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Abstract

Isogeometric analysis (IGA) represents a recently developed technology in computational mechanics that offers the

possibility of integrating methods for analysis and Computer Aided Design (CAD) into a single, unified process.

The implications to practical engineering design scenarios are profound, since the time taken from design to analysis

is greatly reduced, leading to dramatic gains in efficiency. In this manuscript, through a self-contained Matlab R©

implementation, we present an introduction to IGA applied to simple analysis problems and the related computer

implementation aspects. Furthermore, implementation of the extended IGA which incorporates enrichment functions

through the partition of unity method (PUM) is also presented, where several examples for both two-dimensional and

three-dimensional fracture are illustrated. We also describe the use of IGA in the context of strong-form (collocation)

formulations, which has been an area of research interest due to the potential for significant efficiency gains offered

by these methods. The code which accompanies the present paper can be applied to one, two and three-dimensional

problems for linear elasticity, linear elastic fracture mechanics, structural mechanics (beams/plates/shells including

large displacements and rotations) and Poisson problems with or without enrichment. The Bézier extraction concept

that allows the FE analysis to be performed efficiently on T-spline geometries is also incorporated. The article includes

a summary of recent trends and developments within the field of IGA.

Keywords: isogeometric analysis, linear elasticity, Matlab R©, NURBS, finite elements, partition of unity, enrichment,

3D cracks, boundary conditions, CAD, large displacements and rotations, shells, isogeometric collocation

∗Corresponding author
1
nguyenpv@cardiff.ac.uk

2
canitesc@syr.edu

3
stephane.bordas@alum.northwestern.edu

4
timon.rabczuk@uni-weimar.de

Preprint submitted to Elsevier June 5, 2015

n
c
s
t


1. Introduction

1.1. Underlying concepts of isogeometric analysis

The predominant technology that is used by CAD to represent complex geometries is the Non-Uniform Rational

B-spline (NURBS). This allows certain geometries that can only be approximated by polynomial functions to be

represented exactly. Examples of this include conic sections and objects such as cylinders, spheres, etc. which are

essential in design. There is a vast array of literature focused on NURBS (e.g. [98], [106]) and as a result of several

decades of research, many efficient computer algorithms exist for their fast evaluation and refinement. The key concept

outlined by Hughes et al. [57] was to employ NURBS not only as a geometry discretisation technology, but also as

a discretisation tool for analysis, attributing such methods to the field of ‘Isogeometric Analysis’ (IGA). Since this

seminal paper, a monograph dedicated entirely to IGA has been published [31] and applications can now be found in

several fields including structural mechanics, solid mechanics, fluid mechanics and contact mechanics.

We give in this section an overview of some of these recent developments while outlining the benefits and present

shortcomings of IGA. It should be emphasized that the idea of using CAD technologies in finite elements dates back

at least to [62, 63] where B-splines were used as shape functions in FEM. In addition, similar methods which adopt

subdivision surfaces have been used to model shells [27]. We also review some of the recent attempts at simplifying

the CAD-FEA integration by separating boundary and domain discretizations.

1.2. Applications

In contact formulations using conventional geometry discretizations, the presence of faceted surfaces can lead to

jumps and oscillations in traction responses unless very fine meshes are used. The benefits of using NURBS over

such an approach are evident, since smooth contact surfaces are obtained, leading to more physically accurate contact

stresses. Recent work in this area includes [33, 77, 82, 136–138].

IGA has also shown advantages over traditional approaches in the context of optimization problems, [79, 100, 101,

145] where the tight coupling with CAD models offers an extremely attractive approach for industrial applications.

Another attractive class of methods include those that require only a boundary discretization, creating a truly direct
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coupling with CAD. Isogeometric boundary element methods for elastostatic analysis were presented in [118, 126],

demonstrating that mesh generation can be completely circumvented by using CAD discretizations for analysis.

Shell and plate problems are another field where IGA has demonstrated compelling benefits over conventional

approaches [11, 13, 14, 16, 41, 67, 140]. The smoothness of the NURBS basis functions allows for a straightforward

construction of plate/shell elements. Particularly for thin shells, rotation-free formulations can be easily constructed

[66, 67]. Note that for multi-patch NURBS surfaces, rotation-free IGA elements require special treatment at patch

boundaries where the basis functions are found to be C0 continuous. Furthermore, isogeometric plate/shell elements

exhibit much less pronounced shear-locking compared to standard FE plate/shell elements. Elements with smooth

boundaries such as circular and cylindrical elements were successfully constructed using the IGA concept [76, 78].

The smoothness of NURBS basis functions is attractive for analysis of fluids [7, 53, 96] and for fluid-structure

interaction problems [9, 10]. In addition, due to the ease of constructing high order continuous basis functions, IGA

has been used with great success in solving PDEs that incorporate fourth order (or higher) derivatives of the field

variable such as the Hill-Cahnard equation [52], explicit gradient damage models [142] and gradient elasticity [50].

The high order NURBS basis has also found potential applications in the Kohn-Sham equation for electronic structure

modeling of semiconducting materials [81].

NURBS provide advantageous properties for structural vibration problems [30, 59, 139, 146] where k-refinement

(unique to IGA) has been shown to provide more robust and accurate frequency spectra than typical higher-order FE

p-methods. Particularly, the optical branches of frequency spectra, which have been identified as contributors to Gibbs

phenomena in wave propagation problems (and the cause of rapid degradation of higher modes in the p-version of

FEM), are eliminated. However when lumped mass matrices were used, the accuracy is limited to second order for any

basis order. High order isogeometric lumped mass matrices are not yet available. The mathematical properties of IGA

were studied in detail by [47].

The isogeometric concept has also spread to the field of meshfree methods such as [54, 69, 124] in which spline-based

meshfree methods were presented and [107] introduced a hybrid IGA and local maximum entropy meshfree method

in which the boundary surfaces are presented by B-splines and the interior volume is discretized by meshfree points.

B-splines are used in the material point method to alleviate the cell-crossing issue [129]. Industrial applications of

IGA have been presented in [55, 118] along with applications in experimental mechanics [45] where NURBS-based DIC
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(Digital Image Correlation) was shown to outperform standard FE DIC.

B-splines have been utilized in ANCF (absolute nodal coordinate formulation) finite element analysis of large

deformation problems of constrained multibody systems [72, 87, 110, 150].

1.3. Shortcomings of NURBS and alternative geometry discretizations

NURBS are ubiquitous in CAD but are known to exhibit major shortcomings from a computational geometry

standpoint. Perhaps the greatest difficulty encountered is the inability of NURBS to produce watertight geometries,

often complicating mesh generation. From an analysis perspective, the tensor product structure of NURBS proves to

be inefficient, caused by the global nature of refinement operations. In turn, this leads to inefficient error estimation

and adaptivity algorithms. One solution which has gathered momentum from both the computational geometry and

analysis communities is the use of T-splines [121] which overcome the limitations of NURBS while retaining the familiar

structure of NURBS algorithms. T-splines correct the deficiencies of NURBS by creating a single patch, watertight

geometry which can be locally refined and coarsened. Buffa et al. [20] note that linear independence of the T-spline

basis functions is not guaranteed on generic T-meshes leading to the definition of analysis-suitable T-splines [117], a

mildly restricted subset of T-splines which meet the demands of both design and analysis. Utilisation of T-splines in

an IGA framework has been illustrated in [8, 39], and by adopting a Bézier extraction process, Scott et al.[116] showed

that T-splines can be incorporated efficiently into existing FE codes.

