 7→ Xm(d f)m = (d f)m(Xm) =
∑

j ∂xjf |md xj
(∑

iX
i
mti
)
=
∑

iX
i
m∂xif |m

)
.

(12)

Remember that the result
Xm(d f)m = (d f)m(Xm)

is the direct consequence of the identification

(T ∗
mM)∗ ≃ TmM ,

which is valid for finite-dimensional vector spaces.
Note that the map

LXm
: C∞(M) ∋ f 7→ Xm(d f)m ∈ R

is linear and satisfies Leibniz’ rule. We call such a map a derivation of C∞(M) at m and we
denote the set of all these derivations by Derm(C∞(M)). The set Derm(C∞(M)) is clearly a
vector space. Hence, we get a map

Lm : TmM ∋ Xm 7→ LXm
= Xm ◦ dm ∈ Derm(C∞(M)) . (13)

It will be shown that this map is a vector space isomorphism.

Theorem 4. Let M be a smooth manifold of dimension n and let m ∈ M . The directional
derivative Lm at m is an isomorphism between the real n-dimensional tangent vector space
TmM and the vector space Derm(C∞(M)) of derivations of C∞(M) at m :

TmM ≃ Derm(C∞(M)) . (14)

Because of Equation (12), the identification of Xm ∈ TmM and LXm
∈ Derm(C∞(M)) im-

plies in particular the identification of the basis tangent vectors ti with the derivations ∂xi |m
at m.

Proposition 13. If (U,φ = (x1, . . . , xn)) is a coordinate chart of M and if we write ∂xi instead
of

∂xi |m = (Tmφ)
−1ei ,

the derivations (∂x1 , . . . , ∂xn) form a basis of the tangent space TmM of M at every point m ∈ U

and every tangent vector Xm ∈ TmM reads

Xm =
∑
i

Xi
m∂xi , (15)

with Xi
m ∈ R.
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Observe that Theorem 4 provides an algebraic characterization of the tangent space at a
point of a manifold. In order to prove this result, we need the following lemma.

Lemma 1. Every derivation of C∞(M) at m is a local operator and vanishes on constant
functions.

Proof. Let δm ∈ Derm(C∞(M)) and let f ∈ C∞(M) vanish in an open neighborhood U of m.
The proof uses a bump function γ with support in U and value 1 in a neighborhood of m.
Since f = (1− γ)f , we get

δm(f) = δm((1− γ)f) = δm(1− γ).f(m) + (1− γ(m)).δm(f) = 0 .

As for the last statement, note that δm(c) = c δm(1), for every constant function c ∈ C∞(M),
and that

δm(1) = δm(1.1) = δm(1).1 + 1.δm(1) = 2δm(1) = 0 .

We are now able to understand the proof of Theorem 4.

Proof. It is obvious that the map Lm is linear. As concerns injectivity, note that LmXm = 0

implies that Xm(d f)m = 0, for all f ∈ C∞(M). Since dm is surjective, this means that Xm

vanishes on T ∗
mM . Hence Xm = 0. Surjectivity of Lm is less obvious. Let δm ∈ Derm(C∞(M)).

Because of Theorem 3, we have

TmM ≃ (T ∗
mM)∗ ≃ HomR(C

∞(M)/ker dm,R) .

We will prove that δm descends to the quotient C∞(M)/ker dm . After that δm is well-defined
on T ∗

mM and δm(d f)m = δm(f), for all f ∈ C∞(M). Finally δm ∈ TmM and

Lmδm = Lδm = δm ◦ dm = δm .

This then completes the proof.
It remains to show that, for every f ∈ C∞(M), we have δmf = 0, if (d f)m = 0 . Take a

coordinate chart (U,φ = (x1, . . . , xn)) at m and set φ(m) = x0. When using a Taylor expansion
in the neighborhood of x0, say in φ(U) (we agree to restrict U if necessary), we get

f(x)− f(x0) =
∑
i

(xi − xi0) ((∂xif)(x0) + εi(x− x0)) =

∑
i

(xi − xi0)εi(x− x0) =:
∑
i

pi(x)gi(x).

It follows that f |U = f(m) +
∑

i p
igi. If γ denotes again a bump function, we obtain

δm(f) = δm(γ2f |U ) = δm(f(m)) +
∑

i δm(γpiγgi)

=
∑

i

(
δm(γpi).γ(m)gi(m) + γ(m)pi(m).δm(γgi)

)
= 0,

as pi(m) = gi(m) = 0.
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6.3 Tangent and cotangent bundles
In Mechanics, a vector field is a vector v⃗ = v⃗(m) that depends on the point m where it is

“measured”, i.e. is a smooth map

v⃗ : R3 ∋ m 7→ v⃗(m) ∈ {m} × R3 ≃ TmR3

(of course, the field, e.g. a constant [with respect to time] fluid velocity, could be defined only
in an open subset of R3). In Differential Geometry, we investigate vector fields on manifolds.
A contravariant vector field (resp. covariant vector field) on a manifold M is a map

X :M ∋ m 7→ Xm ∈ TmM (resp. α :M ∋ m 7→ αm ∈ T ∗
mM) .

As the target space of a map must be independent of its variable (here m ), we define

TM :=
∐

m∈M

TmM (resp. T ∗M :=
∐

m∈M

T ∗
mM),

where
∐

denotes the disjoint union. The set TM (resp. T ∗M ) is the tangent bundle (resp.
cotangent bundle) of the manifold M .

The tangent and cotangent bundles are prototypes of vector bundles. Roughly, if to every
point m of a manifold M (imagine a “horizontal” line segment [resp. a “horizontal” surface]),
we attach a vector space, e.g. TmM or T ∗

mM (pictured as a “vertical” line segment [resp. a
“reversed vertical” triangle] over m), the amalgamation of all these vector spaces is a vector
bundle (hence, an often used mental picture of a vector bundle is a rectangle over a line
segment).

TmM
TM

M

Xm

m

x = (x1, ..., xn)

φ

π

U

Figure 5: Tangent bundle of a manifold

More precisely, a vector bundle is made of three ingredients, the amalgamation or total
space (on Figure 5: TM ), the underlying manifold or base space (on Figure 5: M ), and the
projection that associates to every vector in the total space the corresponding base point (on
Figure 5: π). The preimage of a base point by the projection is referred to as the fiber of the
bundle at this point (on Figure 5: π−1{m} = TmM is the fiber of TM at m).
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In order to have the possibility to consider smooth contravariant (resp. covariant) vector
fields

X :M ∋ m 7→ Xm ∈ TM (resp. α :M ∋ m 7→ αm ∈ T ∗M) ,

we must endow their target TM (resp. T ∗M ) with a manifold structure, i.e. we must assign
coordinates to every vector in TM (resp. in T ∗M ).

Each vector of TM belongs to a single tangent space TmM (m ∈ M ). Denote the vector
under consideration by Xm and note that it has a unique decomposition

Xm =
∑
i

Xi
m∂xi

in the basis (∂x1 , . . . , ∂xn), which is induced by a chosen coordinate chart

(U,φ) = (U, (x1, . . . , xn))

of M around m . However, the map

ϕ : π−1(U) = ⨿µ∈UTµM ⊃ TmM ∋ Xm 7→ (X1
m, . . . , X

n
m) ∈ Rn

is not a coordinate map of TM, since each tuple (X1
m, . . . , X

n
m) ∈ Rn is the image by ϕ of one

vector in every tangent space TµM (µ ∈ U ), i.e. of infinitely many vectors in π−1(U). To fix the
problem that the coordinate tuple does not inform about which point of M the considered
vector is located over, we use the map

Φ : π−1(U) = ⨿µ∈UTµM ⊃ TmM ∋ Xm 7→ (x1, . . . , xn, X1
m, . . . , X

n
m) ∈ φ(U)× Rn , (16)

where (x1, . . . , xn) are the coordinates of m in the chosen chart (U,φ) of M. This map is clearly
a bijection valued in the open subset φ(U) × Rn ⊂ R2n, so that (π−1(U),Φ) is a chart of TM
– induced by the chart (U,φ) of M . The coordinates (x1, . . . , xn) of m = π(Xm) are the base
coordinates of Xm and give the position of its base point m; the coordinates (X1

m, . . . , X
n
m) of

Xm are the fiber coordinates of Xm and give the position of Xm in the fiber TmM of TM at
m.

If the chart (U,φ) runs through an atlas of M , the chart (π−1(U),Φ) runs through an atlas
of TM. To prove this assertion, we need to verify the three atlas axioms.

(i) The cover condition is fulfilled:

∪π−1(U) = π−1(∪U) = π−1(M) = TM .

(ii) The mental completion of Figure 5 illustrates that

Φ(π−1(U) ∩ π−1(U ′)) = Φ(π−1(U ∩ U ′)) = φ(U ∩ U ′)× Rn ,

where the RHS is open since we start from an atlas of M .

(iii) It remains to be checked whether the coordinate transformations are smooth. Let

(U ′, φ′) = (U ′, (y1, . . . , yn))
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be a second coordinate chart of M around m and let (π−1(U ′),Φ′) be the induced chart
of TM :

Φ′ : π−1(U ′) = ⨿µ∈U ′TµM ⊃ TmM ∋ Xm 7→ (y1, . . . , yn, Y 1
m, . . . , Y

n
m) ∈ φ′(U ′)× Rn ,

where (y1, . . . , yn) are the coordinates of m in (U ′, φ′) and where (Y 1
m, . . . , Y

n
m) are the

coordinates of Xm in the basis (∂y1 , . . . , ∂yn) of TmM , which is induced by (U ′, φ′), i.e.
where

Xm =
∑
j

Y j
m∂yj .

The corresponding coordinate transformation in TM is

Φ′Φ−1 : φ(U∩U ′)×Rn ∋ (x1, . . . , xn, X1
m, . . . , X

n
m) 7→ (y1, . . . , yn, Y 1

m, . . . , Y
n
m) ∈ φ′(U∩U ′)×Rn .

All its component maps must be smooth. The n first component maps are the compo-
nents of the coordinate transformation

φ′φ−1 : φ(U ∩ U ′) ∋ (x1, . . . , xn) 7→ (y1, . . . , yn) ∈ φ′(U ∩ U ′)

in M and are smooth since we start from an atlas of M . As for the n last component
maps, it follows from the chain rule that

Xm =
∑
i

Xi
m∂xi =

∑
ij

Xi
m∂xiyj∂yj =

∑
j

Y j
m∂yj ,

so that
Y j
m =

∑
i

Xi
m∂xiyj ,

which is a component map that is smooth with respect to the xi and the Xi
m, since the

component maps yj are smooth as stated.

From (i), (ii) and (iii) it follows that the pairs (π−1(U),Φ), induced by the charts (U,φ) of
an n-dimensional smooth atlas of the base manifold M form a 2n-dimensional smooth atlas
of the tangent bundle TM of M , so that the tangent bundle of a manifold is a manifold of
double dimension

However, since by convention we only use manifolds whose topology is Hausdorff and
second countable, we still have to prove these properties.

First, let us note that the projection π : TM ⊃ TmM ∋ Xm 7→ m ∈ M has the coordinate
form

π(x1, . . . , xn, X1
m, . . . , X

n
m) = (x1, . . . , xn),

which implies that π is smooth (and is a submersion). Take now two vectors X,X ′ in TM

and try to separate them. If their projections m := π(X) and m′ := π(X ′) are different, we
can separate m and m′ by open subsets U and U ′ of M . But then π−1(U) and π−1(U ′) are
open in TM and separate X and X ′. If m = m′, the vectors X and X ′ are in a chart domain
π−1(U), which is homeomorphic to an open subset of R2n, so the vectors can be separated
there.

As for second countability, note that a manifold, say M ′, which is (a priori not second
countable and is) a countable union of chart domains, say U ′

α (α ∈ N), is second countable.
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Indeed, as any chart domain U ′
α is homeomorphic to an open subset of Rn′ , it is also second

countable. Let now W be an open subset of M ′. Since W = ∪α∈NW ∩U ′
α and W ∩U ′

α is a union
of elements of the countable basis of U ′

α, the union over α ∈ N of these countable bases is
a countable basis of M ′. But then, as the base manifold M of the tangent bundle TM is
second countable, it is a countable union of chart domains, so that TM is also a countable
union of chart domains.

Hence the following result:

Theorem 5. If M is a smooth n-dimensional (Hausdorff and second countable) manifold, its
tangent bundle TM is a smooth (Hausdorff and second countable) manifold of dimension 2n.

Because of this theorem, we can consider smooth vector fields, i.e. smooth maps

X :M ∋ m 7→ Xm ∈ TmM ⊂ TM .

These basic objects will be investigated in the next chapter. Moreover, the elementary idea
that the derivative of a smooth function is again a smooth function, can now be extended to
maps between manifolds. In fact:

Proposition 14. If f ∈ C∞(M,M ′), its derivative or tangent map

Tf : TM ⊃ TmM ∋ Xm 7→ Tmf(Xm) ∈ Tf(m)M
′ ⊂ TM ′

is smooth.

The proof of this proposition is easy and will not be given.

Of course, the cotangent bundle T ∗M can also be endowed with a manifold structure.

Theorem 6. If M is a smooth n-dimensional (Hausdorff and second countable) manifold, its
cotangent bundle T ∗M is a smooth (Hausdorff and second countable) manifold of dimension
2n.

Proof. The proof of Theorem 6 is analogous to that of Theorem 5. If we denote the projection
T ∗M →M by π∗, every chart (U,φ = (x1, . . . , xn)) of M induces a chart ((π∗)−1(U),Φ∗) of T ∗M ,
whose coordinate map is defined by

Φ∗ : (π∗)−1(U) ⊃ T ∗
mM ∋ αm 7→ (x1, . . . , xn, αm

1 , . . . , α
m
n ) ∈ φ(U)× Rn, (17)

where x = (x1, . . . , xn) are the coordinates of the projection m = π∗(αm) in the considered
chart of M and where (αm

1 , . . . , α
m
n ) are the components of α in the induced basis d xi of

T ∗
mM . The transition maps are here

Φ′∗(Φ∗)−1 : (x, αm
1 , . . . , α

m
n ) 7→ (y(x), ∂y1xj |y=y(x)α

m
j , . . . , ∂ynxj |y=y(x)α

m
j ).

They are obviously smooth with respect to x = (x1, . . . , xn) and (αm
1 , . . . , α

m
n ).

Although in this Lecture script no general vector bundles or even fiber bundles are
treated—these geometric objects are similar to vector bundles, except that the “space” over
every base point, the fiber over this point, is not a vector space, but an arbitrary manifold—
some additional comments on bundles are appropriate. The equations (16) and (17) show
that a fiber bundle is locally diffeomorphic to a product manifold, although globally it can



Derivatives, Norbert Poncin 51

be a more complex topological object. For example, the Möbius strip (August Ferdinand
Möbius, 1790 - 1868, German mathematician and theoretical astronomer) is a fiber bundle
over the base manifold S1. Its fiber ] − 1, 1[, whose 0 point is glued to every point m ∈ S1,
undergoes a half rotation when m passes through S1. It is obvious that the Möbius strip
has a smooth 2-dimensional atlas consisting of two charts, for instance

φ1 : U1 →]0, 2π[×]− 1, 1[ and φ2 : U2 →]− π, π[×]− 1, 1[ .

The transition diffeomorphism is

φ2φ
−1
1 :

]0, π[×]− 1, 1[

]π, 2π[×]− 1, 1[

}
∋ (x,X) 7→

{
(x,X) ∈]0, π[×]− 1, 1[

(x,−X) ∈]π, 2π[×]− 1, 1[
.

Consequently, the Möbius bundle is locally diffeomorphic to product manifolds, although
globally it is topologically more complicated. Although the aim of this remark is to emphasize
that fiber bundles are in general only locally trivial, i.e. are in general only locally diffeomor-
phic to a product manifold, it should be mentioned that there are of course exceptions. For
example, since Rn is a manifold with a single global chart (Rn, id), Equation (16) shows that
the tangent bundle TRn is globally diffeomorphic to the product manifold Rn × Rn ≃ R2n.





Chapter 5
Differential Equations

on Manifolds

1 Definition
In Chapter 4, we defined a smooth vector field on a manifold M as a smooth map X :

M ∋ m 7→ Xm ∈ TM, such that Xm ∈ TmM, for all m ∈ M . The last requirement admits the
equivalent formulation used in

Definition 1. Let TM be the tangent bundle of a manifold M and let π : TM → M be the
corresponding projection onto the base. A smooth vector field of M is a smooth map X : M →
TM, such that π ◦X = idM .

TM

X

Xm

Xm′

X

TmM Tm′M

M
m m′

Figure 6: Vector field of a manifold

Figure 6 suggests to interpret a smooth vector field of a manifold M as a smooth section
of the tangent bundle TM of M . The standard notation for the set of smooth vector fields of
M is Vect(M) and the one for the set of smooth sections of TM is Γ(TM): Vect(M) = Γ(TM) .

