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ABSTRACT

In this paper, we present a method to achieve smooth nodal stresses in the XFEM application.
This method was developed by borrowing the ideas from the `twice interpolating approxima-
tions' (TFEM) by Zheng et al (2011). The salient feature of the method is to introduce an
`average' gradient into the construction of the approximation, resulting in improved solution
accuracy, both in the vicinity of the crack tip and in the far �eld. Due to the higher-order poly-
nomial basis provided by the interpolants, the new approximation enhances the smoothness of
the solution without requiring an increased number of degrees of freedom. This is particularly
advantageous for low-order elements and in fracture mechanics. Since the new approach adopts
the same mesh discretization, i.e. simplex meshes, it can be easily extended to various problems
and is easily implemented. We also discuss the increased bandwidth which is a major drawback
of the present method. Numerical tests show that the new method is as robust as the XFEM,
considering precision, model size and post-processing time. By comparing the results from the
present method with the XFEM for crack propagation in homogeneous material, we conclude
that for two-dimensional problems, the proposed method tends to be an e�cient alternative to
the classical XFEM.
Keywords: Double-interpolation approximation; higher-order element; smooth nodal stress;

extended �nite element method; crack propagation.

1 Introduction

The extended �nite element method (XFEM)[1] is a versatile and accurate approach to model
strong discontinuities and singularities that exist in the problems of linear elastic fracture me-
chanics. In the XFEM, the approximation of the displacement �eld is decomposed by a regular
part and an additional part (enrichment part) where the local partition of unity is applied
[2]. The enrichment part allows to carry the speci�c information of the solution such as the
discontinuity or singularity, through the additional degrees of freedom (DOFs) associated with
the nodes in the variational formulation. This provides great �exibility to model cracks since
alignment of the mesh and cracks is unnecessary when compared to the traditional FEM. Espe-
cially in terms of crack propagation, the modeling procedure is simpli�ed since the remeshing
operation is no longer needed, which is computationally expensive and tends to be cumbersome
in analyzing nonlinear problems when the mapping of the internal variables is required. The
XFEM for fracture has achieved substantial developments over past decades in 3D implemen-
tation [3][4][5], nonlinear problems [6][7] and dynamics problems [8], and has been utilized for
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assessing the damage tolerance of complex structures in industrial applications [9]. Posteriori
error indicators were proposed by Bordas and Du�ot [10][11] due to the non-smoothness of the
stress �eld in the XFEM. The C++ libraries [12] as well as the commercial packages [13][14]
were developed for the XFEM. A close cousin of the XFEM called generalized �nite element
method (GFEM), was also proposed and applied for crack modeling [15].

We start by reviewing some of the most salient and recent advance in enriched �nite elements.
Signi�cant e�ort has been expanded towards improving the accuracy and robustness of this
method. In the standard XFEM, the local partition of unity is adopted, which means only
certain nodes are enriched. This will result in some elements (the blending element) consisting
of both regular and enriched nodes which do not conform to partition of unity. The existence of
blending elements would lead to low accuracy. Chessa et al [16] developed an enhanced strain
formulation which led to a good performance of local partition of unity enrichments [17]. Gracie
et al [18] proposed the discontinuous Galerkin method aimed at eliminating the source of error
in blending elements. More attempts can be referred from [19][20].

In terms of integration, the additional non-polynomial enriched functions in the approximation
space make the quadrature of the sti�ness matrix of enriched elements and blending elements
more delicate. Meanwhile possible singularities, sharp gradients in the crack tip enrichment
adds to the complexity for numerical integration. The traditional procedure to perform the
integration is to sub-divide the enriched element and blending element into quadrature subcells
to ensure the precision [1]. Ventura [21] proposed an approach to eliminate the quadrature
subcells via replacing non-polynomial functions by `equivalent' polynomials. But this method
is only exact for triangular and tetrahedral elements. Another e�cient integration scheme was
proposed by transforming the domain integration into contour integration in [20]. Natarajan
et al [22] developed a new numerical integration for arbitrary polygonal domains in 2D to
compute sti�ness matrix. In this method, each part of the elements that are cut or intersected
by a discontinuity is conformally mapped onto a unit disc using Schwarz-Christo�el mapping.
Thus sub-dividing procedure is avoided. More attempts were seen in smoothed XFEM, in
which interior integration is transformed into boundary integration. Then sub-dividing become
unnecessary [23]. Laborde et al [24] adopted the almost polar integration within the crack tip
enriched element, which improves the convergence rate.

Another issue observed in the original version of XFEM is the non-optimal convergence rate.
One improvement is to use geometrical enrichment [24], i.e., the enrichment of a set of nodes
within a radial domain around the crack tip, and the whole dimension is independent of the
mesh size. Nevertheless, this approach deteriorates the condition number of the sti�ness matrix,
which somewhat limits its application to 3D problems. In order to reduce the condition number,
e�ective preconditioners were proposed by Béchet [25] and Menk et al [26].