Alternatives to T-splines include polycube splines [147], PHT-splines [35] and LR-splines [37]. PHT-splines (poly-

nomial spline over hierarchical T-meshes) have been extended to rational splines and applied in [94, 95] to problems

in elasticity for continua and thin structures. Adaptive refinement with PHT-splines is particularly simple. Although

T-splines allow for local adaptive refinement, the complexity of knot insertion under adaptive refinement is complex,

particularly in 3D. However, we note that research is currently being pursued on hierarchical T-spline refinement

algorithms that address this issue.

Another direction of IGA research includes hierarchical B-splines [19, 71, 112, 143], splines forest [119], unstructured

Powell-Sabin splines [128], triangular B-splines [61] and Coons-Gordon interpolation [99]. The hierarchical B-splines

finite cell method [112] furnishes a seamless CAD-FEA integration for very complex geometries. We refer also to

[70] for IGA combined with finite element based local refinement capabilities. Different subdivision surface techniques

(Catmull-Clark, Loop) have also been utilized for solid and shell modeling [21, 148].
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In computer aided geometric design, patching multiple NURBS parameterizations to form complex topologies is

far from trivial if certain continuity requirements are to be maintained. Trimming techniques provide a promising

alternative for representing complex NURBS domains. In [68], a trimmed surface based analysis framework has

been proposed where NURBS-enhanced FEM [122, 123] was applied to define a suitable integration domain within

parameter space. In a recent contribution [115], the authors presented an alternative method to handle trimmed

NURBS geometries.

1.4. Discontinuities and fracture

IGA has been applied to cohesive fracture [141], outlining a framework for modeling debonding along material

interfaces using NURBS and propagating cohesive cracks using T-splines. The method relies upon the ability to specify

the continuity of NURBS and T-splines through a process known as knot insertion. As a variation of the eXtended Finite

Element Method (XFEM) [84], IGA was applied to Linear Elastic Fracture Mechanics (LEFM) using the partition of

unity method (PUM) to capture two dimensional strong discontinuities and crack tip singularities efficiently [34, 51].

The method is usually referred to as XIGA (eXtended IGA). In [133] an explicit isogeometric enrichment technique

was proposed for modeling material interfaces and cracks exactly. Note that this method is contrary to PUM-based

enrichment methods which define cracks implicitly.

A phase field model for dynamic fracture was presented in [18] using adaptive T-spline refinement to provide an

effective method for simulating fracture in three dimensions. In [92] high order B-splines were adopted to efficiently

model delamination of composite specimens and in [89], an isogeometric framework for two and three dimensional

delamination analysis of composite laminates was presented where the authors showed that using IGA can significantly

reduce the usually time consuming pre-processing step in generating FE meshes (solid elements and cohesive interface

elements) for delamination computations. Similar work with T-spines based cohesive elements for interface debonding

is reported in [36]. A continuum description of fracture using explicit gradient damage models was also studied using

NURBS [142] and IGA was also adopted in poromechanical fracture problems [60].

1.5. Alternatives to IGA

Other techniques which integrate CAD and analysis include the use of subdivision surfaces to model shells [27],

NURBS-enhanced finite elements [122, 123] and NURBS for BEM shape optimization [25]. Immersed boundary methods
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[111] (and references therein), the finite cell method [102, 112] and the structured XFEM [73, 86] are yet other

alternatives which aim to combine analysis and design technologies. In general, it is found that for CAD and analysis

technologies to work seamlessly together, the underlying discretization must either be directly compatible or easily

converted between the two.

IGA has offered significant advances towards the goal of a unified design and analysis framework, but much research

is still needed before this goal is realized. There are several indications of the future promise of IGA for industrial

design but ultimately, the litmus test of success for IGA will be whether the approach is widely adopted by industry.

1.6. Computational aspects

Some major computational aspects of IGA which have been studied so far include (i) locking issues, (ii) sensitivity

to mesh distortion, (iii) impact of high continuity of NURBS on direct solvers, (iv) collocation methods, (v) competing

demands of analysis and computational geometry discretizations, (vi) construction of trivariate solids from given

bivariate surface representations and (vii) optimal quadrature rules.

(i) Although the smoothness of NURBS basis functions reduces to some extent the locking phenomena for constrained

problems such as incompressible media, thin-walled structures, NURBS-based FEs are not locking free [6, 22–

24, 40, 42, 43]. Existing locking removal techniques in standard FEMs were successfully adapted to IGA such as

the Discrete Strain Gap method [40], the F/B-bar method [42, 43], the enhanced assumed strain method [22] and

mixed formulations [135].

(ii) The effect of mesh distortion on the performance of IGA for solid mechanics was discussed in [74] in which it was

found that higher-order NURBS functions are able to somewhat alleviate the impact of the distortions.

(iii) The high order continuity offered by NURBS has a negative impact on the performance of direct solvers as pointed

out in [29]. The authors found that for a fixed number of unknowns and basis degree, a higher degree of continuity

drastically increases the CPU time and RAM needed to solve the problem when using a direct solver.

(iv) In an attempt to compete with low order FEs with one-point quadrature that are extensively used in industrial

applications, isogeometric collocation methods were developed [3, 4, 113].
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(v) Due to the fact that meshes in an isogeometric framework are defined by the parametrization of the object of

interest, the quality of the geometry parametrisation plays an important role in ensuring mesh quality. This issue

has, however, been addressed by only a few researchers [28, 114, 132, 149, 154]. In particular, in [28], the authors

proposed the concept of “analysis-aware geometry modeling”.

(vi) In CAD, solids are defined as boundary surfaces in which the interior is not explicitly modeled. In FEA, a solid

representation is necessary and therefore, the transition from CAD solids to FEA solids demands a step in which

the CAD representations are converted to solid FEA representations. Initial developments have been reported

in [1, 46, 80, 151–153]. Note that in this regard, the isogeometric boundary element method (IGABEM) can be

considered a truly isogeometric method [97, 118, 126, 127] since BEM analysis requires only the definition of a

boundary discretization, completely defined by CAD.

(vii) Gaussian quadrature is not optimal for IGA. Research is currently focused on optimal integration techniques such

as that in [5, 58] in which (nearly) optimal quadrature rules have been presented.

1.7. Available implementations

Some implementation aspects of IGA were reported in [31] and more recently, an open source IGA Matlab R© code

was described in [144] with a restriction to 2D scalar PDEs. An excellent open source IGA code written in Matlab R© is

given in [48]. Incorporating IGA within an object-oriented C++ FE code was discussed in [109]. Implementation details

for enriched formulations within an IGA framework are reported in [15] using commercial FE software. An IGA BEM

code written in Matlab R© was presented in [127]. Isogeometric analysis was also incorporated into FEAP [134, 135]. A

high performance IGA code was given in [32] which is based on PETSc, the Portable, Extensible Toolkit for Scientific

Computation. The Python programming language has also been adopted to implement IGA e.g., [103, 104]. GPU

implementation of IGA is also available [64].