In particular, a smooth vector field of Rn is a smooth map X : Rn ∋ m 7→ Xm ∈ TmRn ⊂ TRn

and, since TmRn ≃ Rn and TRn ≃ R2n, we get

Vect(Rn) ≃ C∞(Rn,Rn) ,

53
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so we recover the original definition of a vector field of Rn as a family of vectors of Rn indexed
by the point of Rn.

In the following, all vector fields of M or, equivalently, sections of TM will implicitly be
assumed to be smooth.

2 Playing with local forms
The following observations provide insight into the practical handling of coordinate forms.

Remember that if f ∈ C∞(M,M ′) and if (U ′, φ′ = (y1, . . . , yn
′
)) is a chart of M ′ and (U,φ =

(x1, . . . , xn)) a chart of M , such that f(U) ⊂ U ′, the local form of f in these coordinate systems
is φ′fφ−1. If we agree to identify a point of a chart domain with its coordinates in the
corresponding chart map, this local form reads

(φ′fφ−1)(x) = (y1(f(x)), . . . , yn
′
(f(x))) = (f1(x), . . . , fn

′
(x)) =: f(x),

where x denotes the coordinates in the source chart of the variable m ∈ U of f and where
f(x) is the point of Rn′ made of the coordinates in the target chart of the image f(x) ∈ U ′. If,
for instance, f ∈ C∞(M), its local form is

(fφ−1)(x) = f(x) .

Smoothness of f just means that these coordinate forms f(x) or f(x) are smooth.

If we use the notation of Chapter 4, Subsection 6.3, the coordinate form of a vector field
X ∈ Vect(M) ⊂ C∞(M,TM) is

(ΦXφ−1)(x) = (x,X1(x), . . . , Xn(x)) ≃ (X1(x), . . . , Xn(x)) =: X(x),

where the Xi(x) are the components of Xm in the basis of TmM induced by the coordinates
xi. Smoothness of X means that these components Xi are smooth with respect to x ∈ φ(U)

or, equivalently, smooth with respect to m ∈ U . In other words, smoothness of a vector field
of M means that, in every coordinate chart (U,φ = (x1, . . . , xn)) of an atlas of M , this field
reads

X|U =
∑
i

Xi∂xi , with Xi ∈ C∞(U),∀i. (1)

Often we also refer to this formula as the local form of a vector field.

These examples show that a diffeomorphism φ ∈ Diff(U,φ(U)) transforms a function f ∈
C∞(U) into a function φ∗f ∈ C∞(φ(U)), defined by

(φ∗f)(x) := f(x) = (fφ−1)(x), (2)

and changes a vector field X ∈ Vect(U) into a vector field φ∗X ∈ Vect(φ(U)) ≃ C∞(φ(U),Rn),
defined by

(φ∗X)x := X(x) = Tφ−1(x)φXφ−1(x). (3)

Indeed, for any x ∈ φ(U) ⇄ m ∈ U , we have

Tφ−1(x)φXφ−1(x) = TmφXm = Tmφ
∑
i

Xi
m∂xi |m = Tmφ

∑
i

Xi
m(Tmφ)

−1(ei)
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= Tmφ(Tmφ)
−1
∑
i

Xi
mei = X(x).

These examples are only the shadow of the general fact that diffeomorphisms act on most
objects and transform them into objects of the same type. For instance, if ϕ ∈ Diff(M,M ′)

and X ∈ Vect(M), it is natural to define the action ϕ∗X ∈ Vect(M ′) of ϕ on X or pushforward
of X by ϕ using exactly the same formula as above, i.e. to set

(ϕ∗X)m′ := Tϕ−1(m′)ϕXϕ−1(m′) ∈ Tm′M ′, (4)

for all m′ ∈ M ′. Since ϕ∗X = (Tϕ)Xϕ−1, the vector field ϕ∗X is smooth (recall that we have
chosen to consider only smooth vector fields in these notes). It is instructive to check this
fact by looking at the local form of ϕ∗X.

Of course, the local form of a derivative

Tmf = (Tf(m)φ
′)−1 (φ′fφ−1)′(φ(m)) Tmφ,

with self-explanatory notations, is the linear map or matrix

(φ′fφ−1)′(φ(m)) = ∂xf(x) = (∂xjf i(x))ij ,

where the RHS is evaluated at x = φ(m). More precisely, we have the

Proposition 1. If f ∈ C∞(M,M ′) and m ∈ M , and if (U,φ = (x1, . . . , xn)) is a chart of M at m
and (U ′, φ′ = (y1, . . . , yn

′
)) is a chart of M ′, such that f(U) ⊂ U ′, the derivative

Tmf ∈ HomR(TmM,Tf(m)M
′)

at m of f is characterized, in the induced bases ∂xi |m of TmM and ∂yi |f(m) of Tf(m)M
′, by the

derivative
∂xf(x) = (∂xjf i(x))ij

at x = φ(m) of the coordinate form of f in the considered charts.

Proof. Remember that the matrix of a linear map ℓ ∈ HomR(V, V
′), where V and V ′ are finite-

dimensional real vector spaces, in two bases (tj)j of V and (t′i)i of V ′, is given by c′i(ℓ(tj)),
where (c′i)i is the dual basis of (t′i)i . It then suffices to note that in the present case

tj = ∂xj |m = (Tmφ)
−1(ej) and c′i = (d yi)f(m) = T f̃(m)φ

′(εi) ,

and to use the above definition of Tmf .

The local form of
(ϕ∗X)m′ := TmϕXm ∈ Tm′M ′ ,

where m = ϕ−1(m′) (see above), can now easily be found. We get

∂xϕ(x)X(x)|
x=ϕ−1

(y)
.

Note that the coordinate form of the “composite object”

Tϕ−1(m′)ϕXϕ−1(m′)

is the “object” which is composed in the same way of the local forms of the components. As
a byproduct, we again find that ϕ∗X is smooth.
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3 Algebraic structures on Vect(M)

Just as addition and multiplication in R induce similar operations on functions f : M ∋
m 7→ f(m) ∈ R, the vector space structures of the tangent spaces TmM (m ∈ M ) induce
a vector space structure on vector fields X : M ∋ m 7→ Xm ∈ TmM ⊂ TM . If r ∈ R and
X,Y ∈ Vect(M), the vector fields X + Y ∈ Vect(M) and rX ∈ Vect(M) are of course defined
pointwise, i.e. defined by (X + Y )m = Xm + Ym and (rX)m = r Xm . The smoothness of
X+Y and rX follows from the above remarks on the smoothness of a vector field. Of course,
the new operations inherit the properties of the inducing vector space operations, so that
Vect(M) is indeed a real vector space for the induced operations.

It is possible to substitute functions f ∈ C∞(M) for reals r ∈ R, i.e. to set (fX)m =

f(m)Xm, but the “scalars” f then live in a ring C∞(M) (even in an associative commuta-
tive unital algebra) and not in a field R. Apart from this difference, this leads to a similar
structure on Vect(M) as before, which we call the module structure of Vect(M) over C∞(M).

Proposition 2. The set Vect(M) of vector fields of a manifold M is a vector space over the field
R of real numbers and a module over the ring C∞(M) of smooth functions of M .

The algebraic interpretation of the tangent space, TmM ≃ Derm(C∞(M)), m ∈M , leads to
an algebraic characterization of vector fields.

Theorem 1. The vector space Vect(M) is isomorphic with the vector space Der(C∞(M)) of
derivations of the algebra C∞(M):

Vect(M) ≃ Der(C∞(M)) .

Let us first clarify that:

Definition 2. A derivation of the algebra C∞(M) is an endomorphism δ ∈ End(C∞(M)) that
satisfies the Leibniz rule, i.e. the condition δ(f.g) = δ(f).g + f.δ(g), for all f, g ∈ C∞(M). The
vector space of all derivations of C∞(M) is denoted by Der(C∞(M)).

Proof of Theorem 1. We need to define an isomorphism

L : Vect(M) ∋ X 7→ LX ∈ Der(C∞(M)) ,

that is, for each X ∈ Vect(M) and each f ∈ C∞(M) we must define a function LXf ∈ C∞(M)

and show that LXf is linear in f and satisfies Leibniz’s rule. To define the function LXf , we
set

(LXf)(m) := LXm
f = (d f)m(Xm) ∈ R ,

for each m ∈M . The properties of L follow from the similar properties of

Lm : TmM ∋ Xm 7→ LXm
∈ Derm(C∞(M)) .

The detailed proof of the last statement is not particularly exciting and is not given here.
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In addition to its real vector space and function-module structures, the set Vect(M) has
a third important algebraic structure which we now describe.

If ⋆ is an associative algebra multiplication on a vector space (A,+, ·) , it induces the
commutator-bracket-multiplication

[−,−]c : A×A ∋ (a, b) 7→ a ⋆ b− b ⋆ a ∈ A (5)

on A . However, the commutator bracket is not a new associative multiplication on A since

[a, [b, c]] ̸= [[a, b], c]

but
[a, [b, c]] = [[a, b], c] + [b, [a, c]] . (6)

The property (6) which means that [a,−] acts as a derivation on the product [b, c] , is referred
to as the Jacobi identity. Further, it is clear that the multiplication [−,−] is antisymmetric,
i.e. that

[b, a] = −[a, b] . (7)

This observation motivates the following

Definition 3. A Lie algebra (LA for short) structure on a vector space (V,+, ·) is a bilinear map

[−,−] : V × V → V

on V that satisfies

• [v, u] = −[u, v] (antisymmetry (AS for short)) and

• [u, [v, w]] = [[u, v], w] + [v, [u,w]] (Jacobi identity (JI for short)),

for all u, v, w ∈ V .

Proposition 3. Every associative algebra structure ⋆ on a vector space (A,+, ·) induces a
Lie algebra structure on (A,+, ·) which is given by the commutator bracket [−,−]c defined by
Equation (5).

Now note that the usual composition ◦ of maps provides the vector space End(V ) of endo-
morphisms of an underlying vector space V with an associative algebra structure. Therefore,
the commutator bracket

[ℓ, ℓ′]c = ℓ ◦ ℓ′ − ℓ′ ◦ ℓ ,

ℓ, ℓ′ ∈ End(V ), defines a LA structure on the endomorphism space. Now, if one chooses as
the underlying vector space V the space C∞(M) of functions of a manifold, one obtains a
LA structure on the space End(C∞(M)) and also on its subspace Der(C∞(M)) of derivations
of functions. To prove that this subspace inherits the LA structure from the endomorphism
space, we need only show that the subspace is closed under the commutator bracket, i.e.
that if

δ, δ′ ∈ Der(C∞(M)) ⊂ End(C∞(M)) ,

then
[δ, δ′]c ∈ Der(C∞(M)) ,
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or, more explicitly, the commutator bracket of two endomorphisms satisfying the Leibniz rule
itself satisfies this rule. The interesting aspect here is that it turns out that the commutator
bracket satisfies the Leibniz rule, but not the two terms whose difference it is. Verifying all
this is easy, we leave it to the reader.

Let us now recall the vector space isomorphism

L : Vect(M) ⇄ Der(C∞(M)) (8)

from Theorem 1. Explicitly, the Lie derivative L is a bijection preserving internal addition
and external multiplication by scalars. It allows us to naturally transfer the LA structure
from the derivations to the vector fields by defining the bracket [X,Y ] of two vector fields
X,Y ∈ Vect(M) by

[X,Y ] := L−1
[LX ,LY ]c

∈ Vect(M) . (9)

Since the inducing bracket [−,−]c on the derivations is a Lie bracket, i.e. satisfies the Jacobi
identity and is antisymmetric, it is fairly obvious and easy to verify that the same holds for
the induced bracket [−,−] on the vector fields. Thus, the set Vect(M) of vector fields of
a manifold M has a rich and interesting algebraic structure: it is a real vector space, a
C∞(M)-module, and a real Lie algebra. Since the defining equation (9) can be equivalently
written as

L[X,Y ] := [LX , LY ]c ,

the bijection L not only preserves addition and multiplication by scalars, but it also respects
the Lie bracket: the bijection L is not only an isomorphism of vector spaces, but even an
isomorphism of Lie algebras.

Theorem 2. The real vector space Vect(M) of the vector fields of a manifold M is a Lie algebra
with bracket [−,−] which is isomorphic to the Lie algebra Der(C∞(M)) of the derivations of the
functions of M with the commutator bracket [−,−]c, and the Lie algebra isomorphism between
the two is given by the Lie derivative:

L[X,Y ] = [LX , LY ]c , for all X,Y ∈ Vect(M) . (10)

We often identify a vector field with the corresponding derivation. For example, if
(U, (x1, . . . , xn)) is a coordinate chart of M the local form of a vector field X ∈ Vect(M) in
these coordinates is

X|U =
∑
i

Xi∂xi ,

where the LHS is a vector field on U and the RHS is the corresponding derivation of C∞(U)

(see Equation (1)). More generally, if we identify X with LX , the equation (10) becomes

[X,Y ] = [X,Y ]c = X ◦ Y − Y ◦X ,

where X,Y are considered as vector fields in the LHS and as derivations in the subsequent
parts of the last equation. From here it follows that if

X|U =
∑
i

Xi∂xi and Y |U =
∑
j

Y j∂xj ,
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then

[X,Y ]|U =
∑
i

Xi∂xi

∑
j

Y j∂xj (−)

−
∑
j

Y j∂xj

(∑
i

Xi∂xi(−)

)
= . . . =

∑
j

(
X(Y j)− Y (Xj)

)
∂xj ,

(11)
where X,Y are viewed as vector fields in the LHS and as derivations or Lie derivatives in the
RHS. The same type of proof allows us to determine the behavior of the R-bilinear bracket
[−,−] of vector fields with respect to the module structure of the vector fields over the func-
tions. If f, g ∈ C∞(M), then

[fX, gY ] = fX (gY (−))− gY (fX(−)) = . . . = fg [X,Y ] + f X(g)Y − g Y (f)X , (12)

where X,Y are considered as vector fields except when acting on a function where they are
considered as derivations. We encourage the reader to either memorize the formulas (11)
and (12) or practice finding them quickly when needed.

4 Differential equations on manifolds
Consider a particle p moving in a manifold M . Let m ∈M be an arbitrary initial position

and let ϕt(m) ∈M be the position of p at time t ∈ R. It is clear that

ϕ0(m) = m and ϕt(ϕs(m)) = ϕt+s(m). (13)

If
ϕ ∈ C∞(R×M,M) and, for every fixed t ∈ R, ϕt ∈ Diff(M), (14)

it follows from the previous properties that the maps ϕt form a subgroup of the group Diff(M),
or, better, a 1-parameter group of diffeomorphisms.

Such a 1-parameter group {ϕt : t ∈ R} of diffeomorphisms of M defines a vector field of
M . Indeed, for every fixed m ∈ M , the map ϕ(m) = ϕt(m) ∈ C∞(R,M) is a curve of M that
passes through m at t = 0, so

Xm := dt|t=0ϕt(m) ∈ TmM

defines a vector field X of M .

M

m = ϕ0(m)

ϕt(m)

Xm = dt|t=0ϕt(m)

Xϕt(m) = dtϕt(m)

Figure 7: 1-parameter group and vector field

In the following, we examine the opposite problem, i.e. we start from a vector field and
try to build a 1-parameter group of diffeomorphisms from it. More precisely, if X ∈ Vect(M),
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is it then possible to integrate X, i.e. to find curves α ∈ C∞(I,M) in M (I open interval in R)
such that

dtα = Xα(t),∀t ∈ I ?

Furthermore, do the solutions of this equation form a 1-parameter group of diffeomor-
phisms?

Definition 4. An integral curve of a vector field X ∈ Vect(M) of a manifold M , is a curve
α ∈ C∞(I,M) of M (I denotes an open interval of R) such that

dtα = Xα(t),∀t ∈ I. (15)

In view of the above remarks on local forms, it is clear that in local coordinates (U,φ) of
M the equation (15) reads

dtα = Xα(t), ∀t ∈ I, (16)

provided that α(I) ⊂ U . The last equation has the form X (t,α, dtα) = 0 of a known relation
X between an unknown function α, its derivative dtα and its variable t, and is therefore an
ordinary differential equation (ODE). As in fact X does not explicitly depend on the variable t
in the present case, Equation (16) is a so-called autonomous ODE. In Analysis, there exists a
local existence and uniqueness theorem for this type of equation. Of course, the statements
of this theorem can be transferred to Equation (15). They then read as follows:

Theorem 3. Let X ∈ Vect(M). For every t0 ∈ R and m0 ∈ M, there are open neighborhoods
]t0 − ε, t0 + ε[, ε > 0, of t0 in R and U of m0 in M , such that for every value m ∈ U , there is
an integral curve α(m) = α(t,m) of X, which is defined in the interval ]t0 − ε, t0 + ε[ – which is
independent of m – and passes through the point m at time t = t0. Moreover, α ∈ C∞(]t0−ε, t0+
ε[×U,M), and if β ∈ C∞(I,M) and γ ∈ C∞(J,M) are two integral curves of X that coincide at
one point t1 ∈ I ∩ J , the they coincide everywhere they are both defined, i.e. on I ∩ J.