Apart from XFEM which broadly aims at providing approximations which are tailed to the so-
lution based on a priori knowledge about the solution, a number of interpolation methods have
been developed in order to improve the e�ciency of standard non-enriched FE methods. An
example is the need for C1 continuous approximation, for instance, to solve problem where con-
tinuity of the �rst derivative of the unknown primal �eld is required. This is the case for higher-
order gradient models, such as gradient elasticity [27], Kirchho�-love shell models [28]. Methods
satisfying this need include mesh-based and mesh-free methods [29]. In terms of higher-order
continuous FEM, Papanicolopulos and Zervos [30][31] created a series of triangular elements
with C1 continuous interpolation properties. Fischer et al [32] compared the performance of
C1 �nite elements and the C1 natural element method (NEM) applied to non-linear gradient
elasticity. Various meshfree methods are introduced and used widely in engineerings problems.
The element free Galerkin method (EFG) [33] adopts the moving least-squares interpolants to
construct trial and test functions which can easily obtain higher continuous in both variable
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and its gradient. One similar method is the reproducing kernel particle method (RKPM)[34].
The meshfree radial basis functions method (RBFs) utilizes the radial basis function to inter-
polate scattered nodal data and is employed with point interpolation method (PIM) by Liu et

al. The radial PIM (RPIM)[35][36][37], consists of both radial basis and polynomial basis in
the approximation, which can avoid the singularity of the moment matrix in polynomial basis.
The maximum-entropy method (MAXENT) proposed by Arroyo and Oritiz bridges Delaunay
triangulation and maximum-entropy statistical interface [38]. And its second order form can be
applied to optimize the support size in meshfree methods [39]. Liu et al developed a smoothed
FEM (SFEM) based on the generalization of the strain smoothing technique to functions in the
G space [40]. According to di�erent smoothing integration domain, the SFEM can be classi-
�ed as node-based smoothed FEM (NSFEM) and edge-based smoothed FEM (ESFEM). Many
researchers subsequently investigated the new methods into modelling discontinuities using the
enriched form by applying partition of unity into these new methods, such as extended SFEM
[23][41][42][43][44][45]or extended EFG [46].

In this paper, a new approximation, which is based on the simplex mesh discretization and
has C1 continuity on most nodes, is investigated. This approximation procedure shares the
attractive features of XFEM and higher-order continuous approximations and we named it the
extended double-interpolation FEM (XDFEM) due to the fact that two consecutive stages of
interpolation are used in the construction of this approximation. The �rst stage of interpolation
is performed by Lagrange interpolation to obtain nodal variables and nodal gradients. The
problem �eld is reproduced in the latter interpolation using the nodal values and gradients
derived from the previous interpolation. The re-constructed trial functions will maintain C1

continuity at the nodes [47]. Cubic polynomials are contained in the space without increasing
total DOFs. This feature enhances the ability of the method to reproduce the solution near the
crack tip [48] and improves the accuracy per DOFs, The price to pay is increased computational
expense per DOFs, as discussed later in the paper. Analogous to meshfree methods, the nodal
stresses can be calculated in a straightforward manner without any post-processing.

The paper is organised as follows. In section 2, the unenriched formulation for 1D and 2D
is systematically introduced with a example of 1D bar simulation. Section 3 presents the
discretized formulation of the enriched version of the proposed approximation for linear elastic
fracture mechanics. Several numerical examples are presented to illustrate the advantages and
probable limitations of DFEM and XDFEM in section 4. Finally, in section 5, concluding
remarks are made with pointers to possible future work.

2 The double-interpolation approximation

2.1 1D approximation by double-interpolation

The basic idea of the double-interpolation approximation is to interpolate the unknown �elds,
using both the primary nodal values and nodal gradients, which are generated by the �nite
element interpolation in simplex mesh discretization. The proposed 1D double-interpolation is
comparable to Hermite interpolants. Figure 1 shows a 1D domain which is discretized by six
1D elements. For the point of interest x in element e3, the numerical value of the displacement
can be interpolated by

∀x ∈ [0, `], uh(x) = φI(x)uI + ψI(x)uI,x + φJ(x)uJ + ψJ(x)uJ,x, (1)

where uI , uI,x denote the nodal displacement and nodal derivative of the displacement �eld at
node I, respectively. ` = xj − xi is the length of the element. φI , ψI , φJ , ψJ are the cubic
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Figure 1: Discretization of the 1D domain and the element support domain of FEM and DFEM

Hermite basis polynomials given by:

φI(x) =

(
1 + 2

(
x− xI
xJ − xI

))(
x− xJ
xJ − xI

)2

, (2a)

ψI(x) = (x− xI)
(
x− xJ
xJ − xI

)2

, (2b)

φJ(x) =

(
1− 2

(
x− xJ
xJ − xI

))(
x− xI
xJ − xI

)2

, (2c)

ψJ(x) = (x− xJ)

(
x− xI
xJ − xI

)2

. (2d)

We note that
φI(xL) = δIL, φI,x(xL) = 0,
ψI(xL) = 0 , ψI,x(xL) = δIL,

(3)

which guarantees the Dirichlet boundary conditions can be exactly applied in the second stage
of interpolation. If we de�ne the local coordinates as follows,