1.8. Contributions and outline

In this paper, we present in detail an isogeometric analysis method applied to two- and three-dimensional scalar

and vector equations, structural mechanics problems and traction-free crack problems. The discussion is confined to

NURBS for the sake of simplicity. Although no new fundamental findings are presented, the contributions of the paper

are
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• an overview of IGA, applications and recent developments are presented;

• some implementation details for solid mechanics and rotation-free plate and shell elements are provided;

• implementation for 2D and 3D XIGA for traction-free cracks;

• implementation of collocation methods in the context of IGA;

• visualization techniques for (X)IGA are discussed;

• techniques to impose Dirichlet boundary conditions;

• different techniques to model discontinuities in the context of IGA

To the best of our knowledge, none of the publicly available implementations mentioned in the previous section

include XIGA, Kirchhoff shells or collocation methods. The closest project of similar scope is GeoPDEs which includes

solvers for other PDEs, such as Stokes’ equations and Maxwell equations, and seems to emphasize generality. By

contrast, we are focusing on solving some specific problems in a self-contained way that is perhaps easier to understand

by a newcomer to IGA.

The paper is structured as follows: Section 2 outlines B-spline and NURBS technology used to construct surfaces

and solids; the use of NURBS for discretization within a finite element framework is treated in Section 3. A detailed

description of our IGA Matlab code is given in Section 4 and Application of IGA to structural mechanics problems is

presented in Section 5. Numerical examples including 2D/3D fracture mechanics and large deformation shell problems

are given in Section 6.

1.9. Notation

We use lowercase indices to indicate a local index and uppercase indices to indicate a global index. We denote

dp and ds as the number of parametric directions and spatial directions respectively. Boldfont is used to indicate

matrices and vectors where the number of components is implied.

2. A brief introduction to B-splines/NURBS

To construct a B-spline, a knot vector must be specified and is defined as an ordered set of increasing parameter

values Ξ = {ξ1, ξ2, . . . , ξn+p+1}, ξi ≤ ξi+1 where ξi is the ith knot, n is the number of basis functions and p is the
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polynomial order. The knot vector divides the parametric space into intervals usually referred to as knot spans with

the number of coincident knots for a particular knot value referred to as a knot with a certain multiplicity k. That is,

a knot has a multiplicity k if it is repeated k times in the knot vector. Most commonly, open knot vectors are used

where the first and last knots have a multiplicity k = p + 1. Appendix A outlines alternative knot vector notations

which remove redundant information, but it can be assumed that the above knot vector notation is used throughout

the present work.

2.1. B-spline basis functions

Given a knot vector Ξ, the associated set of B-spline basis functions {Ni,p}ni=1 are defined recursively by the

Cox-de-Boor formula, starting with the zeroth order basis function (p = 0)

Ni,0(ξ) =















1 if ξi ≤ ξ < ξi+1,

0 otherwise,

(1)

and for a polynomial order p ≥ 1

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2)

in which fractions of the form 0/0 are defined as zero.

Algorithms for efficient evaluation of B-Splines and their derivatives of arbitrary order can be found in [98].

2.2. B-spline surfaces and volumes

Given two knot vectors for each parametric direction Ξ1 = {ξ1, ξ2, . . . , ξn+p+1} and Ξ2 = {η1, η2, . . . , ηm+q+1}, and

a control net of points Pi,j ∈ Rds , a tensor-product B-spline surface is defined as

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Pi,j , (3)
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where Ni,p(ξ) and Mj,q(η) are the univariate B-spline basis functions of order p and q corresponding to knot vectors

Ξ1 and Ξ2, respectively. Defining a global index as

A = n(j − 1) + i, (4)

Eq. (3) can be rewritten in a more compact form as

S(ξ) =
n×m
∑

A=1

PAN
p,q
A (ξ), (5)

in which Np,q
A is a bivariate B-spline basis function defined as Np,q

A (ξ) = Ni,p(ξ)Mj,q(η).

The extension to B-spline volumes is straightforward, where a trivariate basis is formed through a tensor product

of B-spline basis functions as

V(ξ, η, ζ) =

n
∑

i=1

m
∑

j=1

l
∑

k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k, (6)

or, by defining a global index A through

A = (n×m)(k − 1) + n(j − 1) + i, (7)

a simplified form of Eq. (6) can be written as

V(ξ) =

n×m×l
∑

A=1

PAN
p,q,r
A (ξ). (8)

2.3. NURBS

B-splines are convenient for free-form modeling, but they lack the ability to exactly represent some simple shapes

such as circles and ellipsoids. This is why today, the de facto standard technology in CAD is a generalization of

B-splines referred to as NURBS (Non-Uniform Rational B-Splines). NURBS are formed through rational functions

of B-splines, forming a super-set of B-splines. They inherit all the favorable properties of B-splines and are favored

over their counterpart due to their ability to form exact representations of conic sections such as spheres, ellipsoids,
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paraboloids and hyperboloids. In addition, there exist efficient algorithms for their evaluation and refinement.

2.3.1. NURBS basis functions

NURBS basis functions are defined as

Ri,p(ξ) =
Ni,p(ξ)wi

W (ξ)
=

Ni,p(ξ)wi
∑n

î=1Nî,p(ξ)wî

(9)

where {Ni,p}ni=1 is the set of B-spline basis functions of order p and {wi}ni=1, wi > 0 is the set of NURBS weights.

Selecting appropriate weights permits the description of many different types of curves including polynomials and

circular arcs. For the special case in which all weights are equal, the NURBS basis reduces to the B-spline basis.

NURBS weights for certain simple geometries are given in [98], but in general, weights are user-defined through CAD

packages such as Rhino5.

2.3.2. NURBS curves, surfaces and volumes

In a similar fashion to B-spline curves, the NURBS curve associated with a set of control points and weights

{PA, wA}nA=1 and basis functions {RA,p}nA=1 is defined as

C(ξ) =
n
∑

A=1

PARA,p(ξ). (10)

NURBS surfaces are constructed from a linear combination of bivariate NURBS basis functions, control points Pi,j ∈

R
ds and weights wi,j > 0 as

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Pi,jR
p,q
i,j (ξ, η), (11)

where the bivariate NURBS basis functions are defined as

Rp,q
i,j (ξ, η) =

Ni(ξ)Mj(η)wi,j
∑n

î=1

∑m

ĵ=1Nî(ξ)Mĵ(η)wî,ĵ

. (12)

5
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Alternatively, using the mapping defined by Eq. (4), Eq. (11) can be written more succinctly as

S(ξ) =

n×m
∑

A=1

PAR
p,q
A (ξ). (13)

NURBS volumes are constructed from control points Pi,j,k ∈ R
ds , weights wi,j,k > 0 as

V(ξ, η, ζ) =
n
∑

i=1

m
∑

j=1

l
∑

k=1

Pi,j,kR
p,q,r
i,j,k (ξ, η, ζ) (14)

where the trivariate NURBS basis functions Rp,q,r
i,j,k are given by

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni(ξ)Mj(η)Pk(ζ)wi,j,k
∑n

î=1

∑m

ĵ=1

∑l

k̂=1
Nî(ξ)Mĵ(η)Pk̂

(ζ)w
î,ĵ,k̂

. (15)

Using the mapping given by Eq. (7), Eq. (14) can also be written as

V(ξ) =
n×m×l
∑

A=1

PAR
p,q,r
A (ξ) (16)

Remark 2.1. As mentioned in Section 1.6, CAD representations are usually composed of surface models or boundary-

representations. Trivariate discretizations defined by (16) are not normally explicitly given, and therefore some pre-

processing is required before domain based numerical methods such as the FEM can be applied. Except for the case of

simple cases such as extruded-surface models and swept models, this task is far from trivial. This is currently an open

research topic in IGA.