We could of course view the points m as the initial values of α at the initial time t = t0.
However, we restrict the use of the term “initial value” to the case t = t0 = 0. Let now m be
any point in M and consider all the integral curves αι ∈ C∞(Iι,M) of X with initial value m.
As any two such curves αi and αj coincide at the point 0 ∈ Ii ∩ Ij, they coincide everywhere
in Ii ∩ Ij. Hence, we can glue all the αι together – remark that, due to the previous local
existence and uniqueness theorem, there is at least one such curve – and construct a unique
maximal integral curve of X with initial value m. This maximal curve ϕ(m) = ϕt(m) is defined
in Im = ∪ιIι by ϕt(m) = αι(t), if t ∈ Iι. It is obvious that we obtain this way a well-defined
smooth integral curve of X with initial value m and that this curve is maximal and unique.

Proposition 4. Let X ∈ Vect(M). For every point m ∈ M , there exists a unique maximal
integral curve ϕt(m) of X with initial value m.

Take now any integral curve ϕt(m) and any point ϕs(m) on it. Observe that we assume
here that s ∈ Im. As a consequence of the last proposition, there is a unique maximal
integral curve ϕt(ϕs(m)) that admits the point ϕs(m) as initial value. Of course, we ask if
ϕt(ϕs(m)) = ϕt+s(m) and if Iϕs(m) = Im − s. These results are reworded in

Proposition 5. Let m ∈M . If s ∈ Im, then

t ∈ Iϕs(m) ⇔ t+ s ∈ Im,

and in this case, we have
ϕt(ϕs(m)) = ϕt+s(m). (17)
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Thus Property (17) is valid if the inner map of the LHS is defined and either the LHS
composite map is defined or the RHS map is defined.

Lemma 1. Let X ∈ Vect(M). If α = α(t) is an integral curve of X with domain I, then α(·+ s) =
α(t+ s) is an integral curve of X with domain I − s, for every s ∈ R.

We first prove this lemma.

Proof. It is clear that α(·+ s) ∈ C∞(I − s,M). Further, for every t ∈ I − s, we have

dt(α(t+ s)) = (dτα)(t+ s).1 = Xα(t+s).

Now we establish the above proposition.

Proof. In view of the lemma, the RHS ϕt+s(m) of Equation (17) is an integral curve of X with
domain Im − s and initial value ϕs(m) (remark that we used here the fact that s ∈ Im). It
follows that

Im − s ⊂ Iϕs(m) (18)

and that for every t ∈ Im − s, we have

ϕt+s(m) = ϕt(ϕs(m)). (19)

When applying the lemma, for a translation by −s, to the LHS ϕt(ϕs(m)) (we use again
the information s ∈ Im), which is an integral curve of X with domain Iϕs(m), we find that
ϕt−s(ϕs(m)) is an integral curve of X that is defined in Iϕs(m) + s and has initial value (the
fact that 0 lies in the domain comes from Equation (18)) m (this results from Equation (19)).
Hence, Iϕs(m) + s ⊂ Im.

M

R

D ⊂ R×M

0t

Wt ⊂ M

Im ⊂ Rm

Im′ ⊂ Rm′

Im′′ ⊂ Rm′′

Figure 8: Domains D, Im and Wt
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We understand that the image of several maximal integral curves of a vector field X ∈
Vect(M) resembles a liquid flow. Hence, the family of all maximal curves, ϕ = ϕ(t,m) :=

ϕt(m), t ∈ Im,m ∈ M, is called the flow of the vector field X. The domain of the flow ϕ is
D = {(t,m) ∈ R×M : t ∈ Im} (see Figure 8). If we fix in ϕ = ϕ(t,m) the variable m, we recover
of course the integral curve ϕt(m) (ϕm = ϕm(t) would be a better notation, but we’ll stick to
the traditional ones), which is defined in Im, i.e. in the section of D at level m. If we fix t,
we obtain a map ϕt = ϕt(m) that is defined in the section Wt ⊂ M of D at level t. Finally,
we have ϕ : D ⊂ R ×M → M and ϕt : Wt ⊂ M → M . As we thus get close to the concept
of 1-parameter group of diffeomorphisms, see above, three natural questions arise: can we
prove that D is open and ϕ smooth, is ϕt a diffeomorphism, and under which condition do
we have D = R×M and Wt =M?

Theorem 4. Let X ∈ Vect(M) and denote by Im the domain of the maximal integral curve
ϕt(m) of X with initial value m ∈M . The source D = {(t,m) ∈ R×M : t ∈ Im} of the flow ϕ(t,m)

of X is an open subset of R×M and ϕ ∈ C∞(D,M).

It suffices to prove that for every (t0,m0) ∈ D, there are open neighborhoods ]t0 − ε, t0 + ε[

of t0 in R and U of m0 in M , such that ]t0 − ε, t0 + ε[×U ⊂ D and ϕ ∈ C∞(]t0 − ε, t0 + ε[×U,M).
At first sight this requirement seems to be a direct consequence of Theorem 3, which

guarantees the existence of a flow

α = α(t,m) ∈ C∞(]t0 − ε, t0 + ε[×U,M) .

However, for every m ∈ U , the integral curve α(t,m) passes through m at time t = t0 and not
at time t = 0. The curve α(t+ t0,m) is an integral curve, which is defined in ]− ε, ε[ and has
initial value m, so that ]− ε, ε[⊂ Im, for all m ∈ U , and

ϕ = ϕ(t,m) = α(t+ t0,m) ∈ C∞(]− ε, ε[×U,M) .

Finally it follows from Theorem 3 that, for every m0 ∈ M , there is an “open box” ] − ε, ε[×U
around (0,m0), which sits inside D and on which ϕ is smooth. In other words, the above
requirement is a priori only satisfied for the points of the type (0,m0).

The following idea underlies the extension of this conclusion to any point (t0,m0) ∈ D. As

ϕ(t− t0,m) ∈ C∞(]t0 − ε, t0 + ε[×U,M),

if in addition ϕ(t0,m) ∈ C∞(U,U), then, on the one hand

ϕ(t− t0, ϕ(t0,m)) ∈ C∞(]t0 − ε, t0 + ε[×U,M),

and on the other, this last mapping coincides with ϕ = ϕ(t,m). However, the implementation
of this idea is somewhat tricky.

Proof. Let (t0,m0) ∈ D. The proof consists of three steps.

Step 1: Construction of an “open box” ] − ε, ε[×V , such that ϕ(t,m) ∈ C∞(] − ε, ε[×V,M) and
V ⊃ ϕ([0, t0],m0)

For any tι ∈ [0, t0] ⊂ Im0
, we have ϕ(tι,m0) ∈ M , and there exists, see above, a box

] − ει, ει[×Uι around (0, ϕ(tι,m0)), such that ϕ ∈ C∞(] − ει, ει[×Uι,M). As Uι ∋ ϕ(tι,m0), it
suffices to set V := ∪ιUι and ] − ε, ε[:= ∩ι] − ει, ει[. Indeed, the problem concerning the last
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intersection can be solved by using the fact that the open covering Jι := ϕ(t,m0)
−1Uι, Jι ∋ tι,

of the compact subset [0, t0] contains a finite subcover.

Step 2: Construction of an open neighborhood U ⊂ V of m0, such that ϕ(t0,m) ∈ C∞(U, V )

Let p ∈ N∗ be an integer, such that t0
p ∈]− ε, ε[. Then,

ϕ( t0p ,m) ∈ C∞(V,M),

and the i successive inverse images

Vi := ϕ( t0p ,m)−1 . . . ϕ( t0p ,m)−1V

provide an open subset Vi ⊂ V , for any i ∈ {1, . . . , p}. It now follows from the conclusion of
Step 1 that the open subset U := ∩iVi ⊂ V contains m0. Further,

ϕ( t0p , ϕ(
t0
p , . . . ϕ(

t0
p ,m))) ∈ C∞(U, V ),

for (at most) p iterations. In view of Proposition 5, this entails that ϕ(t0,m) ∈ C∞(U, V ).

Step 3: Application of the above-detailed basic idea

The conclusions of the steps 1 and 2 imply that

ϕ(t− t0, ϕ(t0,m)) ∈ C∞(]t0 − ε, t0 + ε[×U,M) ,

so that finally
ϕ(t,m) ∈ C∞(]t0 − ε, t0 + ε[×U,M) ,

where U is a neighborhood of m0.

For any fixed t ∈ R, the map ϕt = ϕ(t,m) is defined in the section Wt = {m ∈M : Im ∋ t} of
D at level t and ϕt ∈ C∞(Wt,M). Let us turn to the question whether ϕt is a diffeomorphism.
Observe first that t ∈ Im ⇔ m ∈Wt. Equation (17) then yields ϕ−t(ϕt(m)) = m, for any m ∈Wt,
and ϕt(ϕ−t(m)) = m, for any m ∈W−t. Therefore, ϕt ∈ Diff(Wt,W−t) and ϕ−1

t = ϕ−t.

Corollary 1. For every t ∈ R, the section Wt of D at level t is open in M , ϕt ∈ Diff(Wt,W−t),
and ϕ−1

t = ϕ−t.

Remark. It is interesting to remember that, for any m0 ∈ M , Closure Equation (17) is valid
for t, s near 0 and m near m0, i.e. in an “open box” around (0,m0). As a matter of fact, the flow
is defined (and even smooth) in an “open box” ]− ε, ε[×U around (0,m0), so that it suffices to
take t, s ∈]− ε

2 ,
ε
2 [ (since then s, t+ s ∈]− ε, ε[) and m ∈ U .

The obvious result ϕ0(m) = m, for all m ∈ M , Closure Equation (17), Theorem 4, and
Corollary 1, mean that the ϕt, t ∈ R, form a local 1-parameter group of local diffeomorphisms
of M . Indeed, the maximal integral curves ϕt(m) ∈ C∞(Im,M) are not necessarily defined on
the whole real line R. However, if M is compact, we have Im = R, for all m ∈M , i.e. Wt =M,

for all t ∈ R, or, equivalently, D = R×M.

Proposition 6. For every vector field X ∈ Vect(M) of a compact manifold M , the maximal
integral curves ϕt(m), m ∈M, of X are all defined on the whole real line and the ϕt, t ∈ R, form
a 1-parameter group of diffeomorphisms of M .
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Proof. It suffices to prove that R ⊂ Im, for all m ∈ M. First, we explain that compactness of
M allows building a “stripe” ]− ε, ε[×M that sits inside D, so that ]− ε, ε[⊂ Im, for all m ∈M.

Then, we show that the last claim entails that the same statement holds true for ]− 2ε, 2ε[,
so that, by iteration, we get R ⊂ Im, for all m ∈M.

M

R

D

0−ε ε

Imm

Um

−εm εm

m′

Um′

m′′

Um′′

Figure 9: Problem of the possible existence of smaller and smaller boxes

We already observed that, for every m ∈ M , there is an open box ] − εm, εm[×Um ⊂ D.
As the open cover Um, m ∈ M , of the compact manifold M contains a finite covering Ui,
i ∈ {1, . . . , p}, the flow is defined in ]− ε, ε[×M , where ]− ε, ε[= ∩i]− εi, εi[, so that ]− ε, ε[⊂ Im,

for all m ∈M.

In order to extend this interval to ]− 2ε, 2ε[, note that, for every m ∈M , see Proposition 5,
if s ∈ Im, then

]− ε, ε[⊂ Im = s+ Iϕs(m) ⊃]s− ε, s+ ε[.

Finally,
τ ∈ ]− 2ε, 2ε[⇒ τ

2 ∈ ]− ε, ε[⇒ τ ∈ ] τ2 − ε, τ2 + ε[⊂ Im,

due to the previous result (take s = τ
2 ). Hence the conclusion.

Remarks.

1. If M is not compact, the flow of X ∈ Vect(M) is not necessarily defined in R×M .

2. For obvious reasons, the local diffeomorphisms ϕt, t ∈ R, which are induced by a
vector field X ∈ Vect(M) are often denoted by exp(tX). If we use the notation ϕt and
must specify the underlying vector field, we write ϕXt .
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Exercise. Consider the vector field X ∈ Vect(R2) that is defined by X(x,y) = −y∂x+x∂y. Show
that the maximal integral curves ϕt(x, y) of X are

ϕt(x, y) = (x cos t− y sin t, x sin t+ y cos t)

and that the representation of the flow is a family of circles with center at the origin. Prove
that the ϕt, t ∈ R, form a 1-parameter group of diffeomorphisms and that this group is
isomorphic to SO(2,R).

5 Lie derivative of a vector field
We defined the Lie derivative of a function f ∈ C∞(M) in the direction of a vector field

X ∈ Vect(M) (Marius Sophus Lie, 1842 - 1899, Norwegian mathematician) by

(LXf)m = Xm(d f)m, (20)

for all m ∈M . As vector fields X ∈ Vect(M) are isomorphic to derivations LX ∈ Der(C∞(M)),
we identify X with LX most of the time and simply write Xf instead of LXf.

When trying to define the Lie derivative of a vector field Y ∈ Vect(M) in the direction of a
field X ∈ Vect(M) at a point m ∈M, we have to compare the value Ym ∈ TmM of Y at m with
the value of Y at a point of M which is close to m in the direction given by X, i.e. with the
value

YϕX
t (m) ∈ TϕX

t (m)M,

t ≃ 0.

M

m
ϕt(m)Xm

Yϕt(m) ∈ Tϕt(m)M
Ym = Yϕ0(m) ∈ TmM

ϕt

R
0 t

Figure 10: Problem of difference of values of Y

In order to subtract these values, we transport the second into the space TmM of the
first, by means of

TϕX−t : TϕX
t (m)M → TmM.

Hence, we get

(LXY )m = lim
t→0

TϕX
t (m)ϕ

X
−tYϕX

t (m) − Ym

t
= lim

t→0

(ϕX−t,∗Y )m − (ϕX−0,∗Y )m

t
= dt|t=0(ϕ

X
−t,∗Y )m,

where ϕX−t,∗ denotes the pushforward by ϕX−t, see Equation (4).
Of course, we have to check if the above derivative of

(t,m) 7→ (ϕX−t,∗Y )m = TϕX
t (m)ϕ

X
−tYϕX

t (m)
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actually exists. Let m0 ∈ M and let (t,m) vary in an open box ] − ε, ε[×U around (0,m0), in
which the flow ϕX(t,m) is smooth and the closure property

ϕX−t(ϕ
X
t (m)) = ϕX−t+t(m) = m

is valid. It follows in particular that ϕXt (m) ∈ W−t, where W−t is the domain of ϕX−t ∈
Diff(W−t,Wt). Further,

TϕX
t (m)ϕ

X
−t ∈ Isom(TϕX

t (m)M,TmM).

As YϕX
t (m) ∈ TϕX

t (m)M , we get a map

]− ε, ε[×U ∋ (t,m) 7→ (ϕX−t,∗Y )m = TϕX
t (m)ϕ

X
−tYϕX

t (m) ∈ TmM ⊂ TM.

In local coordinates (x1, . . . , xn) in U , this map reads

∂yϕ(−t, y)|y=ϕ(t,x)
Yϕ(t,x)

, (21)

with self-explaining notations. The preceding coordinate form is clearly smooth with respect
to (t, x) and its derivative with respect to t at t = 0 is smooth with respect to x. Hence,

U ∋ m 7→ (LXY )m = dt|t=0 (ϕX−t,∗Y )m = dt|t=0 TϕX
t (m)ϕ

X
−tYϕX

t (m) ∈ TmM ⊂ TM (22)

is smooth, and therefore LXY is defined at every point m0 ∈M and smooth in the neighbor-
hood of every point m0 ∈M . Finally LXY ∈ Vect(M).

Definition 5. The Lie derivative of a vector field Y ∈ Vect(M) with respect to a vector field
X ∈ Vect(M) is the vector field LXY ∈ Vect(M), which is defined for every m ∈M by

(LXY )m = dt|t=0(ϕ
X
−t,∗Y )m. (23)

Note that the definition allows us to state that the Lie derivative is a local operator with
respect to both arguments, see Equation (22)—a fact that is intuitively clear a priori.

The next theorem is quite amazing.

Theorem 5. For every X,Y ∈ Vect(M), the Lie derivative LXY ∈ Vect(M) of Y in the direction
of X coincides with the Lie bracket [X,Y ] ∈ Vect(M) of X and Y (see Equation (9)). Hence the
Lie derivative

L : Vect(M)×Vect(M) ∋ X,Y 7→ LXY ∈ Vect(M)

endows the vector space Vect(M) with a Lie algebra structure.

For the definition of Lie brackets and Lie algebras, we refer the reader to Section 3.

Proof. In view of Equations (21) and (22), the local coordinate form of LXY is

(LXY )x = dt|t=0 ∂yϕ(−t, y)|y=ϕ(t,x)
Yϕ(t,x)

= dt|t=0 (∂xϕ(t, x))
−1

Yϕ(t,x)
.