LI(x) =
x− xJ
`

, LJ(x) = −x− xI
`

, (4)

then the Hermite basis polynomials can be written as:

φI(x) = LI(x) + (LI(x))2 LJ(x)− LI(x) (LJ(x))2 , (5a)

ψI(x) = `LJ(x) (LI(x))2 , (5b)

φJ(x) = LJ(x) + (LJ(x))2 LI(x)− LJ(x) (LI(x))2 , (5c)

ψJ(x) = −`LI(x) (LJ(x))2 . (5d)

Subsequently, we will use the `average' nodal gradients (ūI,x,ū
J
,x) derived from �nite element

interpolation at each node to replace the gradients (uI,x, u
J
,x) in Equation (1). But before we

start calculating the average nodal gradients, an element set and a node set should be de�ned
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which closely relate to the derivation. First of all, we put all the elements contained in the
support domain1for a point of interest into the element set Λ. Then, all the support nodes for a
point of interest are listed in the node set N . For instance, in Figure 1, for the point of interest
x inside element e3, Λ = {e3} and N = {n3, n4} (or N = {xI , xJ} in a local representation)
for classical FEM. While for nodes on the element boundary, like n3 (or xI), ΛI = {e2, e3} and
NI = {n2, n3, n4} (or NI = {xP , xI , xJ}) for classical FEM. Now Equation (1) can be rewritten
as:

uh(x) = φI(x)uI + ψI(x)ūI,x + φJ(x)uJ + ψJ(x)ūJ,x, (6)

where
uI = u(xI) = N e3

I (xI)u
I +N e3

J (xI)u
J , (7)

ūI,x = ū,x(xI) = ωe2,Iu
e2
,x (xI) + ωe3,Iu

e3
,x (xI), (8)

in which N e3
I , N e3

J are linear �nite element shape functions. In order to emphasis the support
domain of FEM, the element number is used as the superscript of the shape functions. This
means in Equation (7), the displacement at xI (or n3) is interpolated in the element of interest
e3, although N

e3
J (xI) = 0, we still add this term in order for a clear derivation. ue2,x (xI) is the

nodal derivative at xI calculated in element e2, which belongs to ΛI , the support element set
of xI . ωe2,I denotes the weight of element e2 in ΛI . These parameters are calculated by:

ue2,x (xI) = N e2
P,x(xI)u

P +N e2
I,x(xI)u

I , (9)

ωe2,I =
meas(e2,I)

meas(e2,I) +meas(e3,I)
, (10)

where N e2
P,x(x), N e2

I,x(x) are the derivatives of the corresponded shape functions associated with
element e2. meas(·) denotes the length of the 1D element.

Substituting equations (10) and (9), into Equation (8) yields:

ūI,x = ū,x(xI) =ωe2,I

(
N e2
P,x(xI)u

P +N e2
I,x(xI)u

I
)

+

ωe3,I

(
N e3
I,x(xI)u

I +N e3
J,x(xI)u

J
)
,

(11)

which can be rewritten as:

ūI,x =
[
ωe2,IN

e2
P,x ωe2,IN

e2
I,x + ωe3,IN

e3
I,x ωe3,IN

e3
J,x

]  uP

uI

uJ

 . (12)

By de�ning,

N̄L,x(xI) =
∑
ei∈ΛI

ωei,IN
ei
L,x(xI), L ∈ NI , (13)

the averaged derivative at node xI can be written as

ūI,x = ū,x(xI) = N̄P,x(xI)u
P + N̄I,x(xI)u

I + N̄J,x(xI)u
J . (14)

Now, substituting Equations (7) and (14) into (6) results in:

1Support domain means the �eld for the point of interest x in an element, where the shape functions are
non-zero at x.

5



uh(x) =φI(x)
(
NI(xI)u

I +NJ(xI)u
J
)

+

ψI(x)
(
N̄P,x(xI)u

P + N̄I,x(xI)u
I + N̄J,x(xI)u

J
)

+

φJ(x)
(
NI(xJ)uI +NJ(xJ)uJ

)
+

ψJ(x)
(
N̄I,x(xJ)uI + N̄J,x(xJ)uJ + N̄Q,x(xJ)uQ

)
=ψI(x)N̄P,x(xI)u

P+(
φI(x)NI(xI) + ψI(x)N̄I,x(xI) + φJ(x)NI(xJ) + ψJ(x)N̄I,x(xJ)

)
uI+(

φI(x)NJ(xI) + ψI(x)N̄J,x(xI) + φJ(x)NJ(xJ) + ψJ(x)N̄J,x(xJ)
)
uJ+

ψJ(x)N̄Q,x(xJ)uQ.