3. NURBS as a basis for analysis: isogeometric finite element formulation

Our attention now focuses on the use of B-splines and NURBS as a discretization tool for analysis, outlining the

core concepts of isogeometric analysis. In this section the important spaces and mappings are defined, followed by the

isogeometric FEM formulation in which we use NURBS as a basis for analysis.
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3.1. Relevant spaces

Familiarity must be gained with the spaces that are commonplace in isogeometric analysis and the relationships that

exist between each. Those that are considered presently in the context of B-splines and NURBS include: parametric,

physical and parent space.

3.1.1. Parametric space

Parametric space (sometimes referred to as the ‘pre-image’ of the NURBS mapping) is formed by considering

only the non-zero intervals between knot values. For the knot vectors considered previously, the parametric space

is illustrated in Fig. 1 which can subsequently be reduced to a unit square through appropriate normalization. All

parametric spaces can be reduced to a unit interval (dp = 1), square (dp = 2) or cube (dp = 3) in this manner. We

define the parametric space as Ω̂ ⊂ R
dp with a associated set of parametric coordinates ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3) ∈ Ω̂

(dp = 3). If normalization is performed, Ω̂ = [0, 1]dp .

Fig. 1 also reveals that regions bounded by knot lines with non-zero parametric area lead to a natural definition of

element domains. More formally, a set S ⊂ Ξ of unique knot values can be defined as

S = {ξ1, ξ2, · · · , ξns
} ξi 6= ξi+1 for 1 ≤ i ≤ ns − 1 (17)

where ns is the number of unique knot values. This is generalized to S
i ⊂ Ξi which represents the unique knot values

for each parametric direction i = 1, 2, . . . dp. Elements can now be defined in the general multivariate case as

Ω̂e = [ξi, ξi+1]⊗ [ηj , ηj+1]⊗ [ζk, ζk+1] 1 ≤ i ≤ n1s − 1, (18)

1 ≤ j ≤ n2s − 1,

1 ≤ k ≤ n3s − 1,

ξi ∈ S
1, ηj ∈ S

2, ζk ∈ S
3

where n1s, n
2
s and n3s represent the number unique knots in the ξ,η and ζ parametric directions respectively. This leads

13



unnormalised

normalised

Figure 1: Parametric space defined by non-zero knot intervals. All parametric spaces defined for a B-spline or NURBS patch can be
normalized to a unit interval, unit square, unit cube in 1D, 2D, 3D respectively. Knot lines provide a natural definition of element
boundaries.

to a natural numbering scheme for elements over a patch as

e = k(n2s − 1)(n1s − 1) + j(n1s − 1) + i. (19)

Eq. (18) and (19) can be simplified accordingly for dp = 1, 2.

3.1.2. Physical space

The B-spline and NURBS mappings of Eqs. (5) and (11) transform coordinates in parameter space to physical space

Ω ⊂ R
ds . For three-dimensional domains, we associate a coordinate system x = (x, y, z) = (x1, x2, x3) for physical

space, which appropriate modifications for one- and two-dimensional problems. Fig. 2 illustrates a NURBS mapping

for the parametric space shown in Fig. 1 for an arbitrary set of control points and weights. The control grid (which

defines the connectivity between control points) is also shown. The non-interpolatory nature of control points in the

interior of the domain is evident, and represents a notable difference over conventional Lagrangian meshes.
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Figure 2: A 2D NURBS surface defined for knot vectors Ξ1 = {0, 0, 0, 1, 2, 3, 3, 3}, Ξ2 = {0, 0, 1, 1}. The control mesh is shown in red with
control points denoted by black circles. Knot lines shown in blue indicate element boundaries.

3.1.3. Parent space

The previous three spaces are inherent to B-splines and NURBS, but for analysis to be performed we require the

definition of an additional space, commonly referred to as parent space Ω̃ = [−1, 1]dp . This is required for the use of

numerical integration routines which are often defined over the interval [−1, 1]. Parent space coordinates are denoted

as ξ̃ = (ξ̃, η̃, ζ̃) = (ξ̃1, ξ̃2, ξ̃3) with corresponding simplifications for dp = 1, 2.

3.2. Mappings (change of variables)

The use of NURBS basis functions for discretization introduces the concept of parametric space which is absent in

conventional FE implementations. The consequence of this additional space is that an additional mapping must be

performed to operate in parent element coordinates. As shown in Fig. 3, two mappings are considered for IGA with

NURBS: a mapping φ̃e : Ω̃ → Ω̂e and S : Ω̂ → Ω. The mapping xe : Ω̃ → Ωe is given by the composition S ◦ φ̃e.

4. MIGFEM- A Matlab IGA (X)FEM code

In this section we describe shortly the open source IGA Matlab (X)FEM program which can be downloaded from

https://sourceforge.net/projects/cmcodes/. The code supports one, two and three dimensional linear elasticity

problems. Extended IGA for crack and material interface modeling is also implemented. Geometrically nonlinear solid

and structural mechanics models are available. The features of the code include:

• Global h,p and k-refinement is provided for one, two and three dimensional meshes.
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parent space

parameter space

physical space

Figure 3: Diagrammatic interpretation of mappings from parent space through parametric space to physical space.
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• Extended IGA for 2D/3D stationary traction-free cracks and material interfaces.

• Visualization of displacements and stresses in Paraview.

• Inhomogeneous Dirichlet boundary conditions are treated with the least squares method.

• Compatible multi-patch isogeometric formulation for two dimensional problems.

• Support for T-splines via the Bézier extraction operators.

• Structural elements including beams, plates and thin shells.

• Implementation of collocation methods for IGA.

4.1. Data structure

MIGFEM follows the Matlab FEM code described in [26]. The main data structures include (1) element (store the

element connectivity), (2) controlPts (store control point coordinates), (3) weights (store the weights) (4) K (stiffness

matrix) and (5) f (external force vector). Contrary to FEM in which the element connectivity and nodal coordinates

are inputs which have been created by a meshing program, in IGA, the input consists of CAD data including knots,

control points, order of basis functions. Therefore, one has to construct the element matrix based on the knots and

the basis orders.

Construction of the element matrix is illustrated by a 2D example shown in Fig. 4. Given the knot vectors uKnot

and vKnot together with the orders of the basis p and q, one can compute the number of control points along the ξ and

ζ directions, denoted by n and m. Then we define a two dimensional matrix of dimension m× n called node pattern

given by for the illustrated example shown in Fig. 4 which has 4 control points along ξ and 4 control points along η

directions

node pattern =



















1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



















, (20)
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Figure 4: Two dimensional isogeometric analysis: mesh generation for a bi-quadratic NURBS surface (2× 2 elements). The circles denote
the control points.

which is simply an application of Eq. (4) for defining global indexes.