Let us recall that the definition A−1A = AA−1 = id of the inverse of a matrix implies that the
derivative of the inverse of an invertible matrix, which depends smoothly on a variable t, is
given by dtA−1 = −A−1dtAA

−1. We therefore get

(LXY )x = −dt|t=0 ∂xϕ(t, x) Yx + dt|t=0Yϕ(t,x)
= −∂xX Yx + ∂xY dt|t=0ϕ(t, x)

= ∂xY Xx − ∂xX Yx =
∑

iX
i
x ∂xiY −

∑
i Y

i
x ∂xiX =

∑
j(X(Y j)− Y (Xj))x∂xj = [X,Y ]x

(24)

(see Equation (11)).
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We know from Theorem 2 that

L : Vect(M) → Der(C∞(M))

is a Lie algebra isomorphism, so that L[X,Y ] = [LX , LY ]c . It follows that for every function
f ∈ C∞(M), we have

L[X,Y ]f = LX(LY f)− LY (LXf) .

The same equality is actually valid if we replace the function f ∈ C∞(M) by a vector field
Z ∈ Vect(M) :

L[X,Y ]Z = LX(LY Z)− LY (LXZ) . (25)

Indeed, in view of Theorem 5, the last equality reads

[[X,Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]]

and is nothing but the Jacobi identity of the Lie bracket of vector fields. In fact, Equation
(25) is true for all tensor fields, and not only for functions (tensor fields of type (0, 0)) and
vector fields (tensor fields of type (1, 0)). Of course, this claim cannot yet be understood,
since tensor fields and their Lie derivatives have not been defined so far.

Since the bracket [X,Y ] = LXY of vector fields is a Lie bracket on Vect(M), its behavior
with respect to the vector space structure of Vect(M) is clear: the Lie bracket of vector fields is
an R-bilinear map on Vect(M). The next proposition clarifies the behavior of the Lie bracket
with respect to the C∞(M)-module structure of Vect(M).

Proposition 7. For every X,Y ∈ Vect(M) and every f, g ∈ C∞(M), we have

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X. (26)

Proof. It suffices to show that the LHS and the RHS derivations coincide on functions.

6 Exercises

Exercise 1

Above, we defined the actions of diffeomorphisms (resp. vector fields) on functions and
vector fields, see Equations (2) and (3) (resp. Equations (20) and (23)). In the following exer-
cises, we further investigate these actions, as well as the link between them.

• Let ϕ ∈ Diff(M,M ′) and ψ ∈ Diff(M ′,M ′′).

1. Prove that
ϕ∗ : C∞(M) ∋ f → f ◦ ϕ−1 ∈ C∞(M ′)

is an associative algebra isomorphism, and that

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ . (27)



Vector fields, differential equations on manifolds, Norbert Poncin 68

2. Show that
ϕ∗ : Vect(M) ∋ X → Tϕ ◦X ◦ ϕ−1 ∈ Vect(M ′)

is a Lie algebra isomorphism and that the preceding formula for pushforwards and
compositions is also valid in the case of vector fields. In order to show that

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ], (28)

X,Y ∈ Vect(M), prove first that ϕ∗(Xf) = (ϕ∗X)(ϕ∗f), X ∈ Vect(M), f ∈ C∞(M),

then use this result to show that the LHS and RHS derivations of the equation (28)
coincide on each function.

• In local coordinates, we have dt|t=0 ϕ
i
t(x) = Xi

x and this equation implies that, for an
infinitesimal t = ε,

ϕiε(x) = xi + εXi
x.

Because of this result, the vector field X is called the infinitesimal generator of the
diffeomorphism ϕt .

Let us stress that the action of a vector field X on a field Y ,

LXY = dt|t=0 ϕ
X
−t,∗Y, (29)

is defined as the derivative at time t = 0 of the action on Y of the diffeomorphism
ϕX−t = exp(−tX). This observation is only the shadow of a more general link between
the action of certain types of objects and the action of the corresponding infinitesimal
objects.

Prove for instance that we also have

LXf = dt|t=0 ϕ
X
−t,∗f. (30)

• Above, we remarked that the actions ϕ∗ of diffeomorphisms ϕ ∈ Diff(M) on func-
tions (resp. vector fields) are associative algebra (resp. Lie algebra) automorphisms
ϕ∗ ∈ Aut(C∞(M)) (resp. ϕ∗ ∈ Aut(Vect(M))) (an automorphism is an isomorphism
from an object onto itself). The induced actions LX of vector fields X ∈ Vect(M) on
functions (resp. vector fields) are associative algebra (resp. Lie algebra) derivations
LX ∈ Der(C∞(M)) (resp. LX ∈ Der(Vect(M))). Explain this fact.

Exercise 2

Let X,Y ∈ Vect(M). Prove that, for all m ∈M , if t is sufficiently close to 0, the equation

(ϕX−t,∗LXY )m = dt (ϕ
X
−t,∗Y )m, (31)

which generalizes the definition (29) of the Lie derivative of vector fields, is valid.

Suggestion: Observe that

dt (ϕ
X
−t,∗Y )m = ds|s=0 (ϕ

X
−t−s,∗Y )m .
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7 Geometric interpretation of the Lie bracket of vector
fields

This section shows that the Lie bracket [X,Y ] of vector fields measures the non-commu-
tativity of the corresponding “flows” ϕXt and ϕYs .

We first need a new concept. The pushforward

X ′ := f∗X = Tf ◦X ◦ f−1

of a vector field X ∈ Vect(M) by a function f ∈ C∞(M,M ′) does of course not make sense,
if the function is not a diffeomorphism. However, there can exist vector fields X ∈ Vect(M)

and X ′ ∈ Vect(M ′) that satisfy the equation

X ′ ◦ f = Tf ◦X,

and that are therefore related by the function f . Hence, the following weak substitute for
the pushforward of vector fields by diffeomorphisms.

Definition 6. Let f ∈ C∞(M,M ′). Two vector fields X ∈ Vect(M) and X ′ ∈ Vect(M ′) are
f -related, if

TmfXm = X ′
f(m), (32)

for all m ∈M .

Lemma 2. Let f ∈ C∞(M,M ′). If X ∈ Vect(M) and X ′ ∈ Vect(M ′) are f -related, the function f

intertwines the flows of X and X ′, i.e., for every m ∈M and every t ∈ Im, we have

f(ϕXt (m)) = ϕX
′

t (f(m)). (33)

Proof. Let m ∈ M . It suffices to check that the LHS is an integral curve of X ′ with initial
value f(m).

Theorem 6. The Lie bracket of two vector fields X,Y ∈ Vect(M) vanishes, i.e.

[X,Y ] = 0,

if and only if, for every m ∈M ,

ϕXt (ϕYs (m)) = ϕYs (ϕ
X
t (m)),

if t and s are close to 0.

Theorem 6 holds in the general case, but for simplicity we assume that the flows are
defined in R×M.

Proof. If [X,Y ] = 0, Equation (31) implies that

dt (ϕ
X
−t,∗Y )m = (ϕX−t,∗[X,Y ])m = 0,

so that
TϕX−tYϕX

t (m) = (ϕX−t,∗Y )m = (ϕX−0,∗Y )m = Ym,
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or, equivalently,
TϕXt Ym = YϕX

t (m).

Since the last equality means that Y is ϕXt -related to itself, it follows from Lemma 2 that

ϕXt (ϕYs (m)) = ϕYs (ϕ
X
t (m)).

Conversely, if the previous commutation relation is valid, it suffices to compute, for any
fixed t, the derivative ds of this relation at the point s = 0. This yields

TϕXt (ds|s=0 ϕ
Y
s (m)) = ds|s=0 ϕ

Y
s (ϕ

X
t (m)),

or even better
TϕXt Ym = YϕX

t (m).

It follows that [X,Y ]m = 0.

M

m

ϕX
s (m)

ϕY
t (m)

ϕX
s (ϕY

t (m))

ϕY
t (ϕX

s (m))

Xm

Ym

YϕX
s (m)

XϕY
t (m)

[X,Y ]m

Figure 11: Commutation of flows and Lie bracket of vector fields

Exercise. Let f ∈ C∞(M,M ′), X,Y ∈ Vect(M) and X ′, Y ′ ∈ Vect(M ′). Prove that, if X and
X ′, as well as Y and Y ′ are f-related, then their brackets [X,Y ] and [X ′, Y ′] are also f-related.

Suggestion: Suppose again, in order not to obscure the ideas, that the flows are defined
in R ×M and compute [X ′, Y ′]f(m), m ∈ M , using the definitions, assumptions, and known
results.



Chapter 6
Differential Calculus on Manifolds

1 Tensors calculus on vector spaces
This first section is a revision of a topic that is explained in most Bachelor programmes.

In the following, we only consider finite-dimensional real vector spaces. They will be
denoted by V,W, Vi, . . .

1.1 Vector law
It is well-known that the transition matrix from a basis (ei) (resp. (e′i)) of V to another

basis (e′i) (resp. (ei)) of V is defined by

e′j = Ai
jei (resp. ej = A′i

je
′
i) ,

where the Einstein summation convention has been used. Note that one passes from one
equation to the other by suppressing and adding dashes. Of course, we have A′ = A−1.

It is easily checked that the components in the two bases of a vector v ∈ V satisfy the
so-called “vector law”

vi = Ai
jv

′j (resp. v′i = A′i
jv

j) .

1.2 Bidual of a vector space
Let us recall that the dual of V is the vector space V ∗ = L1(V,R) of linear forms on V , i.e.

of R-valued linear maps on V . The forms εj (j ∈ {1, . . . , n}, n = dimV ), defined by

εj(ei) = δji ,

where δji is Kronecker’s symbol, are a basis of V ∗, the dual basis of (ei). Hence dimV ∗ =

dimV = n.

The bilinear map
b : V × V ∗ ∋ (v, α)→ α(v) ∈ R

defines a vector space isomorphism, still denoted by b,

b : V ∋ v → (b(v) : V ∗ ∋ α→ α(v) ∈ R) ∈ (V ∗)∗ .

When identifying (for finite-dimensional vector spaces) V with its bidual (V ∗)∗, we get

v(α) = α(v) .

71
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1.3 Tensor algebra over a vector space
We just explained that

V = L1(V
∗,R)

and that the component transformation law for v ∈ V is

vi = Ai
jv

′j and v′i = A′i
jv

j .

As this law is ‘contrary’ to the law for basis vectors, we say that the elements of V are
contravariant vectors.

Similarly
V ∗ = L1(V,R) ,

and since the components of any α ∈ V ∗ in the dual basis are αi = α(ei) = α(A′j
ie

′
j), the

component transformation law for elements α ∈ V ∗ is

αi = A′j
iα

′
j and α′

i = Aj
iαj .

Since the components of α ∈ V ∗ are thus transformed in correspondence to the basis vec-
tors, we say that the elements of V ∗ are covariant vectors or covectors.

Exercise. Prove that if, in a Euclidian space, we confine ourselves to orthonormal bases,
the distinction of contravariant and covariant vectors is redundant.

In order to extend the above observations, we set

V ⊗ V ∗ := L2(V
∗ × V,R) .

To examine the transformation law of the components of T ∈ V ⊗V ∗, we first need a basis of
this vector space. Observe that any basis (ei) of V induces not only a basis (εj) of V ∗, but
also a basis

(ei ⊗ εj) (i, j ∈ {1, . . . , n})

of V ⊗ V ∗. Just set
(ei ⊗ εj)(α, v) = ei(α) ε

j(v) = αiv
j , (1)

with self-explaining notations. It is easily checked that these bilinear forms are independent.
As dim(V ⊗ V ∗) = n2, the conclusion follows.

Since, for T ∈ V ⊗ V ∗, we have

T (α, v) = αiv
jT (εi, ej) = T (εi, ej)(ei ⊗ εj)(α, v) ,

the transformation law of the components tij = T (εi, ej) of T ∈ V ⊗ V ∗ will follow from the
transformation law of the vectors εi of the dual basis (and the known law for the vectors ej ).
The guess

εi = Ai
jε

′j and ε′i = A′i
jε

j

is readily verified. Hence, we have

tij = Ai
kA

′ℓ
jt

′k
ℓ and t′ij = A′i

kA
ℓ
jt

k
ℓ ,

so that the components tij of the elements of V ⊗V ∗ are contravariant in i and covariant in j.
We therefore refer to the elements of V ⊗ V ∗ as tensors on V of contravariant and covariant
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degrees 1, as tensors on V of type (1, 1), or, still, as (1, 1)-tensors on V .

More generally, the set

⊗p
qV :=

(p)

V ⊗ . . .⊗ V ⊗
(q)

V ∗ ⊗ . . .⊗ V ∗= Lp+q(
(p)

V ∗ × . . .× V ∗ ×
(q)

V × . . .× V ,R)

is an np+q-dimensional vector space. Its basis induced by a basis (ei) of V is obtained as for
⊗1

1V = V ⊗ V ∗, the transformation law of the components t
i1...ip
j1...jq

of an element T ∈ ⊗p
qV is

obvious and these elements are the p times contravariant and q times covariant tensors on
V . Observe that ⊗1

0V = V, ⊗0
1V = V ∗ and note that by convention ⊗0

0V = R.
It follows that any physical quantity characterized in every basis (ei) by an ordered set

of np+q real numbers t
i1...ip
j1...jq

that satisfy the just mentioned tensor law of type (p, q), i.e. that
satisfy the condition

t
i1...ip
j1...jq

= Ai1
k1

. . . A
ip
kp
A′ℓ1

j1
. . . A

′ℓq
jq

t
′k1...kp

ℓ1...ℓq
,

can be viewed as a tensor of type (p, q).

Exercise. Let n = dimV = 2 and let T ∈ ⊗1
2V . Denote by (a, b) (resp. (α, β)) the basis of V

(resp. the dual basis of V ∗). Decompose T in the induced basis of ⊗1
2V .

We now endow the vector space

⊗V = ⊕p,q∈N ⊗p
q V

with an associative multiplication. Let T ∈ ⊗p
qV and S ∈ ⊗r

sV . To define T ⊗ S ∈ ⊗p+r
q+sV , we

set, see Equation (1),
(T ⊗ S)(α1, . . . , αp+r, v1, . . . , vq+s) =

T (α1, . . . , αp, v1, . . . , vq) S(α
p+1, . . . , αp+r, vq+1, . . . , vq+s) . (2)

This multiplication ⊗ endows the space ⊗V with an associative unital (noncommutative)
graded algebra structure. Indeed, observe that, if c ∈ R = ⊗0

0V , we have c⊗ T = c T , so that,
in particular, 1⊗ T = T ⊗ 1 = T.

Exercise. Let T ∈ ⊗2
1V and S ∈ ⊗1

3V . Show that, if tija (resp. siabc) are the components of T
(resp. S), the components of U := T ⊗ S are given by uijk

abcd = tija s
k
bcd. What is the number of

components of U if dimV = 3?

1.4 Tensor product of vector spaces
We define the tensor product of a finite number of vector spaces V1, . . . , Vp in a way similar

to the tensor powers ⊗p
0V , i.e. we set

V1 ⊗ . . .⊗ Vp := Lp(V
∗
1 × . . .× V ∗

p ,R) .

Moreover, the tensor product v1 ⊗ . . . ⊗ vp ∈ V1 ⊗ . . . ⊗ Vp of vectors vi ∈ Vi is defined as the
tensor product of tensors on V , see Equations (1) and (2):

(v1 ⊗ . . .⊗ vp)(α
1, . . . , αp) = Πivi(α

i) ,

where αi ∈ V ∗
i .
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The following vector space isomorphism is fundamental. For every vector space W , we
have

Lp(V1 × . . .× Vp,W ) ≃ L1(V1 ⊗ . . .⊗ Vp,W ) , (3)

i.e. the space of multilinear maps on a Cartesian product can be identified with the space
of linear maps on the corresponding tensor product. Indeed, the map

L1(V1 ⊗ . . .⊗ Vp,W ) ∋ ℓ 7→
(L : V1 × . . .× Vp ∋ (v1, . . . , vp) 7→ ℓ(v1 ⊗ . . .⊗ vp) ∈W ) ∈ Lp(V1 × . . .× Vp,W )

is obviously linear and injective and the source and target spaces have the same dimension.
Hence, for any multilinear map L on the Cartesian product, there is a unique linear map ℓ

on the tensor product, such that

ℓ(v1 ⊗ . . .⊗ vp) = L(v1, . . . , vp),∀vi ∈ Vi .

This fundamental property is often used to define maps the source space of which is a tensor
product space. Indeed, the decomposition T =

∑
v1 ⊗ . . .⊗ vp of a tensor T ∈ V1 ⊗ . . .⊗ Vp as

a finite sum of decomposable tensors is not unique. To understand this claim, it suffices to
consider a basis (eki ) of each Vk and to write

T =
∑
i1...ip

ti1...ip e1i1 ⊗ . . .⊗ epip =
∑
i1...ip

(ti1...ipe1i1)⊗ . . .⊗ epip =
∑
i1...ip

e1i1 ⊗ . . .⊗ (ti1...ipepip) .