(15)

Hence, by de�ning,

N̂L(x) = φI(x)NL(xI) + ψI(x)N̄L,x(xI) + φJ(x)NL(xJ) + ψJ(x)N̄L,x(xJ), (16)

the �nal form for the double-interpolation approximation can be obtained as:

uh(x) =
∑
L∈N̂

N̂L(x)uL, (17)

in which N̂ denotes the support node set for the point of interest x in DFEM. We also use
Λ̂ as the the support element set in DFEM. Thus, for the point of interest x, Λ̂ = ΛI ∪
ΛJ = {e2, e3, e4}, N̂ = NI ∪ NJ = {n2, n3, n4, n5} (or N̂ = {xP , xI , xJ , xQ} in the local
representation as presented in Figure 1). Due to the computation of ūI,x and ūJ,x, the support
domain of point of interest x in e3 has been expanded in DFEM approximation. Similarly, the
support domain of element boundary node n3 (or xI) is also expended in DFEM, i.e., Λ̂I =
{e1, e2, e3, e4} and N̂I = {n1, n2, n3, n4, n5}. It can be observed that derivative interpolants
have already been embedded in Equation 17. we can also infer that due to the enlargement of
the local support domain, DFEM will result in an increased bandwidth, thus have an increased
computational cost per DOFs, but this is essential to construct the C1 interpolants. Figure 2
shows the DFEM shape function and derivative at node n3.

To more clearly depict the behavior of the proposed method, a numerical example is considered
in the following discussion. For this purpose a 1D bar (as illustrated in Figure 1) problem is
solved using both DFEM and FEM. The equilibrium equation for the 1D problem is de�ned as:

EA
d2u

dx2
+ f = 0, (18a)

ε(x) = u,x(x), (18b)

σ(x) = Eε,x(x), (18c)

u|x=0 = 0, (18d)

where f is a uniform body force applied to the 1D bar. The exact solution for the displacement
and stress are given by:

u(x) =
fL2

EA

(
x

L
− 1

2

(x
L

)2
)
, (19a)

σ(x) =
fL

A

(
1− x

L

)
, (19b)

where L, A and E are the total length, area of the cross section and Young's Modulus respec-
tively. For simplicity, all these parameters are assumed to have unit value in the simulation.
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(a)

(b)

Figure 2: The 1D DFEM shape function and its derivative at node 3
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Figure 3 compares the displacement and stress values obtained by both FEM and DFEM. It
can be observed from the �gure that DFEM capture the exact solution much better than the
piecewise linear curve obtained by the FEM for the displacement �eld. In addition, apart from
the end or boundary points, the numerical results of DFEM for stress distribution agrees well
with the exact solution. The deterioration of the DFEM solution near the boundary nodes are
attributed to the automatic recover of the calculation of nodal gradients at the end points, which
will be explained in the following section. Figure 4 plots the relative error in the displacement
and energy norm of the 1D bar problem (The de�nitions of these norms can be referred from
section 4). It is clearly illustrated that DFEM approximation in 1D can achieve a convergence
rate between the linear and quadratic order.

2.2 2D approximation by double interpolation

As illustrated in Figure 5, x = (x, y) denotes the point of interest in triangle IJK. Analogous
to the derivation procedure for 1D formulation, the 2D double-interpolation approximation in
a mesh of triangular element can be given as follows:

uh(x) =
∑
L∈N̂

N̂L(x)uL, (20)

N̂L(x) =φI(x)NL(xI) + ψI(x)N̄L,x(xI) + ϕI(x)N̄L,y(xI)+

φJ(x)NL(xJ) + ψJ(x)N̄L,x(xJ) + ϕJ(x)N̄L,y(xJ)+

φK(x)NL(xK) + ψK(x)N̄L,x(xK) + ϕK(x)N̄L,y(xK),

(21)

where uL is the nodal displacement vector. In the following discussion the evaluation of the
average derivative of the shape function at node xI is considered. The average derivative of the
shape function at node xI can be written as:

N̄L,x(xI) =
∑

ei,I∈ΛI

ωei,IN
ei
L,x(xI), (22a)

N̄L,y(xI) =
∑

ei,I∈ΛI

ωei,IN
ei
L,y(xI), (22b)

where ωei,I is the weight of element ei in ΛI and is computed by:

ωei,I = meas(ei)/
∑
ei∈ΛI

meas(ei). (23)

Heremeas(·) denotes the area of a triangular element. An example of how to evaluate the weight
of an element is presented in Figure 5. φI , ψI and ϕI form the polynomial basis associated with
xI , which satis�es the following interpolating conditions:

φI(xL) = δIL, φI,x(xL) = 0 , φI,y(xL) = 0,
ψI(xL) = 0 , ψI,x(xL) = δIL, ψI,y(xL) = 0,
ϕI(xL) = 0 , ϕI,x(xL) = 0 , ϕI,y(xL) = δIL.

(24)

And these polynomial basis functions are given by:

φI(x) =LI(x) + (LI(x))2 LJ(x) + (LI(x))2 LK(x)

− LI(x) (LJ(x))2 − LI(x) (LK(x))2 ,
(25a)
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Figure 3: The comparison of FEM and DFEM results for 1D bar:(a)displacement;(b)stress
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ψI(x) =− cJ
(
LK(x) (LI(x))2 +

1

2
LI(x)LJ(x)LK(x)

)
+

cK

(
(LI(x))2 LJ(x) +

1

2
LI(x)LJ(x)LK(x)

)
,

(25b)

ϕI(x) =bJ

(
LK(x) (LI(x))2 +

1

2
LI(x)LJ(x)LK(x)

)
−

bK

(
(LI(x))2 LJ(x) +

1

2
LI(x)LJ(x)LK(x)

)
.