The number of elements along the two directions n1s − 1, n2s − 1 are noElemsU = length(unique(uKnot)) − 1

and noElemsV = length(unique(uKnot)) − 1 (in the Matlab language). The connectivity matrix for the ξ direction,

denoted by connU which is a noElemsU × (p+ 1) matrix and the connectivity matrix for the η direction, denoted by
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connV which is a noElemsV × (q + 1) matrix are given by

connU =







1 2 3

2 3 4






, connV =







1 2 3

2 3 4






, (21)

for the example under consideration. Matrix connU stores the indices of the non-zero basis functions at each knot span

for the ξ direction. Having this information and the global indexes of the NURBS basis given in Eq. (20), we are able

to define the connectivity matrix for the whole mesh, called element which is a noElemsU ∗noElemsV × (p+1)(q+1)

matrix. For the example being considered, this matrix reads

element =



















1 2 3 5 6 7 9 10 11

2 3 4 6 7 8 10 11 12

5 6 7 9 10 11 13 14 15

6 7 8 10 11 12 14 15 16



















. (22)

Note that the matrix element is the transpose of the IEN matrix. We decided to use element instead of IEN to be

compatible with the FEM code [26] on which MIGEM is built.

Finally in order to compute the mapping from the parent domain Ω̃ to the parametric space, we define the knot

intervals in two directions as

rangeU =







0 0.5

0.5 1






, rangeV =







0 0.5

0.5 1






. (23)

In order to retrieve the parametric coordinates of a specific element, the matrix index, that is a noElemsU ∗

noElemsV ×2 matrix, is used. For a given element e, its parametric coordinates are determined by rangeU(index(e,1),:);

rangeV(index(e,2),:).

The above discussion, together with the illustration given in Fig. 4 is implemented in Matlab in the file gener-

ateIGA2DMesh.m, located in folder meshing. In that folder, one can find similar M files for generating 1D and 3D

meshes.
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4.2. Shape function routines

The shape function routines (evaluate NURBS basis functions and derivatives with respect to parametric coor-

dinates) are implemented using MEX files to improve the performance. They are located in folder C files. The

files NURBS1DBasisDers.c, NURBS2DBasisDers.c, NURBS3DBasisDers.c are used to compute the NURBS

basis function and their first derivatives in 1D, 2D and 3D at a given point. For collocation methods, the second

derivatives are also computed. The corresponding files are located under the collocation folder.

4.3. Assembly process

The assembly of an IGA-FEM code is given in each script file, where it can be seen that the procedure is almost

identical to that used in the conventional FEM. The minor differences lie in (1) the need of the elements to be located

in the parameter space and (2) the second map (from the parent domain to the parametric domain) in the numerical

integration of the stiffness matrix. For XIGA, the assembly process needs to take into account the enrichment functions.

These are given as the separate subroutine assembly.m in the xiga folder.

4.4. Post-processing

We present here a simple technique to visualize the IGA results that reuse available visualization techniques for

finite elements. To simplify the exposé, only 2D cases are considered here. In the first step, a mesh consisting of

four-nodded quadrilateral (Q4) elements is generated, see Fig. 5. We call this mesh the visualization mesh (whose

connectivity matrix is stored in elementV and nodal coordinates are stored in node) whose nodes are images of the

knots ξi, ηj in the physical space. In the second step, quantities of interest e.g., stresses are computed at the nodes

of the Q4 mesh. This mesh together with the nodal values can then be exported to a visualization program such as

Paraview, see [56], for visualization. It should be emphasized that due to the high order continuity of the NURBS

basis, there is no need to perform nodal averaging as required in standard C0 finite element analysis to obtain smooth

fields. The file plotStress1.m located in folder post-processing contains the code for building the Q4 visualization

mesh, computing the stresses at the nodes of this mesh and exporting the result to Paraview. A brief tutorial for using

Paraview is included in the README file in the top-level directory.

For three-dimensional problems, the same procedure is used where a mesh of tri-linear brick elements is created and

the values of interest are computed at the nodes of this mesh (see file plotStress3d.m). The results are then exported
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(a) NURBS mesh (b) approximate Q4 mesh

(c) stress visualization on a refined mesh

Figure 5: Exact NURBS mesh (top left) and approximate Q4 mesh (top right) for visualization purpose. The nodes in the Q4 mesh are the
intersections of the ξ and η knot lines. The bottom figure shows a contour plot of a stress field in Paraview. It should be emphasized that
the mesh in (b) does not provide a sufficiently smooth contour plot for it to be directly usable. The result given in (c) was obtained with a
refined NURBS mesh (hence a refined Q4 mesh).
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to Paraview under a structured grid format (*.vts files), see the file mshToVTK.m).

4.5. h, p, k-refinement

For the refinement of NURBS, we reuse the NURBS Toolbox described in [48]. We construct a NURBS surface as

shown in Fig.6a. Using a uniform h-refinement that divides a knot span into two we obtain the mesh given in Fig.6b.

Finally, Fig.6d gives the mesh which is obtained by the process in which h−refinement is employed first and then

p−refinement is performed. After using the NURBS toolbox, the NURBS object is then converted to MIGFEM data

structures using the function convert2DNurbs located in folder nurbs-util.

4.6. Input file for MIGFEM

The input files define the polynomial degree, knots and control points for an IGA discretization. This file replaces

the standard FE mesh file. Note that, for backward compatibility with older versions of the MIGFEM code, some input

files do not use the NURBS toolbox to create the NURBS object. For those input files, it is however impossible to

perform order elevation and hence k−refinement. It is, therefore, recommended to create the NURBS objects using the

NURBS toolbox [48] which, besides the aforementioned refinement functionality, also supports many useful operations

such as extrusion, rotation etc.

Incorporating NURBS into an existing FE code cannot be considered a trivial task due to the presence of various

spaces (index, parameter) that are not present in conventional FE codes, Bézier extraction [17, 116] provides a FE

data structure that allows for a straightforward implementation of NURBS/T-splines into any FE codes. Appendix B

briefly presents this concept and its implementation in MIGFEM.

4.7. Collocation methods

Collocation methods are based on the strong form of the PDE being solved. The main idea of these methods is

that the governing equations, which include higher-order derivatives, should be satisfied at a discrete set of points.

This gives rise to a linear system where the coefficients of the basis functions are the unknowns. The computational

cost of this procedure is much lower than in the Galerkin method, as no integrals need to be evaluated. Moreover, the

assembly process can trivially be parallelized, as each row of the linear system corresponds to one collocation point and
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(a) Initial NURBS mesh (b) After h-refinement

(c) After k-refinement (d) After hp-refinement

Figure 6: Illustration of the utilization of the NURBS toolbox in building NURBS object (a). From the initial mesh, different meshes can
be obtained using either h−refinement, p−refinement or combination thereof. As can be seen from (c) and (d), k−refinement (c) is more
efficient than hp−refinement (d). The function plotMesh.m in folder meshing is used to plot NURBS mesh and control polygon.
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can be computed independently of the others. The accuracy of the method depends on the location of the collocation

points. In the context of IGA, these points have been traditionally chosen at the so-called Greville abscissae, defined

by knot averages, or Demko abscissae, defined as the extrema of Chebyshev splines [4]. It has been observed that in

some cases, the convergence rate of IGA collocation at Greville or Demko abscissae is suboptimal compared to weak

form methods, in particular for odd polynomial degrees. Recently a collocation scheme based on superconvergence

theory was proposed in [2], which has been observed to give more accurate results at the expense of more basis function

evaluations.