Exercise. Prove the following important isomorphisms:

V ∗ ⊗W ≃ L1(V,W ) and
(
⊗p

qV
)∗ ≃ ⊗p

qV
∗.

Hint: The first one is simply a consequence of the well-known isomorphism L2(V ×W ∗,R) ≃
L1(V,L1(W

∗,R)) and the second one is just a particular case of the isomorphism (3).

1.5 Skew-symmetric covariant tensor algebra over a vector space
Let us recall that the space

⊗pV ∗ := ⊗p
0V

∗ =
(p)

V ∗ ⊗ . . .⊗ V ∗= Lp(V × . . .× V,R)

of p times covariant tensors on V is just the space of p-linear forms on V . So the space of
skew-symmetric p times covariant tensors on V ,

∧pV ∗ =
(p)

V ∗ ∧ . . . ∧ V ∗:= Ap(V × . . .× V,R) ,

is nothing but the space of skew-symmetric p-linear forms on V . Again, by convention,
∧0V ∗ = R. Furthermore, due to antisymmetry, such a tensor necessarily vanishes if p > n =

dimV . We denote by
∧V ∗ = ⊕n

p=0 ∧p V ∗

the vector space of all skew-symmetric covariant tensors on V .
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Exercise. Let T ∈ ∧3V ∗ ⊂ ⊗3V ∗. Explain why the components tabc of T in the basis of ⊗3V ∗

are skew-symmetric in a, b, c.

To define an associative algebra structure on ∧V ∗ and to get a basis of this space, we
introduce the skew-symmetrization operator A. First note that if T ∈ ⊗2V ∗ and if we set

(AT )(v, w) := 1

2
(T (v, w)− T (w, v)) ,

then AT ∈ ∧2V ∗ and AT = T , if T is antisymmetric from the beginning. More generally, the
skew-symmetrization operator is defined by

A : T ∈ ⊗pV ∗ 7→AT : V × . . .× V ∋ (v1, . . . , vp) 7→
1

p!

∑
σ∈Sp

signσ T (vσ1
, . . . , vσp

) ∈ R

 ∈ ∧pV ∗ ,

where Sp is the symmetric group of order p, i.e. the group of all the permutations of p dif-
ferent objects.

We are now ready to define the skew-symmetric tensor product ∧ (also called “exterior
product” or “wedge product”) of skew-symmetric covariant tensors on V . Let T ∈ ∧pV ∗ ⊂
⊗pV ∗ and S ∈ ∧qV ∗ ⊂ ⊗qV ∗ and set

T ∧ S =
(p+ q)!

p!q!
A(T ⊗ S) ∈ ∧p+qV ∗ .

Then, for any v1, . . . , vp+q ∈ V , we have

(T ∧ S)(v1, . . . , vp+q)

=
1

p!q!

∑
σ

signσ (T ⊗ S)(vσ1
, . . . , vσp+q

)

=
1

p!q!

∑
σ

signσ T (vσ1 , . . . , vσp) S(vσp+1 , . . . , vσp+q ) . (4)

When using the antisymmetry of T and of S, we can write this result also as follows:

(T ∧ S)(v1, . . . , vp+q) =
∑

µ1<...<µp
µp+1<...<µp+q

signµ T (vµ1
, . . . , vµp

) S(vµp+1
, . . . , vµp+q

) . (5)

The permutations µ such that µ1 < . . . < µp and µp+1 < . . . < µp+q are called the (p, q)-
shuffles. We often write µ ∈ Sh(p, q). To understand the last claim, consider a (p, q)-shuffle
µ ∈ Sh(p, q) and a (p + q)-permutation σ ∈ Sp+q that can be obtained via permutation from
this shuffle:

µ′(µ1, . . . , µp) = (σ1, . . . , σp) , µ′ ∈ Sp ,

µ′′(µp+1, . . . , µp+q) = (σp+1, . . . , σp+q) , µ′′ ∈ Sq .

The antisymmetry of T and S implies that

signµ T (vµ1 , . . . , vµp) S(vµp+1 , . . . , vµp+q ) =
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signµ signµ′ signµ′′ T (vσ1 , . . . , vσp) S(vσp+1 , . . . , vσp+q ) =

signσ T (vσ1
, . . . , vσp

) S(vσp+1
, . . . , vσp+q

) .

Therefore, in the last sum of Equation (4), the term corresponding to µ ∈ Sh(p, q) appears p!q!

times. Hence the announced result (5).

Exercise.

• Consider the case (p, q) = (2, 1) and prove by direct computation that Equation (4)
reduces to Equation (5).

• Let T, S ∈ ∧2V ∗ and compute explicitly (T ∧ S)(v1, v2, v3, v4).

Remark that the wedge product is graded commutative, i.e. satisfies

T ∧ S = (−1)pqS ∧ T ,

where T ∈ ∧pV ∗ and S ∈ ∧qV ∗. In particular, for α, β ∈ ∧1V ∗ = V ∗, we get

α ∧ β = −β ∧ α .

This graded commutativity is easily understood from the explicit form (5) of T ∧S and S ∧T .
Indeed, the term of T ∧ S characterized by the shuffle µ1 < . . . < µp, µp+1 < . . . < µp+q has
up to sign the same value as the term of S ∧ T characterized by the shuffle µp+1 < . . . <

µp+q, µ1 < . . . < µp. The signature of these shuffles are signµ and (−1)pq signµ, respectively,
which explains the result.

Exercise. Take (p, q) = (3, 1) and prove by direct computation that T ∧ S = −S ∧ T .

Finally, the wedge product ∧ endows the vector space ∧V ∗ with a graded commutative
associative unital algebra structure.

In the following we use the same notation as above.

Exercise. This exercise will guide the reader through the next proof. Let n = dimV = 2 and
let T ∈ ∧2V ∗ ⊂ ⊗2V ∗. Show that

T = AT = A
(
t11ε

1 ⊗ ε1 + t12ε
1 ⊗ ε2 + t21ε

2 ⊗ ε1 + t22ε
2 ⊗ ε2

)
= 1

2

(
t11ε

1 ∧ ε1 + t12ε
1 ∧ ε2 + t21ε

2 ∧ ε1 + t22ε
2 ∧ ε2

)
= 1

2

(
t12ε

1 ∧ ε2 + t21ε
2 ∧ ε1

)
= t12ε

1 ∧ ε2 .

Let now n = 3 and prove that

(ε1 ∧ ε2)(e1, e2) = ε1(e1)ε
2(e2)− ε1(e2)ε

2(e1) = 1 and (ε1 ∧ ε2)(e1, e3) = 0 .

The p-covariant skew-symmetric tensors

εi1 ∧ . . . ∧ εip (1 ≤ i1 < . . . < ip ≤ n)
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form a basis of ∧pV ∗. Indeed, for any T ∈ ∧pV ∗ ⊂ ⊗pV ∗, we have

T = AT = A
(∑

j1,...,jp
tj1...jpε

j1 ⊗ . . .⊗ εjp
)

=
∑

j1,...,jp
tj1...jp

1
p!ε

j1 ∧ . . . ∧ εjp

=
∑

i1<...<ip
ti1...ipε

i1 ∧ . . . ∧ εip ,

so that the εi1 ∧ . . . ∧ εip actually generate ∧pV ∗. To get the result in the last line, note first
that – due to antisymmetry – any product εj1 ∧ . . . ∧ εjp with at least two identical factors
vanishes. Then observe that in any of the remaining products the factors can be written
in the natural order. The signature generated in this way is annihilated by the also skew-
symmetric component ti1...ip = T (ei1 , . . . , eip). As any term of the last line is obtained that
way p! times, the result follows. Moreover, it is easily checked that the vectors εi1 ∧ . . . ∧ εip

are independent. Indeed, if ∑
i1<...<ip

ti1...ipε
i1 ∧ . . . ∧ εip = 0 ,

we have ∑
i1<...<ip

ti1...ip(ε
i1 ∧ . . . ∧ εip)(ek1

, . . . , ekp
) = 0 ,

for each k1 < . . . < kp . Since (εi1 ∧ . . . ∧ εip)(ek1 , . . . , ekp) vanishes, except that it takes value
1, if (i1, . . . , ip) = (k1, . . . , kp), the last equation reduces to tk1...kp = 0. It follows that the
tensors εi1 ∧ . . . ∧ εip , 1 ≤ i1 < . . . < ip ≤ n, form a basis of the space ∧pV ∗ of skew-symmetric
p-covariant tensors on V and that this space has dimension

dim∧pV ∗ =

(
n

p

)
= Cp

n .

Exercise. Let n = dimV = 3. Decompose T ∈ ∧pV ∗, for p = 0, 1, 2, 3, in the basis induced by
the basis εi of V ∗.

Of course, instead of considering skew-symmetric covariant tensors, we could just as
well study skew-symmetric contravariant tensors. Moreover, symmetric contravariant or
covariant tensors play an important role too, even if they are not mentioned in this text.

Finally, the above fundamental property concerning maps on Cartesian and tensor prod-
ucts remains valid: for any vector space W and for any skew-symmetric multilinear map
L ∈ Ap(V × . . .× V,W ), there is a unique linear map ℓ ∈ L1(V ∧ . . . ∧ V,W ), such that

ℓ(v1 ∧ . . . ∧ vp) = L(v1, . . . , vp),∀vi ∈ V .

2 Tensor calculus on manifolds

2.1 Tensor bundles
Let M be a smooth n-dimensional manifold (that is Hausdorff and second countable).

For every m ∈M , set V := TmM , so that V ∗ = T ∗
mM,

⊗p
qV = ⊗p

qTmM and ∧p V ∗ = ∧pT ∗
mM .
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Just as we have considered the tangent and cotangent bundles TM =
∐

m∈M TmM and
T ∗M =

∐
m∈M T ∗

mM, we now study the disjoint unions

⊗p
qTM :=

∐
m∈M

⊗p
qTmM and ∧pT ∗M :=

∐
m∈M

∧pT ∗
mM .

Let us recall that every chart (U,φ = (x1, . . . , xn)) of M induces a basis (∂xi) of TmM and a
basis (dxi) of T ∗

mM , for m ∈ U (as usual, the dependence of these bases on m is not explicitly
mentioned). Hence, every tangent or cotangent vector Xm ∈ TmM , αm ∈ T ∗

mM , m ∈ U, can be
uniquely decomposed as

Xm =
∑
i

Xi(m)∂xi and αm =
∑
i

αi(m) dxi .

Further, the chart φ of M over U allows us to define charts Φ of TM and Φ∗ of T ∗M over
π−1(U), where π denotes the projection or “foot map” of the bundle under consideration.
These charts are given by

Φ : TM |U :=
∐
m∈U

TmM ∋ Xm 7→
(
φ(m); . . . , Xi(m), . . .

)
∈ φ(U)× Rn ,

and
Φ∗ : T ∗M |U :=

∐
m∈U

T ∗
mM ∋ αm 7→

(
φ(m); . . . , αi(m), . . .

)
∈ φ(U)× Rn .

We have proved that the charts Φ of TM and Φ∗ of T ∗M , induced by all the charts φ of an
atlas of M , form an atlas of TM and T ∗M , respectively, and thus endow TM and T ∗M with
a smooth manifold structure of dimension 2n (that is Hausdorff and second countable).

Similar constructions go through for ⊗p
qTM and ∧pT ∗M . Note first that, for m ∈ U , every

(p, q)-tensor Tm ∈ ⊗p
qTmM reads

Tm =
∑

i1,...,ip
j1,...,jq

t
i1...ip
j1...jq

(m) ∂xi1 ⊗ . . .⊗ ∂xip ⊗ dxj1 ⊗ . . .⊗ dxjq , (6)

and that every skew-symmetric covariant p-tensor ωm ∈ ∧pT ∗
mM can be written in the form

ωm =
∑

i1<...<ip

ωi1...ip(m) dxi1 ∧ . . .∧ dxip .

Just as in the case of TM and T ∗M , the maps

Φ⊗ : ⊗p
qTM |U :=

∐
m∈U

⊗p
qTmM ∋ Tm 7→

(
φ(m); . . . , t

i1...ip
j1...jq

(m), . . .
)
∈ φ(U)× Rnp+q

≃ φ(U)×⊗p
qRn

and
Φ∧ : ∧pT ∗M |U :=

∐
m∈U

∧pT ∗
mM ∋ ωm 7→

(
φ(m); . . . , ωi1...ip(m), . . .

)
∈ φ(U)× RCp

n ≃ φ(U)× ∧p(Rn)∗ ,
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obtained if φ runs through an atlas of M , form an atlas of ⊗p
qTM and ∧pT ∗M , respectively,

and endow ⊗p
qTM and ∧pT ∗M with a smooth manifold structure of dimension n+ np+q and

n+Cp
n, respectively (which is Hausdorff and second countable).

It is straightforwardly checked that

Proposition 1. If M denotes a smooth n-dimensional manifold, the manifolds TM, T ∗M,⊗p
qTM

(p, q ∈ N), and ∧pT ∗M (p ∈ {0, . . . , n}) are vector bundles of rank n, n, np+q, and Cp
n, respectively.

These vector bundles are called tensor bundles. Let us write down the exact definition
of a vector bundle. See also Chapter 4 and think about the local (but not global) triviality of
the Möbius strip.

Definition 1. Let E and M be two manifolds and π : E → M a smooth surjective map from
E onto M . The manifold E is a vector bundle of rank r over the base manifold M – with
typical fiber Rr and projection π – if and only if the fibers Em := π−1(m), m ∈ M , are r-
dimensional real vector spaces, and, for every m ∈ M, there is an open neighborhood U in M

and a diffeomorphism
Φ : π−1(U)→ U × Rr (7)

– called local trivialization –, such that, for every p ∈ π−1(U), we have

Φ(p) =: (π(p), ϕ(p))

and, for every m ∈ U, the restriction
ϕm : Em → Rr

of ϕ is a vector space isomorphism.

] [

] [

U

U

M

E

π

π−1(U) Em

m

Rr

m

p

ϕ(p)

= π(p)

Φ

Φ(p)
Rn

] [
x = (x1, ..., xn)

φ(U)

φ

Figure 12: Vector bundle
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Hence, roughly speaking, a vector bundle E is an amalgamation of vector spaces Em

(m ∈ M ) that is locally trivial, i.e. that can locally be identified with a product manifold
(but may globally have a more complicated structure). To get the local trivializations in the
previous examples, it suffices to compose the chart diffeomorphisms Φ,Φ∗,Φ⊗,Φ∧ with the
diffeomorphism φ−1 × id.

Definition 2. A smooth section of a vector bundle π : E → M is a smooth map σ : M ∋ m 7→
σm ∈ Em ⊂ E. We denote by Γ(E) the R-vector space and C∞(M)-module of smooth sections
of E.

∧pT ∗M

] [
U

ω

ωm

ωm′

ω

∧pT ∗
mM ∧pT ∗

m′M

M
m m′

Figure 13: Differential p-form of a manifold

For instance, a section ω ∈ Γ(∧pT ∗M) is a smooth map

ω : M ∋ m 7→ ωm ∈ ∧pT ∗
mM ⊂ ∧pT ∗M ,

hence a map, whose local form over a chart (U,φ = (x1, . . . , xn)) is given by

ω|U =
∑

i1<...<ip

ωi1...ip dxi1 ∧ . . .∧ dxip , (8)

where ωi1...ip ∈ C∞(U). We study these tensor bundle sections in detail in the next section of
this text.

The mentioned vector space and module structures on Γ(E) are, as in the case of vector
fields Vect(M) = Γ(TM), induced by the vector space operations in the fibers Em, m ∈ M .
More precisely, the sum of two sections σ, σ′ ∈ Γ(E) is defined by

σ + σ′ : M ∋ m 7→ σm + σ′
m ∈ Em ⊂ E .

Analogously, the multiplication of a section σ ∈ Γ(E) by a scalar λ ∈ R is given by

λσ : M ∋ m 7→ λσm ∈ Em ⊂ E

and the multiplication by a function f ∈ C∞(M) by

fσ : M ∋ m 7→ f(m)σm ∈ Em ⊂ E .
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2.2 Differential forms
Let us recall that the differential dm f at m ∈M of f ∈ C∞(M) has been defined by

dm f := Tmf ∈ Hom(TmM,Tf(m)R) = T ∗
mM .