(25c)

Note that the polynomial basis functions φJ , ψJ , ϕJ , φK , ψK and ϕK can be obtained by the
above de�nitions via cyclic permutation of indices I, J andK. In the above equations, LI(x), LJ(x)
and LK(x) are the area coordinates of the point of interest x in triangle IJK. For the point of
interest x in Figure 5, the LI(x), bI and cI are presented as follows.

LI(x) =
1

24
(aI + bIx+ cIy), (26a)

aI = xJyK − xKyJ , (26b)

bI = yJ − yK , (26c)

cI = xK − xJ , (26d)

where 4 is the area of triangle IJK. Further, LJ , LK , bJ , bK , cJ and cK can be obtained using
the above de�nitions via cyclic permutation of indices I, J and K.

When the point of interest lies on one of the edges, for example on edge IJ , the basis functions
will boil down to 1D basis functions and will be consistent with the 1D form presented in the
preceding section.

The DFEM shape functions posess the properties such as the linear completeness, partition
of unity, the Dirac delta property [47]. In addition, the 2D DFEM possesses C1 continuity at
the nodes and C0 continuity on edges. Compared to 3-noded triangular element, the DFEM
basis functions can achieve a higher-order approximation without the introduction of additional
nodes, which will be seen the numerical examples in next section. However, this attractive fea-
ture comes with the price of an increased bandwidth as the neighboring nodes are used to obtain
the nodal gradients necessary for the second interpolation. The details of such computational
costs will be discussed in the section devoted to numerical examples.

2.3 Modi�cation of the nodal gradients

When C0 continuity of the primal �eld at a node is needed, for instance on the nodes at material
interface, it is useful to modify the calculation of the average nodal gradient as discussed below.
The calculation of the nodal gradient can be performed as follows:

N̄L,x(xI) = N e
L,x(xI). (27)

The right hand side is the derivative of NL computed in element e, in which the point of interest
x is located. This is easily done in the implementation by replacing the average derivative with
the derivative in the element of interest. It can be observed that nodes at the endpoint of a 1D
bar automatically satisfy the above equation. All the topological enriched nodes in XFEM (the
nodes circled by red boxes in Figure 7 and Figure 8) have been relaxed to C0 as well due to the
fact that during the average calculation of gradients in Equation (22), the contribution from
split elements cannot be computed directly as from continuous elements in an area weighted
way (Equation (23)) due to the discontinuity.
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Figure 6: The shape functions of DFEM in 2D
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Figure 7: Nodal enrichment in XDFEM; the nodes encircled by red box are degenerated to C0,
see section 2.3

2.4 The enriched 2D double-interpolation approximation

The extended �nite element method uses a partition of unity which allows for the addition of a
priori knowledge about the solution of boundary value problems into the approximation space
of the numerical solution. The crack can be described in XFEM by enriching the standard
displacement approximation as follows:

uh(x) =
∑
I∈NI

N̂I(x)uI +
∑
J∈NJ

N̂J(x)H(x)aJ +
∑

K∈NK

N̂K(x)
4∑

α=1

fα(x)bKα, (28)

where uI are the regular DOFs. aJ are the additional Heaviside enriched DOFs. bKα are
the additional crack tip enriched DOFs. NI ,NJ and NK are the collections of regular non-
enriched nodes, Heaviside enriched nodes and crack tip enriched nodes, respectively. H(·) is
the Heaviside function. The crack tip enrichment functions are de�ned as:

{fα(r, θ), α = 1, 4} =

{√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsin

θ

2
sinθ,

√
rcos

θ

2
sinθ

}
, (29)

where (r, θ) are the polar coordinates of the crack tip (Figure 7). Figure 9 compares the
Heaviside enriched shape functions obtained with XFEM and XDFEM which are de�ned in
Figure 8.

3 Weak form and discretized formulations

For an elastostatic body as in Figure 10 de�ned by Hooker's tensor C and undergoing small
strains and small displacements, the equilibrium equations and boundary conditions for the
Cauchy stress σ and the displacement �eld u write:

∇ · σ = 0 on Ω,
σ · n = t̄ on Γt,
u = ū on Γu.