The folder collocation contains implementation examples of IGA collocation for Poisson’s equation and linear

elasticity. Both Greville abscissae collocation and superconvergent collocation are implemented. There is ongoing

research in developing efficient iterative solvers for the linear system resulting from collocation [12, 38], imposition of

Neumann boundary conditions [75], and plate collocation formulations [65].

4.8. XIGA implementation

There are certainly different ways to implement XIGA. We present a way that reuse most of the tools present in an

existing XFEM code. We use the approximate Q4 mesh used for visualization as discussed in Section 4.4 for selection

of enriched control points. The level set values defining the crack at the vertices of this mesh are then computed.

Based on these level sets, elements cut by the crack and elements containing the crack tip can be determined [130]. In

a FEM context, its four nodes are then enriched using the Heaviside function. In an isogeometric framework, however,

the control points (basis functions) associated to this element are enriched. The implementation of this process is very

similar to that of our XFEM code [93] with only one small modifications, and thus the proposed technique is considered

simpler than that adopted in [51]. We emphasize that the crack geometry is defined in the physical space to keep the

usual XFEM notation.

Remark 4.1. Note that for simple geometries as those tackled in this paper, the use of level sets is not necessary. More

generally, describing open surfaces (cracks) with level sets requires two functions that, for crack growth simulations, must

be reinitialized for stability (this decreases accuracy) and reorthogonalized every few time steps. This is particularly

cumbersome and along with the difficulties in dealing with intersecting and branching cracks, could explains the recent

trend of research efforts in the area of phase field models of fracture, see e.g., [18, 83], and the thick level set method

[85].
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Crack visualization

(a) (b)

crack

Figure 7: Crack visualization in XIGA: (a) build a mesh that is compatible to the crack by introducing double nodes along the crack
(square nodes) and (b) assign the displacement jumps to these new nodes. Note that the square nodes in the tip element are used only for
compatibility purposes. Exact mode I displacements are imposed on the bottom, right and top edge using the Lagrange multiplier method
while Neumann BCs from the exact stress field are enforced on the left edge. We refer to [93] for a detailed description of this standard
problem.

Fig. 7 illustrates the idea for crack visualization with the script post-processing/crackedMeshNURBS.m

providing implementation details. The contour plots of the displacement and stress field of a mode I cracked sample

are given in Fig. 8. Note that the stresses at points on the crack are simply set to zero (traction-free cracks) and the

stresses of the new nodes of the tip element are interpolated from the values of the four nodes of this Q4 element.

Remark 4.2. As is the case for XFEM, integration over elements cut by the cracks usually requires subdivision of the

elements into integration sub cells. We refer to [88] for a recent discussion on this issue. In addition to this popular

technique, a simple integration rule is also provided – elements crossed by the crack and tip-enriched elements are

numerically integrated using a regular Gauss-Legendre quadrature with a large number of Gauss points as done in [44].

5. Structural mechanics

Thanks to the high order continuity provided by NURBS/T-splines, the implementation of rotation-free thin beam/-

plate/shell elements becomes direct and simple. In this section, we are going to present the implementation of a rotation-

free IGA Kirchhoff plate formulation (rotation free shell elements can be found in folder structural-mechanics). The
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Figure 8: Contour plots on a cracked mesh: (a) vertical displacement and (b) normal stress in the vertical direction.

plate geometry and the deflection are both approximated by NURBS. At control points there is only one unknown-the

deflection or transverse displacement. For simplicity, only isotropic elastic plates are considered. We refer to [105] for

a treatment of plate theories.

The element stiffness matrix is defined as

Ke =

∫

Ωe

BT
e DBedΩ, (24)

where the constitutive matrix D reads

D =
Eh3

12(1− ν2)













1 ν 0

ν 1 0

0 0 0.5(1− ν)













, (25)

where E, ν are the Young’s modulus and Poisson’s ratio, respectively; h denotes the plate thickness and the element

displacement-curvature matrix Be that contains the second derivatives of the shape functions is given by

Be =













R1,xx R2,xx · · ·Rn,xx

R1,yy R2,yy · · ·Rn,yy

2R1,xy 2R2,xy · · · 2Rn,xy













, (26)
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where n denotes the number of basis functions of element e and RA,xx ≡ d2RA/dx
2.

5.1. Boundary conditions

For clamped BCs one needs to fix the rotations. The nodal unknowns are, however, only the transverse displacements

w. To fix the rotation of a boundary, we simple fix two rows of control points at the boundary [67] because these

control points define the tangent of the surface at the boundary, see Fig. 9.

Figure 9: Enforcing BCs for a fully clamped plate: simply fixing the deflections of two rows of control points around the clamped boundary.
Note that the set of CPs next to the boundary CPs are not artificially added to impose the rotations. They are simply the CPs defining
the geometry of the plate.

5.2. Symmetry boundary conditions

Fig. 10 illustrates the use of symmetry boundary conditions when only 1/4 of the plate is modeled. Along the

symmetry lines, the rotation should be zero which can be enforced by constraining the deflection (w) of two rows of

control points along these lines together.

6. Verification examples

In this section, numerical examples in linear elasticity and linear elastic fracture mechanics in 2D and 3D are

presented with the purpose to serve as a set of verification examples for MIGFEM. They include an infinite plate

with a circular hole under constant in-plane tension, the pinched cylinder, an edge cracked plate in tension, a three-

dimensional mode I fracture problem and a large deformation thin shell problem. Unless otherwise stated, standard

direct imposition of Dirichlet BCs is used. Units are standard International System (SI) units.

27



fix
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coupled nodes

Figure 10: A fully clamped square plate: 1/4 model is analyzed using appropriate symmetry BCs. Along the symmetry lines, the rotation
is fixed which can be achieved by enforcing the deflection of two rows of control points that define the tangent of the plate to have the same
value.

6.1. Two and three dimensional solid mechanics

6.1.1. Infinite plate with a circular hole

The problem considered is that of an infinite plate with a circular hole in the center under constant in-plane tension

at infinity as shown in Fig. 11 where, due to symmetry, only a quarter of the plate is modeled. The plate dimension

is taken to be L× L and the circular hole has a radius R. The exact stress field in the plate is given by

σxx(r, θ) = 1− R2

r2

(

3

2
cos 2θ + cos 4θ

)

+
3

2

R4

r4
cos 4θ (27a)

σyy(r, θ) = −R
2

r2

(

1

2
cos 2θ − cos 4θ

)

− 3

2

R4

r4
cos 4θ (27b)

σxy(r, θ) = −R
2

r2

(

1

2
sin 2θ + sin 4θ

)

+
3

2

R4

r4
sin 4θ, (27c)

where r, θ are the usual polar coordinates centered at the center of the hole.

The material properties are specified as E = 103, Poisson’s ratio ν = 0.3 and the geometry is such that L = 4,

R = 1. A plane stress condition is assumed. The problem is solved with quadratic NURBS meshes such as those shown

in Fig. 12. The control points and weights for the coarsest mesh can be found in [57] or file plateHoleCkData.m.
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Figure 11: Infinite plate with a circular hole under constant in-plane tension: quarter model. Boundary conditions include: uy = 0 (AB),

ux = 0 (CD), t
T

= (−σxx,−σxy) (AE), t
T

= (σxy , σyy) (ED).