Hence,
d f : M ∋ m 7→ dm f ∈ T ∗

mM ⊂ T ∗M

is a section of T ∗M . Since d f admits – see Chapter 4 – in every chart (U,φ = (x1, . . . , xn)) the
local form

d f |U =
∑
i

∂xif dxi ,

with ∂xif ∈ C∞(U), the section d f is smooth, i.e. d f ∈ Γ(T ∗M) = Γ(∧1T ∗M). As mentioned
above, see Equation (8), an arbitrary smooth section α ∈ Γ(∧1T ∗M) locally reads

α|U =
∑
i

αi dx
i ,

αi ∈ C∞(U) . Since
α : M ∋ m 7→ αm ∈ T ∗

mM = L1(TmM,R) ⊂ T ∗M

assigns to every point m ∈ M a linear form of the tangent space of M at m, we refer to it as
a differential form, or, better, a differential 1-form of M . More generally,

Definition 3. The sections ω ∈ Γ(∧pT ∗M), p ∈ {0, . . . , n}, n = dimM , are referred to as differ-
ential p-forms of M . The R-vector space and C∞(M)-module Γ(∧pT ∗M) of differential p-forms
of a manifold M is also denoted by Ωp(M). The direct sum

Ω(M) := ⊕n
p=0Ω

p(M)

is the vector space and module of all differential forms on M .

Differential forms are fundamental objects in Differential Geometry – which are for in-
stance tightly connected with integration over manifolds.

Remember that every differential p-form ω ∈ Ωp(M) locally reads as specified by Equation
(8). Note also that differential 0-forms are smooth maps

f : M ∋ m 7→ f(m) ∈ ∧0T ∗
mM = R ,

so that Ω0(M) = C∞(M).

Just as the vector space structures of the fibers Em = ∧pT ∗
mM induce a vector space

structure on Γ(E) = Γ(∧pT ∗M) = Ωp(M) (see above), the graded commutative associative
unital algebra structures ‘wedge’ on the ∧T ∗

mM (see above) induce a similar structure on
Ω(M). Indeed, for every ω ∈ Ωp(M) and ω′ ∈ Ωq(M), we set

ω ∧ ω′ : M ∋ m 7→ ωm ∧ ω′
m ∈ ∧p+qT ∗

mM ⊂ ∧p+qT ∗M ,

so that ω ∧ ω′ ∈ Ωp+q(M) (for the smoothness of ω ∧ ω′, see Example 1). This wedge product
is then extended by linearity to Ω(M).



Differential Calculus, Norbert Poncin 82

Proposition 2. The wedge product turns the vector space Ω(M) of differential forms of a
manifold M into a graded commutative associative unital algebra.

Example 1. Let M be of dimension n = 3 and let (U,φ = (x1, x2, x3)) be a chart. Consider two
differential forms ω ∈ Ω1(M), ω′ ∈ Ω2(M), which locally read

ω|U =
∑
i

ωi dx
i and ω′|U =

∑
k<l ω

′
k l dx

k ∧ dxl, ωi, ωk l ∈ C∞(U) .

Their wedge product ω ∧ ω′ ∈ Ω3(M) is then given over U by

ω ∧ ω′ : U ∋ m 7→
∑
i,k<l

ωi(m)ω′
k l(m) dxi ∧ dxk ∧ dxl .

We note that, due to the antisymmetry of the wedge product of differential 1-forms, the only
terms of the above sum that do not vanish are those in dx1 ∧ dx2 ∧ dx3, dx2 ∧ dx1 ∧ dx3 and
dx3 ∧ dx1 ∧ dx2. Hence,

ω ∧ ω′|U = (ω1ω
′
23 − ω2ω

′
13 + ω3ω

′
12) dx

1 ∧ dx2 ∧ dx3 ,

with ω1ω
′
23 − ω2ω

′
13 + ω3ω

′
12 ∈ C∞(U), so that ω ∧ ω′ is actually smooth.

Exercise. Compute the explicit local form of ω∧ω′, ω ∈ Ω1(M), ω′ ∈ Ω2(M), for a manifold M

of dimension n = 4.

2.3 Interior product
Let ω ∈ Ωp(M) and X ∈ Vect(M). For every m ∈M , we have ωm ∈ ∧pT ∗

mM = Ap(TmM×p,R)
and Xm ∈ TmM , so that

(iXω)m := ωm(Xm, . . .) ∈ Ap−1(TmM×(p−1),R) = ∧p−1T ∗
mM (9)

defines a differential (p− 1)-form iXω on M . For smoothness, see Equation (13).

Definition 4. The differential form iXω ∈ Ωp−1(M), defined pointwise by Equation (9), is called
the interior product of the differential form ω ∈ Ωp(M) by the vector field X ∈ Vect(M).

The interior multiplication

i : Vect(M)× Ωp(M)→ Ωp−1(M)

is clearly R- and C∞(M)-bilinear. Moreover:

Proposition 3. The interior multiplication by X ∈ Vect(M) is a graded derivation of degree −1
of the algebra (Ω(M),∧), i.e.

iX(ω ∧ ω′) = (iXω) ∧ ω′ + (−1)pω ∧ (iXω′) , (10)

for every ω ∈ Ωp(M) and every ω′ ∈ Ω(M).

Exercise. Check the property for ω ∈ Ω1(M) and ω′ ∈ Ω2(M).
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Proof. It suffices to consider a form ω′ ∈ Ωq(M). For every m ∈M , we have

iX(ω ∧ ω′)|m ∈ Ap+q−1(TmM×(p+q−1),R)

and, for every v2, . . . , vp+q ∈ TmM ,

iX(ω ∧ ω′) |m (v2, . . . , vp+q) = (ωm ∧ ω′
m)(Xm, v2, . . . , vp+q)

=
∑

µ1<...<µp
µp+1<...<µp+q

signµ ωm(vµ1
, . . . , vµp

) ω′
m(vµp+1

, . . . , vµp+q
) ,

where we set Xm =: v1. Since 1 = µ1 or 1 = µp+1, this sum reads∑
1<µ2<...<µp

µp+1<...<µp+q

signµ ωm(Xm, vµ2 , . . . , vµp) ω′
m(vµp+1 , . . . , vµp+q ) (11)

+
∑

µ1<...<µp

1<µp+2<...<µp+q

signµ ωm(vµ1
, . . . , vµp

) ω′
m(Xm, vµp+2

, . . . , vµp+q
) . (12)

In the sum (11), the factor ωm(Xm, vµ2
, . . . , vµp

) equals (iXω)m(vµ2
, . . . , vµp

) and the sum over
the (p, q)-shuffles µ = (1, µ2, . . . , µp+q) can be replaced by the sum over the (p− 1, q)-shuffles
µ′ := (µ2, . . . , µp+q). Since signµ = signµ′, we thus get

(iXω) ∧ ω′ |m (v2, . . . , vp+q) .

Analogously, in the sum (12), the factor ω′
m(Xm, vµp+2

, . . . , vµp+q
) is equal to (iXω′)m(vµp+2

, . . . ,

vµp+q
). When replacing the (p, q)-shuffles µ = (µ1, . . . , µp, 1, µp+2, . . . , µp+q) by the (p, q − 1)-

shuffles µ′ := (µ1, . . . , µp, µp+2, . . . , µp+q), we have to remark that signµ = (−1)p signµ′. Hence,
we get

(−1)p ω ∧ (iXω′) |m (v2, . . . , vp+q) .

Exercise. Let X ∈ Vect(M) and ω ∈ Ωp(M), with local forms X|U =
∑

j X
j∂xj and

ω|U =
∑

i1<...<ip

ωi1...ip dx
i1 ∧ . . . ∧ dxip ,

in a coordinate patch (U, (x1, . . . , xn)). Prove that the local form of iXω ∈ Ωp−1(M) is given by

(iXω)|U =
∑

i1<...<ip

p∑
k=1

(−1)k−1ωi1...ipX
ik dxi1 ∧ . . . ∧ d̂xik ∧ . . . ∧ dxip , (13)

where ‘hat’ means that the corresponding differential is omitted.

2.4 Pullback and pushforward
2.4.1 Extensions of linear maps

Let us first recall an important elementary fact that will be needed in the following.
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Proposition 4. Every isomorphism ℓ ∈ Isom(V,W ) (resp. every linear map ℓ ∈ L1(V,W ))

between two vector spaces V and W , can be extended as a homomorphism to an isomorphism

ℓ⊗ ∈ Isom(⊗p
qV,⊗p

qW )

(resp. to a linear map
ℓ⊗ ∈ L1(⊗p

0V,⊗
p
0W )

and a linear map
ℓ⊗ ∈ L1(∧pV,∧pW )) ,

for all p, q ∈ N.

Proof. In the case ℓ is an isomorphism, it suffices to set, for vi ∈ V, αj ∈ V ∗,

L(v1, . . . , vp, α
1, . . . , αq) := ℓ(v1)⊗ . . .⊗ ℓ(vp)⊗tℓ−1(α1)⊗ . . .⊗tℓ−1(αq) ∈ ⊗p

qW ,

where tℓ−1 ∈ Isom(V ∗,W ∗). If ℓ is just a linear map, then q = 0, because of the result we
have to prove in this case. Due to the abovementioned fundamental property of the tensor
product, there is a unique map ℓ⊗ ∈ L1(⊗p

qV,⊗p
qW ), such that

ℓ⊗(v1 ⊗ . . .⊗ vp ⊗ α1 ⊗ . . .⊗ αq) = ℓ(v1)⊗ . . .⊗ ℓ(vp)⊗tℓ−1(α1)⊗ . . .⊗tℓ−1(αq) .

It follows that the map ℓ⊗ is in fact the extension of ℓ as a homomorphism. It is obvious
that, in the isomorphism-case, we have

(ℓ−1)⊗ = (ℓ⊗)−1 .

The extension of ℓ to a linear map on the exterior power is similar; it suffices to replace the
ordinary tensor product ⊗ by the skew-symmetric tensor product ∧. Let us also stress that
if q = p = 0, we take ℓ⊗ = idR .

We now briefly report on useful properties of the preceding extensions.

Lemma 1. For every isomorphisms ℓ ∈ Isom(V,W ), ℓ′ ∈ Isom(W,Z) (resp. for every linear maps
ℓ ∈ L1(V,W ), ℓ′ ∈ L1(W,Z)), we have

(ℓ′ ◦ ℓ)⊗ = ℓ′⊗ ◦ ℓ⊗ .

Proof. We first confine ourselves to the case p = q = 1. For v ∈ V and α ∈ V ∗, we get, by
definition,

(ℓ′ ◦ ℓ)⊗(v, α) = (ℓ′ ◦ ℓ)(v)⊗ t(ℓ′ ◦ ℓ)−1(α) .

Since
t(ℓ′ ◦ ℓ)−1 = t(ℓ−1 ◦ ℓ′−1) = tℓ′−1 ◦ tℓ−1 ,

we find

(ℓ′ ◦ ℓ)⊗(v, α) = (ℓ′ ◦ ℓ)(v)⊗ ( tℓ′−1 ◦ tℓ−1)(α) = (ℓ′⊗ ◦ ℓ⊗)(v, α) .

The proof goes through for arbitrary p and q.

Lemma 2. For every isomorphism ℓ ∈ Isom(V,W ) (resp. every linear map ℓ ∈ L1(V,W )), we
have

t(ℓ⊗) = ( tℓ)⊗ =: tℓ⊗ .
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Proof. We know that ℓ induces an isomorphism ℓ⊗ : ⊗p
qV → ⊗p

qW and consequently an
isomorphism

t(ℓ⊗) : (⊗p
qW )∗ = ⊗p

qW
∗ → (⊗p

qV )∗ = ⊗p
qV

∗ .

On the other hand, the isomorphism tℓ : W ∗ → V ∗ can be extended to an isomorphism

( tℓ)⊗ : ⊗p
qW

∗ → ⊗p
qV

∗ .

To prove the claim, we have to show that t(ℓ⊗) and ( tℓ)⊗ coincide on every element of their
source space. Let us examine e.g. the case p = 2 and q = 1; the general case is completely
analogous. When applying both maps to β1 ⊗ β2 ⊗ w ∈ ⊗2

1W
∗, we obtain two elements in

⊗2
1V

∗ = L3(V × V × V ∗,R) ≃ L1(V ⊗ V ⊗ V ∗,R) ,

which we must apply to an arbitrary element of the type v1 ⊗ v2 ⊗ α. Then,
t(ℓ⊗)(β1 ⊗ β2 ⊗ w) (v1 ⊗ v2 ⊗ α) = (β1 ⊗ β2 ⊗ w)

(
ℓ⊗(v1 ⊗ v2 ⊗ α)

)
= (β1 ⊗ β2 ⊗ w)(ℓ(v1)⊗ ℓ(v2)⊗ tℓ−1α)

= β1(ℓ(v1))β2(ℓ(v2))α(ℓ
−1(w)) ,

whereas

( tℓ)⊗(β1 ⊗ β2 ⊗ w) (v1 ⊗ v2 ⊗ α) =
(
tℓ(β1)⊗ tℓ(β2)⊗ ℓ−1(w)

)
(v1 ⊗ v2 ⊗ α)

= β1(ℓ(v1))β2(ℓ(v2))α(ℓ
−1(w)) .

2.4.2 Pullback of covariant tensor fields by a function

Let M and N be two manifolds. Every

f ∈ C∞(M,N)

allows us to pull every covariant tensor field on N back to M , i.e. to define a linear map

f∗ : Γ(⊗pT ∗M) ∋ f∗T ← T ∈ Γ(⊗pT ∗N) .

The pullback of differential forms,

f∗ : Ωp(M) = Γ(∧pT ∗M) ∋ f∗ω ← ω ∈ Γ(∧pT ∗N) = Ωp(N) ,

will turn out to be of particular importance in the present context. We therefore detail this
case.

Remark. The derivative of f ∈ C∞(M,N) at m ∈ M was denoted so far by Tmf . For N = R,
we mostly replaced Tmf by (d f)m or dm f . To simplify the notations a little bit, we write f∗m
instead of Tmf in the following.

As we start with a field ωn ∈ ∧pT ∗
nN (n ∈ N ) and aim to construct a field (f∗ω)m ∈

∧pT ∗
mM (m ∈ M ), we must look for a suitable ‘means of transportation’. Since f⊗

∗m ∈
L1(∧pTmM,∧pTf(m)N) (m ∈ M ), it is clear that tf⊗

∗m ∈ L1(∧pT ∗
f(m)N,∧pT ∗

mM). Hence, the
definition

(f∗ω)m = tf⊗
∗m ωf(m) (m ∈M) . (14)

Observe that for a 0-form h ∈ C∞(N), we have tf⊗
∗m = id, so that

f∗h = h ◦ f . (15)
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Proposition 5. Let M
f→ N

g→ P be smooth maps between manifolds. The pullback by the
composite map is given by

(g ◦ f)∗ = f∗ ◦ g∗ .

Moreover, f∗ : Ω(N)→ Ω(M) is a unital R-algebra homomorphism.

Proof. Let ω ∈ Ωp(P ) and let m ∈ M . It follows from the definition of a pullback and from
Lemma 1 that

((g ◦ f)∗ ω )m = t(g ◦ f)⊗∗m ωg(f(m))

= t
(
g⊗∗f(m) ◦ f

⊗
∗m

)
ωg(f(m))

= tf⊗
∗m

(
tg⊗∗f(m) ωg(f(m))

)
= tf⊗

∗m
(
(g∗ω)f(m)

)
= ((f∗ ◦ g∗) ω)m .

As for the homomorphism property, it is clear from Definition (14) that f∗ is R-linear. More-
over, the constant function 1N : N ∋ n 7→ 1 ∈ R is the unit of Ω(N) and we get from Equation
(15) that f∗1N = 1M . Finally, since tf⊗

∗m = t(f⊗
∗m) = (tf∗m)⊗ and since the latter is defined as

algebra homomorphism, we get

(f∗ (ω ∧ ω′))m = tf⊗
∗m (ω ∧ ω′)f(m) =

tf⊗
∗m (ωf(m) ∧ ω′

f(m)) =

tf⊗
∗m ωf(m) ∧ tf⊗

∗m ω′
f(m) = (f∗ ω ∧ f∗ ω′)m .

Exercise. Let ω ∈ Ωp(N), f ∈ C∞(M,N) and consider a chart (V, (y1, . . . , yn)) of N . Prove that
if

ω|V =
∑

j1<...<jp

ωj1...jp d y
j1 ∧ . . . ∧ d yjp ,

then
(f∗ω)|f−1(V ) =

∑
j1<...<jp

ωj1...jp ◦ f d(yj1 ◦ f) ∧ . . . ∧ d(yjp ◦ f) .

Consider now the case p = n and f = ϕ ∈ Diff(U, V ), where U ⊂ Rn. Show that, if the
coordinates of U are denoted x = (x1, . . . , xn) and if we set yi(ϕ(x)) = yi(x), we obtain

(ϕ∗ω)x = det(∂xy) h(y(x)) dx1 ∧ . . . ∧ dxn ,

where we wrote h instead of ω1...n .

2.4.3 Pushforward of contravariant tensor fields by a diffeomorphism

Let
f ∈ Diff(M,N)

and try to define a pushforward map

f∗ : Γ(⊗pTM) ∋ T 7→ f∗T ∈ Γ(⊗pTN) .
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Here the known object is a field Tm ∈ ⊗pTmM (m ∈M ) and the object we look for is (f∗T )n ∈
⊗pTnN (n ∈ N ). It is clear that f⊗

∗m ∈ L1(⊗pTmM,⊗pTf(m)N) (m ∈ M ), so that it suffices to
choose m = f−1(n) (here we use the assumption that f is a diffeomorphism). Hence the
definition

(f∗T )n =
(
f⊗
∗mTm

)
m=f−1(n)

(n ∈ N) .