(30)
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Figure 8: The support domain of enriched DFEM; the nodes encircled by red box are degener-
ated to C0, see section 2.3

Here t̄ is the traction imposed on boundary Γt. Further, assuming traction free crack faces:

σ · n = 0 on Γc+ and Γc− , (31)

where Γc+ ,Γc− are the upper and lower crack surfaces respectively. The strain-displacement
relation and the constitutive law are respectively as:

ε =
1

2

(
∇+∇T

)
⊗ u, (32a)

σ = C : ε. (32b)

Using a Bubnov-Galerkin weighted residual formulation based on Lagrange test and trial spaces,
substituting the trial and test functions into the weak form of Equation (30), and using the
arbitrariness of nodal variations, the discretized equations can be written:

Ku = f , (33)

where u is the nodal vector of the unknown displacements and K is the sti�ness matrix. The
elemental form of K for element e is given by:

Ke
IJ =

 Kuu
IJ Kua

IJ Kub
IJ

Kau
IJ Kaa

IJ Kab
IJ

Kbu
IJ Kba

IJ Kbb
IJ

 . (34)

The external force vector f is de�ned as

fI = {fuI faI f b
1

I f b
2

I f b
3

I f b
4

I }. (35)

The submatrices and vectors in Equations (34) and (35) are:

Krs
IJ =

∫
Ωe

(Br
I)
TCBs

JdΩ (r, s = u, a, b), (36a)

fuI =

∫
∂Ωht ∩∂Ωe

N̂I t̄dΓ, (36b)

faI =

∫
∂Ωht ∩∂Ωe

N̂IH t̄dΓ, (36c)
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Figure 9: Contour plot of Heaviside enriched shape functions
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Figure 10: Elastic body with a crack

f b
α

I =

∫
∂Ωht ∩∂Ωe

N̂Ifαt̄dΓ (α = 1, 2, 3, 4). (36d)

In Equation (36a), Bu
I ,B

a
I and Bbα

I are given by

Bu
I =

 N̂I,x 0

0 N̂I,y

N̂I,y N̂I,x

 , (37a)

Ba
I =

 (N̂I(H −HI)),x 0

0 (N̂I(H −HI)),y
(N̂I(H −HI)),y (N̂I(H −HI),x

 , (37b)

Bb
I =

[
Bb1

I Bb2

I Bb3

I Bb4

I

]
, (37c)

Bbα

I =

 (N̂I(fα − fαI)),x 0

0 (N̂I(fα − fαI)),y
(N̂I(fα − fαI)),y (N̂I(fα − fαI)),x

 (α = 1− 4). (37d)

In order to obtain the nodal displacements in a more straightforward manner, the shifted-basis is
adopted in the above equations. More details regarding XFEM implementation can be referred
in [12].

4 Numerical examples

A set of numerical examples is chosen to assess the e�ciency and usefulness of the double-
interpolation and its enriched form. In order to assess the convergence rate of each method,
the relative error measured in the displacement L2 norm and the energy norm are de�ned,
respectively, as:

Rd =

√∫
Ω(uh − u)T(uh − u)dΩ∫

Ω uTudΩ
, (38a)

16



Re =

√∫
Ω(σh − σ)T(εh − ε)dΩ∫

Ω σTεdΩ
. (38b)

where, the �elds with superscript `h' refer to the approximation, and σ, ε,u are exact �elds.
Unless speci�ed otherwise, the Young's modulus E and Possion's ratio ν are assumed to be
1000 and 0.3 respectively. The constants µ and κ are given by:

µ =
E

2(1 + ν)
, (39a)

κ =

{
3− 4ν, Plane strain
(1− ν)/(3 + ν), Plane stress

4.1 Higher-order convergence test

The �rst example will investigate the precision and convergence rate of DFEM in comparison
with the 3-noded triangular element (T3) and 6-noded triangular element (T6) by solving the
Laplace equation:

−∆u = f, on Ω, (40a)

u = ū = 0, on ∂Ω. (40b)

where ∆ is the Laplace operator, u the scalar primary variable and f the source term. Here the
domain Ω is selected as a square area with a dimension [−1, 1]× [−1, 1] ⊂ R2. And f is given
as:

f = 5π2sin(2πx)sin(πy). (41)

And the analytical solution of u and its derivatives u,x, u,y can be found as:

u = sin(2πx)sin(πy), (42a)

u,x = 2πcos(2πx)sin(πy), (42b)

u,y = πsin(2πx)cos(πy). (42c)

And errors of the L2 and energy norm of the primary variable are de�ned as:

Rd =

√∫
Ω(uh − u)2dΩ∫

Ω u
2dΩ

, (43a)

Re =

√∫
Ω(∇uh −∇u)T(∇uh −∇u)dΩ∫

Ω(∇u)T∇udΩ
. (43b)

Figure 11 shows all the convergence curves with respective to the element size of each element.
We use m to denote the slope of the convergence curve. From this �gure we note that DFEM
achieves a convergence rate in the displacement norm (2 < m = 2.63 < 3) and the energy
norm (1 < m = 1.69 < 2), both of which are between the linear and quadratic Lagrange �nite
elements. And the precision of DFEM is improved by O(10−1) than FEM(T3) noting that their
total DOFs is the same.
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Figure 11: results of the higher-order convergence test

4.2 In�nite plate with a hole

Figure 12 presents the upper right quadrant of an in�nite plate with a center hole subjected
to remote tensile loads. The geometrical parameters are L = 5 and a = 1. The analytical
solutions for stress and displacement �elds are given as [49]:

σxx(r, θ) = 1− a2

r2

(
3

2
cos2θ + cos4θ

)
+

3a4

2r4
cos4θ, (44a)