Fig. 13, generated in Paraview, illustrates the contour plot of numerical σxx. Note that the stress concentration at

point (R, 3π/2) is well captured and a smooth stress field is obtained throughout.

Remark 6.1. Using the visualization technique described in Section 4.4 for this problem, a note should be made on the

evaluation of the stress field at the top left corner where there are two coincident control points. This causes a singular

Jacobian matrix. Therefore at this corner, the stresses at a point slightly shifted from the original position are used.

6.1.2. Pinched cylinder

In order to demonstrate the performance of the 3D IGA implementation, we consider the pinched cylinder problem

as shown in Fig. 14. Note that we discretize the shell with solid NURBS elements. Due to symmetry, only 1/8 of the

model is analyzed. A tri-quadratic NURBS mesh (p = q = r = 2) was used for the computation. Details can be found

in the file igaPinchedCylinder.m. Fig. 15 shows the mesh and the contour plot of the displacement in the point load

direction. Post-processing is done in Paraview and we refer to Section 4.4 for details. We recognize that the problem

under consideration is a shell like structure that would be more accurately modelled using appropriate shell elements,
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Figure 12: Plate with a hole: coarse mesh of 2 bi-quadratic elements (left) and refined mesh (right).

Figure 13: Plate with a hole: distribution of numerical σxx obtained with a 32× 16 quadratic mesh having 4488 dofs.
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but the example is merely intended to illustrate the ability of the method to analyze 3D geometries.

Figure 14: Pinched cylinder. Problem description and data [49].

Figure 15: Pinched cylinder: (a) mesh of one octant of the cylinder and (b) contour plot of the displacement in the direction of the point
load.

6.2. Two and three dimensional fracture mechanics

6.2.1. Edge cracked plate in tension

A plate of dimension b × 2h is loaded by a tensile stress σ = 1.0 along the top edge and bottom edge as shown in

Fig. 16. In the computation, the displacement along the y-axis is fixed at the bottom edge and the bottom left corner

is fixed in both x and y directions. The material parameters are E = 103 and ν = 0.3. A plane strain condition is

assumed. The reference mode I stress intensity factor (SIF) for this problem is given in [131] and is calculated as

KI = F
(a

b

)

σ
√
πa, (28)

31



where a is the crack length, b is the plate width, and F (a/b) is an empirical function. For a/b ≤ 0.6, function F is

given by

F
(a

b

)

= 1.12− 0.23
(a

b

)

+ 10.55
(a

b

)2

− 21.72
(a

b

)3

+ 30.39
(a

b

)4

. (29)

In the present implementation, this problem is solved using both XFEM and an extended isogeometric formulation.

The SIF is computed using an interaction integral. We refer to [84] for details.

σ

σ

h
h

a

b

Figure 16: Edge cracked plate in tension: geometry and loading.

We first verify the implementation of the XIGA code by comparing the XIGA result with the XFEM result for the

case of a = 0.45, b = 1 and h = 1. The XFEM and XIGA meshes are given in Fig. 17. Both meshes have the same

uniform distribution of nodes/control points. For the XFEM mesh, bilinear Q4 elements are used. For the XIGA mesh,

cubic (p = q = 3) B-spline basis functions are adopted. Fig. 18 shows the contour plots of the vertical displacement

obtained with XFEM and XIGA.

We now consider the computation of the mode I SIF for a crack of length a = 0.3. The reference SIF for this

problem is Kref
I = 1.6118. Both a linear and a cubic B-spline basis are used for three different meshes. The results are

given in Table 1. It should be emphasized that in the computation of the interaction integral, we use bilinear Lagrange

shape functions i.e., shape functions of Q4 elements to compute the derivatives of the weight function. This guarantees

that the weight function takes a value of unity on an open set containing the crack tip and vanishes on an outer contour
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(a) XFEM mesh (Q4) (b) XIGA mesh (cubic
Bsplines)

(c) XIGA mesh, enriched nodes

Figure 17: Edge cracked plate: XFEM and XIGA meshes. Both have the same number of displacement dofs of 1296. The thick line denotes
the crack. Square nodes denote tip enriched nodes whereas star nodes represent Heaviside enriched nodes.

(a) XFEM (b) XIGA

Figure 18: Edge cracked plate: uy contour plots on deformed configuration (enlargement factor of 30 used).
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as shown in Fig. 19. B-splines functions are not interpolatory and therefore cannot be used to approximate the weight

functions.

Figure 19: Distribution of weight function used in the computation of the interaction integral. Four-noded quadrilateral elements with
bilinear Lagrange shape functions are used to interpolate the weight function.

mesh disp. dofs KI (linear) Error (%) KI (cubic) Error (%)

9× 18 324 1.4997 6.96 1.5560 3.46
18× 36 1296 1.5823 1.83 1.6150 0.20
36× 72 5184 1.5968 0.93 1.6117 0.01

Table 1: Edge cracked plate: SIFs results. The reference SIF is Kref

I
= 1.6118. Note that linear NURBS are equivalent to the conventional

bilinear finite elements.

6.2.2. Three-dimensional mode I fracture problem

This example aims to show the capability of MIGFEM for solving three-dimensional (3D) fracture problems. For

3D cracks, the polar coordinates in the branch functions are defined in terms of the level sets as [125]

r =
√

ϕ(ξ, η, ζ)2 + ψ(ξ, η, ζ)2, θ = atan

(

ϕ(ξ, η, ζ)

ψ(ξ, η, ζ)

)

, (30)

where the level set field Φ = (ϕ,ψ) is interpolated as

Φ(ξ, η, ζ) =
∑

I

RI(ξ, η, ζ)ΦI . (31)
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We refer to [125] for details concerning the derivatives of the branch functions with respect to the parametric coordinates

(ξ, η, ζ).

The mode I 3D fracture problem we are solving is given in Fig. 20. The exact displacement field is given by

ux(r, θ) =
2(1 + υ)√

2π

KI

E

√
r cos

θ

2

(

2− 2υ − cos2
θ

2

)

uy(r, θ) = 0

uz(r, θ) =
2(1 + υ)√

2π

KI

E

√
r sin

θ

2

(

2− 2υ − cos2
θ

2

)

,

(32)

where KI = σ
√
πa is the stress intensity factor, υ is Poisson’s ratio and E is Young’s modulus. In our example, a = 100

mm; E = 107 N/mm
2
, υ = 0.3, σ = 104 N/mm2. On the bottom, right and top surfaces, essential BCs taken from Eq.

(32) are imposed using the penalty method. A penalty parameter of 1e10 was used. We note that this problem can

be more effectively solved with two-dimensional elements. This example however aims at presenting how 3D extended

IGA can be implemented. Furthermore, it also illustrates how Dirichlet BCs are enforced on surfaces rather than the

usual case of line boundaries. To this end, a two-dimensional NURBS mesh for a given surface is generated from the

set of control points that define this surface (see the file surfaceMesh.m).

10

10

x
y

z

Figure 20: Three-dimensional mode I fracture problem: infinite plate with a center planar crack. The plate thickness is 2, the crack length
is 5 and the crack width is 2. The crack is located in the mid-plane of the plate.
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The problem is first solved using a linear B-spline basis. A mesh of 9× 9× 1 elements is used. The mesh, enriched

nodes and comparison of the numerical deformed configuration against the exact profile are given in Fig. 21. Next, a

mesh of 7× 7× 2 elements is used where, in the through-thickness direction, there are two linear elements (q = 1) and

for the two other directions, a quadratic basis (p = r = 2) is used. The result is given in Fig. 22 and we note a good

qualitative agreement between Figs. 21 and 22. We did not perform a SIF computation for this problem as 3D SIF

computation is not yet implemented at present.