Proposition 6. Consider M
f→ N

g→ P two diffeomorphisms between manifolds. The push-
forward satisfies

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise. Prove the previous proposition.

2.5 Lie derivative of tensor fields
2.5.1 Definition and properties

The Lie derivative of a (p, q)-tensor field T ∈ Γ(⊗p
qTM) is defined along the same lines as

the Lie derivative of a vector field Y ∈ Vect(M) = Γ(TM) = Γ(⊗1
0TM), i.e. of a (1, 0)-tensor

field.

Take a tensor field T ∈ Γ(⊗p
qTM), a vector field X ∈ Vect(M) and a point m ∈ M. To

compute the value (LXT )m at m of the Lie derivative of T with respect to X, i.e. the variation
at m of T in the direction of X, we have to compare Tm and Tφt(m), where φt is the flow of X
and where t ≃ 0. The point is that Tm ∈ ⊗p

qTmM and Tφt(m) ∈ ⊗p
qTφt(m)M . Hence, if we wish

to subtract Tm from Tφt(m), we first have to transfer Tφt(m) into the space that contains Tm.
Assume, for convenience, that X is complete. As then φt ∈ Diff(M), we have

(φt∗m)−1 = φ−t∗φt(m) ∈ Isom(Tφt(m)M,TmM)

and
φ⊗
−t∗ ∈ Isom(⊗p

qTφt(m)M,⊗p
qTmM) ,

where, to simplify notations, we omitted the point φt(m) at which the derivative φ−t∗ is
computed. Hence the definition

(LXT )m = limt→0

φ⊗
−t∗Tφt(m) − Tm

t
= dt|t=0 φ⊗

−t∗Tφt(m) ∈ ⊗p
qTmM . (16)

As in the case of the Lie derivative of a vector field, the local form of φ⊗
−t∗Tφt(m) shows that

this curve is smooth with respect to t and m, so that the derivative makes sense and defines
a smooth tensor field LXT ∈ Γ(⊗p

qTM).

The Lie derivative of a differential form ω ∈ Ωp(M) = Γ(∧pT ∗M), i.e. of a skew-symmetric
covariant tensor field, is defined analogously.

The Lie derivative has good properties.

Proposition 7. 1. The Lie derivative preserves the type of the tensor field, i.e., for every
X ∈ Vect(M), if T ∈ Γ(⊗p

qTM), then LXT ∈ Γ(⊗p
qTM), and if ω ∈ Ωp(M), then LXω ∈

Ωp(M), ...

2. The Lie derivative is local in each argument and bilinear.
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3. For every X ∈ Vect(M), every T ∈ Γ(⊗p
qTM) and every S ∈ Γ(⊗r

sTM), we have

LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS) ,

if ω ∈ Ωp(M) and ω′ ∈ Ωq(M), we get

LX(ω ∧ ω′) = (LXω) ∧ ω′ + ω ∧ (LXω′) ,

and similar results are valid for other types of tensor fields and the corresponding tensor
product. In other words, LX , X ∈ Vect(M), is a (graded) derivation (of degree 0) of the
algebras (Γ(⊗TM),⊗), (Ω(M),∧), ...

4. If X ∈ Vect(M), T ∈ Γ(⊗p
qTM), ω1, . . . , ωp ∈ Ω1(M), and X1, . . . , Xq ∈ Vect(M), we get

LX

(
T (ω1, . . . , ωp, X1, . . . , Xq)

)
= (LXT )(ω1, . . . , ωp, X1, . . . , Xq)

+
∑p

i=1 T (ω
1, . . . , LXωi, . . . , ωp, X1, . . . , Xq)

+
∑q

j=1 T (ω
1, . . . , ωp, X1, . . . , LXXj , . . . , Xq) .

(17)

5. For every T ∈ Γ(⊗TM) and every X,Y ∈ Vect(M),

L[X,Y ]T = LX(LY T )− LY (LXT ) ,

i.e.
L[X,Y ] = [LX , LY ] (18)

in Γ(⊗TM).

Proof. 1. By construction.

2. The expression LXT is linear with respect to T by construction. Linearity with respect
to X comes – as in the case of the Lie derivative of vector fields – from the local form of
LXT , whereas locality is almost obvious.

3. The proofs of these results are similar. For instance,

LX(T ⊗ S)m = dt|t=0 φ
⊗
−t∗(T ⊗ S)φt(m)

= dt
(
φ⊗
−t∗ Tφt(m) ⊗ φ⊗

−t∗ Sφt(m)

)∣∣
t=0

=
(
dt
(
φ⊗
−t∗ Tφt(m)

)
⊗ φ⊗

−t∗ Sφt(m)

)∣∣
t=0

+
(
φ⊗
−t∗ Tφt(m) ⊗ dt

(
φ⊗
−t∗ Sφt(m)

))∣∣
t=0

= (LXT )m ⊗ Sm + Tm ⊗ (LXS)m .

4. To avoid cumbersome notations, we prove the announced result for

ω := T ∈ Γ(⊗0
1TM) = Γ(T ∗M) = Ω1(M) .

In this case, it reads
LX(ω(Y )) = (LXω)(Y ) + ω(LXY ) ,

where we wrote Y instead of X1. Observe first that

φ⊗
−t∗ωφt(m)(φ

⊗
−t∗Yφt(m)) =

tφt∗ωφt(m)(φ−t∗Yφt(m))

= ωφt(m)(φt∗φ−t∗Yφt(m))

= φ⊗
−t∗(ωφt(m)(Yφt(m))) ,
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since φt and φ−t are inverses and since the extension ℓ⊗ of every linear map ℓ is identity
on real numbers. If follows that

(LX(ω(Y )))m = dt|t=0 φ⊗
−t∗(ωφt(m)(Yφt(m)))

= dt|t=0 φ⊗
−t∗ωφt(m)(φ

⊗
−t∗Yφt(m))

=
(
dt|t=0 φ⊗

−t∗ωφt(m)

)
(Ym) + ωm

(
dt|t=0 φ⊗

−t∗Yφt(m)

)
= ((LXω)(Y ) + ω(LXY ))m .

The extension to an arbitrary T ∈ Γ(⊗p
qTM) is straightforward.

5. We prove the announced result at the end of Section 2.6.

2.5.2 Local forms

Equation (17) in Proposition 7 gives LXT in terms of the Lie derivatives of a function
(C∞(M) = Γ(⊗0

0TM)), differential 1-forms (Ω1(M) = Γ(⊗0
1TM)) and vector fields (Vect(M) =

Γ(⊗1
0TM)). In this subsection, we provide the local forms of the Lie derivatives of a function,

a vector field and a differential 1-form.

When applying Definition (16) of the Lie derivative of an arbitrary tensor field T ∈
Γ(⊗p

qTM) in the direction of X ∈ Vect(M) to a function f ∈ C∞(M), we get, for every m ∈M,

(Xf)(m) := (LXf)m = dt|t=0 f(φt(m)) =

f∗m dt|t=0 φt(m) = f∗mXm = (dm f)(Xm) = X(d f)|m . (19)
Is is now easily checked that the local expression of LXf in a chart (U, (x1, . . . , xn)) of M is

(LXf) |U=
∑
i

Xi∂xif , (20)

if X |U=
∑

i X
i∂xi . It is worth to remember that

Xf = LXf = (d f)(X) = X(d f) .

The relation
[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X

(f, g ∈ C∞(M), X,Y ∈ Vect(M)) between the Lie and the module structure of Vect(M) allows
to easily recover the local expression of LXY . If X |U=

∑
i X

i∂xi and Y |U=
∑

j Y
j∂xj , then

(LXY ) |U=
∑
i

∑
j

Xj∂xjY i −
∑
j

Y j∂xjXi

 ∂xi . (21)

When applied to X,Y ∈ Vect(M) and ω ∈ Ω1(M), such that X|U =
∑

j X
j∂xj , Y |U = ∂xi ,

and ω |U =
∑

j ωj dx
j, the property LX (Y (ω)) = (LXY )(ω) + Y (LXω) leads to the local form

(LXω) |U=
∑
i

∑
k

Xk∂xk ωi +
∑
j

ωj∂xiXj

 dxi . (22)

Note that in the preceding computations we implicitly used the locality of the Lie derivative,
i.e. the fact that

(LXT ) |U = LX|U T |U .
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2.6 De Rham differential and Cartan calculus
We know that the differential of a function f ∈ C∞(M) = Ω0(M) is a differential 1-form

d f ∈ Ω1(M). Moreover, the linear map

d : Ω0(M) ∋ f 7→ d f ∈ Ω1(M)

is a derivation, i.e.
d(fg) = (d f)g + f(d g) ,

for every f, g ∈ C∞(M). This derivation d can be extended from functions, or differential
0-forms, to differential p-forms, p > 0.

Theorem 1. There exists a unique linear map

d : Ωp(M)→ Ωp+1(M) ,

p ≥ 0, called the de Rham differential or exterior differential, which satisfies the following
requirements:

1. The de Rham differential extends the differential of functions.

2. For every ω ∈ Ωp(M) and every ω′ ∈ Ω(M), we have

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)pω ∧ (dω′) ,

i.e. d is a graded derivation of degree 1 of the graded commutative algebra (Ω(M),∧) of
differential forms of M .

3. The map d is a differential on Ω(M) in the sense of Homological Algebra, i.e. an endo-
morphism of Ω(M), such that d2 = d ◦d = 0.

Proof. 1. We first prove uniqueness of d.

If d exists, it is a local operator. This follows as usual from the derivation property.
Indeed, if ω ∈ Ω(M) and U is an open subset of M such that ω|U = 0, and if m ∈ U , we take
a bump function γ around m, i.e. a function γ ∈ C∞(M) such that supp γ ⊂ U and γ = 1 in
a neighborhood V ⊂ U of m. Then ω = (1 − γ)ω and dω = d(1 − γ) ∧ ω + (1 − γ) dω, so that
(dω)|V = 0. In view of this locality property, if two differential forms ω, ω′ ∈ Ω(M) coincide in
an open subset U ⊂M , then their differentials coincide as well, i.e. (dω)|U = (dω′)|U .

Let us also recall that local operators can be restricted to open subsets U ⊂ M . In the
case of d : Ωp(M)→ Ωp+1(M), this means that there exists an operator d |U : Ωp(U)→ Ωp+1(U)

such that in particular d |Uω|U = (dω)|U for every ω ∈ Ω(M). Indeed, let ωU ∈ Ωp(U) (observe
that we denote by ωU a form over U and by ω|U the restriction to U of a form over M ). To define
d |UωU ∈ Ωp+1(U), we consider, for every m ∈ U , a bump function γV ∈ C∞(M) around m

that is equal to 1 in a neighborhood V ⊂ U of m and equal to 0 in M \U . Then γV ωU ∈ Ωp(M)

and we can set
(d|U ωU )|V := d(γV ωU )|V ∈ Ωp+1(V ) .

In every overlap V ∩ V ′ the two definitions coincide, i.e. d(γV ωU ) = d(γV ′ωU ), since in the
overlap we have γV ωU = γV ′ωU . Hence, we obtain a well-defined differential form d|U ωU ∈
Ωp+1(U). It follows that, for the restriction ω|U ∈ Ωp(U) of a form ω ∈ Ωp(M), we have

d|U ω|U = (dω)|U .
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Take now a differential form ω ∈ Ωp(M), a chart (U, (x1, . . . , xn)), a point m ∈ U and a
bump function γV as above. If

ω|U=
∑

i1<...<ip

ωi1...ip dx
i1 ∧ . . . ∧ dxip , (23)

we have necessarily

(dω)|V = (d|U ω|U )|V = d
∑

i1<...<ip

γV ωi1...ip d(γV xi1) ∧ . . . ∧ d(γV xip) |V

=
∑

i1<...<ip

d(γV ωi1...ip) ∧ d(γV xi1) ∧ . . . ∧ d(γV xip) |V

=
∑

i1<...<ip

dωi1...ip ∧ dxi1 ∧ . . . ∧ dxip |V ,

where we wrote, exactly as in Equation (23), d instead of d |U (indeed, we write differentials
of functions over U , e.g. dxi, in this a bit unprecise way as from the very beginning). Hence

(dω)|U =
∑

i1<...<ip

dωi1...ip ∧ dxi1 ∧ . . . ∧ dxip , (24)

so that d is actually unique.

2. We now prove the existence of d. We first construct d in a chart (U, (x1, . . . , xn)) and
verify that this dU : Ωp(U)→ Ωp+1(U) has all the required properties. Then, we show that the
dU -s can be glued, thus providing a d : Ωp(M)→ Ωp+1(M) that inherits the same properties.

2.a. For every chart (U, (x1, . . . , xn)) and every ωU ∈ Ωp(U), we have

ωU =
∑

i1<...<ip

ωi1...ip dx
i1 ∧ . . . ∧ dxip

and we define dU ωU , see Equation (24), by

dU ωU :=
∑

i1<...<ip

dωi1...ip ∧ dxi1 ∧ . . . ∧ dxip , (25)

so that dU ∈ L(Ωp(U),Ωp+1(U)) and coincides on Ω0(U) = C∞(U) with the differential of
functions. Further, for every ω = f dxi1 ∧ . . .∧dxip ∈ Ωp(U) and every ω′ = g dxj1 ∧ . . .∧dxjq ∈
Ωq(U) (to simplify notations we omit sums and indices), we find

dU (ω ∧ ω′) = dU
(
(f dxi1 ∧ . . . ∧ dxip) ∧ (g dxj1 ∧ . . . ∧ dxjq )

)
= dU

(
(f g) dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq

)
= ((d f) g + f (d g)) ∧ dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq

= (d f ∧ dxi1 ∧ . . . ∧ dxip) ∧ (g dxj1 ∧ . . . ∧ dxjq )

+ (−1)p(f dxi1 ∧ . . . ∧ dxip) ∧ (d g ∧ dxj1 ∧ . . . ∧ dxjq )

= (dU ω) ∧ ω′ + (−1)pω ∧ (dU ω′) .
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As for the property d2U = 0, note that

d2U ω = dU
(
dU (f dxi1 ∧ . . . ∧ dxip)

)
= dU

(∑
k

∂xkf dxk ∧ dxi1 ∧ . . . ∧ dxip

)
=
∑
k,ℓ

∂xℓ∂xkf dxℓ ∧ dxk ∧ dxi1 ∧ . . . ∧ dxip

= 0 ,

in view of the symmetry ∂xℓ∂xkf = ∂xk∂xℓf and the antisymmetry dxℓ ∧ dxk = −dxk ∧ dxℓ.

If ω ∈ Ωp(M), we have dU ω|U ∈ Ωp+1(U) and dV ω|V ∈ Ωp+1(V ), for every chart domains
U, V ⊂ M . We will prove that the latter forms coincide on U ∩ V , so that they can be glued
and define a (p + 1)-form on U ∪ V . When considering all chart domains of an atlas of M ,
we thus get a map d ∈ L(Ωp(M),Ωp+1(M)), which inherits the required properties from the
underlying dU -s.

Denote now by (x1, . . . , xn) (resp. (y1, . . . , yn)) the coordinates in U (resp. V ). Let us
examine the case ω ∈ Ω1(M): ω|U = ωi dx

i and ω|V = ω′
j d yj, where the sum symbols have

been omitted. Hence, we have
ωi dx

i = ω′
j d yj

in U ∩ V , and must show that, in this overlap,

∂xkωi dx
k ∧ dxi = dωi ∧ dxi = dω′

j ∧ d yj = ∂yℓω′
j d yℓ ∧ d yj . (26)

Since dxi = Ai
k d y

k = ∂ykxi d yk and ωi = A′j
i ω

′
j = ∂xiyj ω′

j, the first sum reads

∂xk∂xiyj∂yℓxk∂ymxiω′
j d y

ℓ ∧ d ym + ∂xiyj∂yℓxk∂ymxi∂xkω′
j d y

ℓ ∧ d ym.

As the Jacobian matrices ∂xy and ∂yx are inverses, the last term is equal to dω′
j ∧ d yj. The

first term vanishes in view of the above-mentioned symmetry-antisymmetry argument.

The next theorem describes the main properties of the de Rham differential.

Theorem 2. Let M and N be two manifolds.