σyy(r, θ) = −a
2

r2

(
1

2
cos2θ − cos4θ

)
− 3a4

2r4
cos4θ, (44b)

τxy(r, θ) = 1− a2

r2

(
1

2
sin2θ + sin4θ

)
+

3a4

2r4
sin4θ, (44c)

ur(r, θ) =
a

8µ

[
r

a
(κ+ 1)cosθ +

2a

r
((1 + κ)cosθ + cos3θ)− 2a3

r3
cos3θ

]
, (44d)

uθ(r, θ) =
a

8µ

[
r

a
(κ− 1)sinθ +

2a

r
((1− κ)sinθ + sin3θ)− 2a3

r3
sin3θ

]
, (44e)

where (r, θ) are the polar coordinates. The exact traction is imposed on the top and right
boundary of the model. The number of nodes used in the four models are 121, 441, 1681 and
6561.

In this example, the numerical results obtained using DFEM, FEM(T3) and FEM(T6) are
compared for the same mesh discretization. The relative error in the displacement and energy
norm for this example are plotted in Figures 13 and 14, respectively. It can be observed DFEM
exceeds the linear optimal convergence rate slightly in the displcement norm, but the error
shows an level close to one order of magnitude less than that of T3 elements. In the energy
norm, the DFEM converges 34% faster than the T3 but 31% slower than the T6, thus providing
an intermediate behavior between the two triangular elements.
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(a) (b)

Figure 12: (a) 1/4 model of the in�nite plate with a center hole; (b) The typical mesh division
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Figure 13: Relative error in the displacement norm for an in�nite plate with a hole
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Figure 14: Relative error in the energy norm for an in�nite plate with a hole

4.3 Timoshenko Beam

Figure 15 illustrates a continuum model of a cantilever beam. In this example, plane stress
conditions are assumed. The geometric parameters are taken as L = 48 and W = 12. The
analytical displacement and stress �elds are given in [49] as:

ux(x, y) =
Py

6EI

[
(6L− 3x)x+ (2 + ν)(y2 − W 2

4
)

]
, (45a)

uy(x, y) = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

W 2x

4
+ (3L− x)x2

]
, (45b)

σxx(x, y) =
P (L− x)y

I
, (45c)

σyy(x, y) = 0, (45d)

τxy(x, y) = − P
2I

(
W 2

4
− y2

)
. (45e)

where P = 1000. and I = W 3/12. The exact displacement is applied to the left boundary and
the exact traction is applied to the right boundary.

Structured meshes are used in this example to ensure regular node location and to enable easier
comparison among the T3, T6, Q4 and DFEM (Figure 16). Four mesh sizes, 3 × 10, 6 × 20,
12 × 40 and 24 × 80, are used. It can be observed that, the DFEM solution demonstrates
better accuracy and is super-convergent in the displacement and energy norm by more than
50% compared to Q4 and T3, but less than T6 in both accuracy and convergence rate.
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Figure 15: Physical model of cantilever beam

Figure 16: Mesh discretization using regular quadrilateral and triangular elements
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Figure 17: Relative error in displacement and energy norm of Timoshenko beam
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Figure 18: (a)Gri�th crack; (b) inclined crack

4.4 Gri�th crack

A Gri�th crack problem is shown in Figure 18(a). An in�nite plate with a crack segment (a=1.)
subjected to remote tensile loads is considered here. A square domain (10 × 10) is selected in
the vicinity of the crack tip. The analytical displacement and stress �elds are given by [50]:

σxx(r, θ) =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)
,

(46a)

σyy(r, θ) =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
, (46b)

τxy(r, θ) =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
, (46c)

ux(r, θ) =
KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2sin2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
sin

θ

2

(
κ+ 1 + 2cos2

θ

2

)
,

(46d)

uy(r, θ) =
KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2cos2

θ

2

)
+

(1 + ν)KII

E

√
r

2π
cos

θ

2

(
1− κ+ 2sin2 θ

2

)
,

(46e)

where KI and KII are the stress intensity factors (SIFs) for mode-I and mode-II, respectively.
(r, θ) are the polar coordinates used to de�ne the crack geometry.
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4.4.1 Convergence study

The Gri�th crack problem is �rst used to investigate the enrichment e�ects of DFEM. The
convergence rate in XDFEM is studied in three folds: explicit crack representation (where
the crack is explicitly meshed), Heaviside enrichment only and full Heaviside and asymptotic
enrichment. These results are plotted in Figure 19. From Figure 19, it can be concluded that
the DFEM yields better accuracy and slightly improves the convergence rate compared to FEM
for all the cases considered. It also transpires from the results that the full enrichment of DFEM
produces better accuracy than modelling the crack explicitly.