Figure 21: Three-dimensional mode I fracture problem: mesh of linear B-spline elements and enriched control points (left); numerical
deformed configuration (magnification factor of 40) superimposed on the exact deformed configuration (right).

Figure 22: Three-dimensional mode I fracture problem: mesh of quadratic B-spline elements and enriched control points (left); numerical
deformed configuration (magnification factor of 40) superimposed on the exact deformed configuration (right).
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7. Conclusion

We presented a Matlab R© implementation for one, two and three-dimensional isogeometric finite element analysis for

solid and structural mechanics. This paper is addressed to students or researchers who wish to learn the concepts of IGA

in a clear and concise manner and is especially suited to those with solid mechanics applications in mind. NURBS are

used throughout, where the underlying construction of the basis functions is detailed along with associated refinement

algorithms essential for numerical analysis. Differences with conventional FE implementations are made clear with the

use of Matlab R© source code to illustrate isogeometric FE concepts explicitly. In addition, the implementation of an

isogeometric XFEM formulation for both two-dimensional and three-dimensional problems is described allowing for

simple linear elastic fracture analysis to be performed directly from CAD data. The benefits of isogeometric analysis

are made evident. Although not presented, the code supports multi-patch analysis in which compatibility between

connecting patches is not required using a Nitsche’s method [90, 91, 108]. Geometrical nonlinearities for solid elements

under the Total Lagrange framework are provided as well. In addition, PUM enrichment for holes and inclusions

is provided along with implementation of the least squares method for imposing essential boundary conditions. Mass

matrices are implemented for almost every elements and popular time integration schemes such as Newmark and central

difference explicit are available so that transient analysis on CAD objects can be performed. The code is available for

download from https://sourceforge.net/projects/cmcodes/ for Windows, Linux and OS X machines.

The preliminary concepts and implementation details of isogeometric analysis have been described, but many

challenges remain in the field. These include the creation of suitable volume discretizations from given CAD boundary

representations, efficient integration schemes and suitable error estimators.
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Appendix A. Knot vector conventions

The definition of an open knot vector as Ξ = {ξ1, ξ2, . . . , ξn+p+1} where the first and last knot values are repeated

p+1 times is sometimes simplified to remove redundant information. It is found that if a knot vector is open, the first

and last knot values play no role in the definition of the curve and can be removed entirely. Knot vectors are then

defined as Ξ = {ξ1, ξ2, . . . , ξn+p−1} where the first and last knot vectors are repeated p times. This notation is used

frequently through the CAGD community.

Furthermore, B-spline algorithms can be written entirely in terms of knot interval vectors [120], defined as

∆Ξ = {∆ξ1,∆ξ2, . . . ,∆ξn+p−2} where ∆ξi = ξi+1 − ξi (A.1)

using the previous simplified knot vector notation. T-splines are based entirely on knot interval vector notation.

Appendix B. Bézier extraction

Bézier extraction [17, 116] provides a tool to facilitate the incorporation of NURBS and even T-splines in to any

FE codes. The idea is based on the fact that any B-splines basis can be written as a linear combination of Bernstein

polynomials. Written for element e, the shape functions read

Ne(ξ) = CeB(ξ̃) (B.1)

where Ce denotes the elemental Bézier extraction operator and B are the Bernstein polynomials which are defined

on the parent element Ω̃. Index space, knot vectors are all embedded in the Bézier extrators which are computed in

a pre-processing step. Therefore, existing FE solvers can use NURBS/T-splines straightforwardly. We refer to folder

bezier-extraction for examples.

38



References

[1] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, A. Vuong, Swept volume parameterization for

isogeometric analysis, in: E. Hancock, R. Martin, M.A. Sabin (Eds.), Mathematics of Surfaces XIII, volume 5654

of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp. 19–44.

[2] C. Anitescu, Y. Jia, Y.J. Zhang, T. Rabczuk, An isogeometric collocation method using superconvergent points,

Comput. Methods Appl. Mech. Eng. 284 (2015) 1073 – 1097.

[3] F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation methods, Math.

Model. Methods Appl. Sci. 20 (2010) 2075–2107.

[4] F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation for elastostatics

and explicit dynamics, Comput. Methods Appl. Mech. Eng. 249–252 (2012) 2 – 14.

[5] F. Auricchio, F. Calabro, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal

quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Eng. 249–252 (2012)

15 – 27.

[6] F. Auricchio, L. da Veiga Beirão, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, A fully locking-free isogeometric

approach for plane linear elasticity problems: A stream function formulation, Comput. Methods Appl. Mech.

Eng. 197 (2007) 160–172.

[7] Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis

and the residual-based variational multiscale method, J. Comput. Phys. 229 (2010) 3402–3414.

[8] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, T. Sederberg, Isogeometric analysis

using T-splines, Comput. Methods Appl. Mech. Eng. 199 (2010) 229–263.

[9] Y. Bazilevs, V.M. Calo, T.J.R. Hughes, Y. Zhang, Isogeometric fluid-structure interaction: theory, algorithms,

and computations, Comput. Mech. 43 (2008) 3–37.

39



[10] Y. Bazilevs, J. Gohean, T. Hughes, R. Moser, Y. Zhang, Patient-specific isogeometric fluid-structure interaction

analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput.

Methods Appl. Mech. Eng. 198 (2009) 3534–3550.

[11] L. Beirão da Veiga, A. Buffa, C. Lovadina, M. Martinelli, G. Sangalli, An isogeometric method for the Reissner-

Mindlin plate bending problem, Comput. Methods Appl. Mech. Eng. 209–212 (2012) 45–53.

[12] L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, Overlapping schwarz preconditioners for isogeometric

collocation methods, Comput. Methods Appl. Mech. Eng. 278 (2014) 239 – 253.

[13] D. Benson, Y. Bazilevs, M. Hsu, T. Hughes, Isogeometric shell analysis: The Reissner–Mindlin shell, Comput.

Methods Appl. Mech. Eng. 199 (2010) 276–289.

[14] D. Benson, Y. Bazilevs, M. Hsu, T. Hughes, A large deformation, rotation-free, isogeometric shell, Comput.

Methods Appl. Mech. Eng. 200 (2011) 1367–1378.

[15] D.J. Benson, Y. Bazilevs, E. De Luycker, M. Hsu, M. Scott, T.J.R. Hughes, T. Belytschko, A generalized finite

element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Int. J. for Numer.

Methods Eng. 83 (2010) 765–785.

[16] D.J. Benson, S. Hartmann, Y. Bazilevs, M. Hsu, T.J.R. Hughes, Blended isogeometric shells, Comput. Methods

Appl. Mech. Eng. 255 (2013) 133 – 146.

[17] M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier
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[130] N. Sukumar, D.L. Chopp, N. Moës, T. Belytschko, Modelling holes and inclusions by level sets in the extended

finite element method, Comput. Methods Appl. Mech. Eng. 190 (2000) 6183–6200.

[131] H.P. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, St. Louis,

MO, 1985.
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