1. For every f ∈ C∞(M,N),
d ◦f∗ = f∗ ◦ d .

2. For every X ∈ Vect(M), we have in Ω(M),

LX = [iX ,d] = iX ◦ d+d ◦ iX . (27)

3. For every X ∈ Vect(M),
[LX ,d] = LX ◦ d−d ◦LX = 0 . (28)

4. If ω ∈ Ωp(M), Xi ∈ Vect(M), i ∈ {0, . . . , p}, we have

(dω)(X0, . . . , Xp) =

p∑
i=0

(−1)iXi (ω(X0, . . . , ı̂, . . . , Xp))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , ı̂, . . . , ȷ̂, . . . , Xp) ,

(29)

where ı̂ means, as usual, that the corresponding argument, here Xi, is omitted.
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Proof. 1. Let g ∈ C∞(N). Since f∗g = g ◦ f , we get

(f∗ d g)m = tf∗m(d g)f(m) = Tf(m)g ◦ Tmf = (d f∗g)m ,

m ∈ M , so that the property is valid for 0-forms. Let now ω ∈ Ωp(N), p > 0, let
(V, (y1, . . . , ys)) be a chart of N , and let U = f−1(V ). In U , we have

f∗ dω = f∗ d(g d yj1 ∧ . . . ∧ d yjp) = f∗ d g ∧ f∗ d yj1 ∧ . . . ∧ f∗ d yjp

and
d f∗ω = d (f∗g ∧ f∗ d yj1 ∧ . . . ∧ f∗ d yjp) = (d f∗g) ∧ f∗ d yj1 ∧ . . . ∧ f∗ d yjp .

Finally f∗ dω = d f∗ω in U and thus everywhere in M .

2. Remember that iX (resp. d) is a graded derivation of degree −1 (resp. 1) of (Ω(M),∧). It
follows that the graded commutator

[iX ,d] = iX ◦ d−(−1)(−1)·1 d ◦ iX = iX ◦ d+d ◦ iX

is a (graded) derivation (of degree −1 + 1 = 0). The same is true for LX . These deriva-
tions coincide if they coincide on any coordinate patch. Considering their locality, it is
therefore sufficient to prove that they coincide on functions and exact forms. It is clear
that, for every function g, we have

LXg = (d g)(X) = iX(d g) = iX(d g) + d(iXg) = [iX ,d] g .

Moreover, if we prove that LX(d g) = d(LXg), we get

LX(d g) = d(iX(d g)) = (iX ◦ d+d ◦ iX)(d g) = [iX ,d](d g) .

Since

(LX(d g))m = dt|t=0 φ
⊗
−t∗(d g)φt(m)

= dt
tφt∗(d g)φt(m)

∣∣
t=0

= dt (φ
∗
t d g)m |t=0

= ∂t dφ
∗
t g |t=0,m

= d ∂t (g ◦ φt) |t=0,m

= (d(LXg))m ,

for every m ∈M , the proof is complete.

3. The result is a direct consequence of the previous one.

4. For p = 0 and ω = f ∈ Ω0(M), the announced result reads (d f)(X0) = X0(f), which is
nothing but Equation (19). We now proceed by induction. It then follows from (27) and
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(17) that

(dω)(X0, X1, . . . , Xp) = (iX0
dω)(X1, . . . , Xp)

= (LX0
ω)(X1, . . . , Xp)− (d iX0

ω)(X1, . . . , Xp)

=X0(ω(X1, . . . , Xp))−
p∑

i=1

ω(X1, . . . , [X0, Xi], . . . , Xp)

−
p∑

i=1

(−1)i−1Xi

(
(iX0

ω)(X1, . . . , ı̂, . . . , Xp)
)

−
∑

1≤i<j≤p

(−1)i+j(iX0
ω)([Xi, Xj ], . . . , ı̂, . . . , ȷ̂, . . .)

=

p∑
i=0

(−1)iXi (ω(X0, . . . , ı̂, . . . , Xp))

+
∑

0≤i<j≤p

(−1)i+jω([Xi, Xj ], . . . , ı̂, . . . , ȷ̂, . . .) .

Exercise. Write Equation (29) explicitly for p = 1 and p = 2.

Proposition 8. For every vector fields X,Y ∈ Vect(M), the results

[d, iX ] = LX , [d, LX ] = 0, [iX , iY ] = 0, [LX , iY ] = i[X,Y ] and [LX , LY ] = L[X,Y ] , (30)

concerning graded commutators of the degree −1 (resp. 0, 1) derivations iX (resp. LX , d) of the
algebra (Ω(M),∧), are valid and are referred to as the Cartan calculus on smooth manifolds.

Proof. The first and second results are known, see Equations (27) and (28); the third is a
direct consequence of the skew-symmetry of differential forms. As for the fourth, note that
both sides are graded derivations of the algebra (Ω(M),∧). It follows that they are local and
that it thus suffices to prove that they coincide on functions and differential 1-forms. Since
they have degree −1, they both vanish on functions, whereas, for ω ∈ Ω1(M), we get

i[X,Y ]ω = ω([X,Y ]) = ω(LXY ) = LX(ω(Y ))− (LXω)(Y ) = [LX , iY ]ω ,

in view of Equation (17). We already observed that the last of the equations (30) is valid
on functions and on vector fields, see Chapter 5. Since the graded commutator of graded
derivations of Ω(M) is a graded Lie algebra bracket, it satisfies the graded Jacobi identity,

L[X,Y ] = [d, i[X,Y ]] = [d, [LX , iY ]] = [[d, LX ], iY ] + [LX , [d, iY ]] = [LX , LY ] ,

so that this result is valid on differential forms as well. This completes the proof of Proposi-
tion 8. However, we still have to prove Equation (18) of Proposition 7, i.e. we must show that
the result is valid for every tensor field T ∈ Γ(⊗TM). Again, both sides L[X,Y ] and [LX , LY ]

being derivations of (Γ(⊗TM),⊗) and therefore local operators, we just need to check that
they coincide on a coordinate patch (U, x1, . . . , xn). Since a tensor field reads there

TU =
∑

i1,...,ip
j1,...,jq

t
i1...ip
j1...jq

∂xi1 ⊗ . . .⊗ ∂xip ⊗ dxj1 ⊗ . . .⊗ dxjq ,

see Equation (6), these derivations coincide at TU , as they do on functions, vector fields, and
differential forms.



Chapter 7
Integral Calculus on Manifolds

1 Orientable manifolds
The concept of orientability is well known for smooth surfaces: a smooth surface is ori-

entable if it admits a continuous field of unit normal vectors. We now want to generalize
the notion of orientability to smooth manifolds. What it means for a smooth manifold to be
orientable becomes clear when we consider the non-orientable Möbius strip M .

Figure 14: Non-orientable Möbius strip M

The blue arrows represent bases of the corresponding tangent spaces. Since the two left-
most bases (∂x1 , ∂x2) and (∂y1 , ∂y2), where the first (resp. second) vectors are horizontal (resp.
vertical), are direct bases their transition matrix, which equals the Jacobian matrix of the
coordinate transformation from x- to y-coordinates, satisfies det ∂xy > 0 . However, as indi-
cated in the above figure we cannot equip the whole manifold with coordinates that satisfy
this condition. This means that there does not exist any atlas AM = (Uα, φα)α satisfying

det(φβ ◦ φ−1
α )′(x) > 0

for all x ∈ φα(Uα ∩ Uβ) and for all indices α and β. This is a defining criterion for non-
orientability. Moreover, it can be observed that on non-orientable manifolds such as M

there does not exist any nowhere vanishing smooth top-form, which constitutes an equiv-
alent criterion for non-orientability. Indeed, the top-form represented by the green arrows
is not smooth and the one indicated by the red arrows vanishes. We conclude that the ori-
entable smooth manifolds are those that admit a nowhere vanishing (smooth) top-form, or,

95
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equivalently, those that can be equipped with an atlas whose Jacobian matrices have strictly
positive determinants.

2 Integration over orientable manifolds
Let N be a p-dimensional smooth connected and orientable manifold and let Ω be a volume

form of N , i.e. a nowhere vanishing (smooth) top-form. We fix an orientation of N , either Ω or
−Ω, say we pick Ω, and we choose a compatible atlas AN , i.e. an atlas where the determinant
of the Jacobian matrix of each coordinate transformation is strictly positive and where

Ω|φ(U)(x) = X(x) dx1 ∧ · · · ∧ dxp (1)

with X ∈ C∞(φ(U),R>0) for every chart (U,φ = (x1, . . . , xp)) ∈ AN . Note that (1) is obvious
and that the assumption here is that the values of X are strictly positive. Observe also that
if we choose a chart (V, ψ = (y1, . . . , yp)) ∈ AN such that U ∩ V ̸= ∅, if

Ω|ψ(V )(y) = Y (y) dy1 ∧ · · · ∧ dyp

and if we denote the coordinate transformation

φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V )

by x = x(y), we get

dxi =

p∑
σi=1

∂yσixidyσi

and

Y (y) dy1 ∧ · · · ∧ dyp = Ω|ψ(U∩V )(y)

= X(x(y))
∑

σ=(σ1···σp)

∂yσ1x1 · · · ∂yσpxp dyσ1 ∧ · · · ∧ dyσp

= X(x(y))
∑

σ=(σ1···σp)∈Sp

∂yσ1x1 · · · ∂yσpxp signσ dy1 ∧ · · · ∧ dyp

= X(x(y)) det ∂yx dy1 ∧ · · · ∧ dyp ,

so that
Y (y) = X(x(y)) det ∂yx . (2)

The transformation law (2) of the volume form component is coherent with respect to our
positivity assumptions.

We now come to the integral over the connected orientable manifold N associated with
the volume form Ω.

Let us first consider a compactly supported continuous function f ∈ C0
c (N), whose sup-

port is contained in a chart domain U with coordinates φ = (x1, . . . , xp). If f(x) is this function
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read in these coordinates and X(x) dx1 ∧ . . . ∧ dxp is the coordinate form of the volume, we
define the integral over N of f with respect to Ω by∫

N

f Ω =

∫
U

f Ω =

∫
φ(U)

f(x)X(x) dx1 ∧ . . . ∧ dxp :=
∫
φ(U)

f(x)X(x) dx1 . . . dxp ∈ R , (3)

where the RHS is the Lebesgue integral in Rp, which makes sense as the integrated function
is continuous and compactly supported in φ(U).

We then pass to an arbitrary f ∈ C0
c (N) by means of a partition of unity (Uα, φα, πα)α

subordinate to the compatible atlas AN , i.e. we set∫
N

f Ω :=
∑
α

∫
N

(παf) Ω ∈ R , (4)

where the terms of the RHS are defined by (3) and the sum over α is finite because the cover
is locally finite and the support of f is compact.

The integrals (3) and (4) only depend on f and neither on the chosen charts, nor on
the partition of unity considered. The independence from the partition of unity follows
from a standard proof from integration theory, which we will not repeat here, while the
independence from the chosen chart can be easily checked. Indeed, if (V, ψ = (y1, . . . , yp)) is
another chart whose domain contains the support of f , we can write as well∫

N

f Ω :=

∫
ψ(V )

f(y)Y (y) dy1 . . . dyp =

∫
ψ(U∩V )

f(y)Y (y) dy1 . . . dyp , (5)

where f(y) is the function f read in the coordinates y . However, if we perform the coordinate
transformation x = x(y) ⇌ y = y(x) in the integral (3) which is also given by the Lebesgue
integral ∫

φ(U∩V )

f(x)X(x) dx1 . . . dxp ,

we get ∫
ψ(U∩V )

f(x(y))X(x(y))|det ∂yx| dy1 . . . dyp,

which, in view of the function transformation law f(x(y)) = f(y), the volume transformation
law (2) and the positive sign of the Jacobian determinant, coincides with the integral (5).
This also makes it understandable why it is so important that the manifold over which we
integrate is orientable. The assumption of connectedness, on the other hand, is merely a
simplifying assumption to limit the number of orientations of N to 2: connectedness can
easily be avoided.

Note now that Equations (3) and (4) clearly define a positive linear form on C0
c (N) .

Since the oriented smooth p-dimensional [Hausdorff and second countable] manifold N

is a locally compact topological space and a countable union of compact subspaces, the
general theory of Radon measures allows us to extend the positive linear form

∫
N
−Ω on

C0
c (N) to a larger space L1

Ω(N) ⊃ C0
c (N). We denote µ this extension or measure and say that

the functions g ∈ L1
Ω(N) (we also write g ∈ L1

µ(N)) are integrable over N with respect to Ω (or
µ) and their integral is defined by ∫

N

gΩ := µ(g) ∈ R

(we also write
∫
N
g µ = µ(g) ∈ R).
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3 Integration over arbitrary manifolds
The Cartesian space Rn admits a canonical measure, the Lebesgue measure, which we

denote by δ0 = |dx1 ∧ . . .∧ dxn|. The theorem that allows to change coordinates in a Lebesgue
integral now reads as follows. Let x = x(y) ⇌ y = y(x) be a diffeomorphism between two open
subsets U and V of Rn. We have f(x) ∈ L1

δ0
(U) if and only if f(x(y))|det ∂yx| ∈ L1

δ0
(V ) and∫

U

f(x) |dx1 ∧ . . . ∧ dxn| =
∫
V

f(x(y))|det ∂yx||dy1 ∧ . . . ∧ dyn| . (6)

The appropriate objects for integration over a (not necessarily orientable) smooth n-
dimensional manifold M are 1-densities. Roughly, 1-densities are differential top forms
up to sign. More precisely, a 1-density on the vector space TmM (m ∈M ) is a map

d : ∧nTmM \ {0} → R ,

such that, for every s ∈ R \ {0} and every Π ∈ ∧nTmM \ {0}, we have

d(sΠ) = |s|λd(Π) ,

with λ = 1. If λ is an arbitrary real number, d is a λ-density of TmM . It is clear that the set
Dλ(TmM) of all λ-densities of TmM is a real 1-dimensional vector space and that the disjoint
union Dλ(M) = ⊔mDλ(TmM) is a rank 1 vector bundle over M . Indeed, if ω ∈ ∧nT ∗

mM is a
nonzero top linear form of the tangent space, then |ω|λ is a basis of Dλ(TmM). A λ-density
field of M is then a smooth section δ ∈ Dλ(M) := Γ(Dλ(M)) of the λ-density bundle. If no
confusion is possible it is customary to speak about λ-densities instead of fields of such
densities and about densities instead of 1-densities. From what has just been said it is
obvious that over a coordinate chart (U,φ = (x1, . . . , xn)) of M a λ-density δ reads

δ|φ(U)(x) = X(x)|dx1 ∧ . . . ∧ dxn|λ,

where X(x) is smooth. Observe that if (V, ψ = (y1, . . . , yn)) is another coordinate patch and if

δ|ψ(V )(y) = Y (y)|dy1 ∧ . . . ∧ dyn|λ ,

then, in view of the computations in Section 2, the component transformation law for λ-
densities is

Y (y) = X(x(y))|det ∂yx|λ. (7)

The point with densities is that for λ = 1 the basis vector |ω| is a volume element of the
tangent space, viewed up to Z2-action. Whereas on non-orientable manifolds a global top
differential form is either not smooth or has to vanish at some point, it is intuitively clear
that a global smooth nowhere vanishing top differential form up to sign, i.e. a global smooth
nevervanishing 1-density field, must exist even for non-orientable manifolds. It follows that
the line bundle D1(M) is trivial.

Let us now come to the integral over a manifold M associated with a 1-density δ ∈ D1(M).
We know from what has been said above that it suffices to show that this density defines a
positive linear form on C0

c (M).

It suffices to proceed as in the orientable case.
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Let us first consider a continuous function f ∈ C0
c (M) that is compactly supported by

a chart domain U with coordinates φ = (x1, . . . , xn). If f(x) is this function read in these
coordinates and X(x)|dx1 ∧ . . . ∧ dxn| is the coordinate form of the density δ, we define the
measure or integral over M of f associated to δ by∫

M

f δ :=

∫
φ(U)

f(x)X(x)|dx1 ∧ . . . ∧ dxn| , (8)

where the RHS Lebesgue integral makes sense as the integrated function is continuous and
compactly supported in φ(U).

We then pass to an arbitrary f ∈ C0
c (M) by means of a partition of unity (Uα, φα, πα)α

subordinate to the charts of an atlas, i.e. we set∫
M

f δ :=
∑
α

∫
M

(παf) δ . (9)

This defines obviously a positive linear form and the integrals (8) and (9) only depend on
f and neither on the chosen charts, nor on the partition of unity considered. Indeed, if
(V, ψ = (y1, . . . , yn)) is another chart that contains the support of f , we can write as well∫

M

f δ :=

∫
ψ(V )

f(y)Y (y)|dy1 ∧ . . . ∧ dyn| . (10)

When performing the coordinate transformation x = x(y) ⇌ y = y(x) in the integral (8), see
(6), we find ∫

ψ(V )

f(x(y))X(x(y))|det ∂yx||dy1 ∧ . . . ∧ dyn| ,

which, in view of transformation law (7), coincides with the integral (10). This also allows
us to understand why orientability is not needed if we integrate with respect to a 1-density.

4 Exercises
Additional exercises – related to the whole course – will be proposed in separate files

provided in the UL Learning Management System MOODLE.

5 Disclaimer
The present text served as a reference for a Master Course given by the author at the Uni-

versity of Luxembourg. As the notes gradually grew over the years, some bibliographic data
may have been lost or forgotten; in this case, the author is happy to add these references.
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