1 million DOFs problems in both mode-I and mode-II were simulated to assess the convergence
rate of the method(see Figures 20 and 21). The relative errors in the SIFs are also shown in the
plots. We study the case where only tip enrichment is used, which is known [24][25] to lead to the
same convergence rate as the standard Lagrange-based FEM, and which is con�rmed here also
for XDFEM as expected. We also observe that XDFEM is, as XFEM, able to reproduce the
discontinuity across the crack faces. When geometrical enrichment with an enrichment radius
to be 1/5 of the crack length is used (Figure 22), optimality is recovered and the XDFEM
solution is also more accurate than the XFEM solution in terms of displacement, energy and
SIFs. Figure 23 illustrates the number of iteration required for the Conjugate Gradient (CG)
solver to converge, which can be regarded as an indication to the condition number of the
sti�ness matrix. It is observed that XDFEM performs slightly worse than XFEM in terms
of the condition number. And the deterioration rate of �xed area enrichment is much higher
than standard enrichment in both methods. These conclusions are in agreement with the
investigation reported in [24][26].

4.4.2 Accuracy study

Though it has been already established from the convergence curves that over the whole com-
putational domain, the XDFEM is generally slightly more accurate than XFEM for a given
number of DOFs, it is necessary to investigate whether XDFEM improves the precision also
locally in the vicinity of the crack tip. The strain component εyy is plotted along the line
perpendicular to the crack in front of the tip (the line x = 0) in a 31 × 31 structured mesh
in Figure 24. It can be noted from Figure 24, that the XDFEM result is much closer to the
analytical solution than that of XFEM. Especially, in the vicinity of the crack tip, the XDFEM
performs better due to the inclusion of nodal gradients in the approximation.

The mesh distortion e�ect is also investigated in this example. The strutured mesh and typical
distorted mesh are shown in Figure 25. The results are listed in Table 1. And the precision of
XDFEM in distorted mesh appears to be superior than that of the XFEM.

Strutured mesh distorted mesh

DOFs XFEM XDFEM XFEM XDFEM

334 0.2272 0.1832 0.2313 0.1882

4726 0.1112 0.08672 0.1132 0.08863

7834 0.09769 0.07600 0.1016 0.08261

17134 0.08006 0.06212 0.08223 0.06215

Table 1: Relative error in the energy norm for regular structured meshes and distorted meshes
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Figure 19: Relative error in the displacement and energy norm of in Gri�th crack for explicit
crack representation(dashed lines), Heaviside enrichment only (dotted lines) and topological
enrichment (solid lines)
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Figure 20: Convergence results of Gri�th crack (mode-I) for topological enrichment: (a) the
error in the displacement L2 and energy norm; (b) the error in SIFs
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Figure 21: Convergence results of Gri�th crack (mode-II) for topological enrichment: (a) the
error in the displacement L2 and energy norm; (b) the error in SIFs
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Figure 22: Convergence results of topological enrichment (solid lines) and geometrical enrich-
ment (Geo., dashed lines) for mode-I: (a) the error in the displacement L2 norm; (b) the error
in the energy norm
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(a) (b)

Figure 25: Mesh design to check the mesh distortion e�ect:(a)structured mesh;(b) distorted
mesh

4.4.3 Computational e�ciency

It should be highlighted that the support domain of DFEM element is much bigger than that of
FEM element due to the introduction of the nodal gradient into the approximation (see Figure
1, Figure 5). This directly results in increased bandwidth of the sti�ness matrix in DFEM.
Consequently, the computational time per DOFs is expected to be larger for DFEM than for
the FEM. Figure 26 and 27(a) show the comparison of the time cost in assembling the sti�ness
matrix, solving the linear equations and the total time of the two processes. It can be seen that
with the model size increasing, XDFEM requires less time to obtain the same precision. For
the solution process, XFEM produces an error 1.4 times higher (XFEM15.48

XDFEM11. = 1.4) than the
XDFEM at the same computational time of 0.06 seconds. The total time comparison shows
that after t0 = 0.6 seconds, XDFEM is more e�cient computationally than XFEM in terms
of the energy error. It can be observed from Figure 27(b) that XDFEM is always superior to
XFEM in the same DOFs. The main cause of the increased cost associated with XDFEM is
the increased bandwidth. This can be alleviated by using an `element-by-element' approach.

4.5 Inclined center crack

An inclined crack problem is investigated in this section. The model is presented in Figure
18(b). The in�nite plate is subjected to remote tensile load in y direction and the inclination
angle β is measured in the counter-clockwised direction from the x direction. The half crack
length is a = 1. A square domain �eld (10 × 10) encircling the crack tip is selected and the
exact displacement is applied on the boundary, as in the previous example. The analytical SIFs
are given as

KI = σ
√
πacos2β, (47a)

KII = σ
√
πacosβsinβ. (47b)

Table 2 shows the relative error of KI and KII varying with the inclination angle of the crack.
It can be observed from Table 2 that both XDFEM and XFEM results agree well with the
analytical solution. The precision of the SIFs in the XDFEM are better than that of the
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Figure 26: Comparison of time costs for XFEM and XDFEM in Gri�th crack problem
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Figure 27: The comparison of the energy norm error in terms of (a) time; (b) DOFs
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Figure 28: Physical model of three points bending beam with three holes

XFEM. This example demonstrates that XDFEM performs well also for the mixed mode crack
problems.

KI(%) KII(%)

β XFEM XDFEM XFEM XDFEM

0 0.58 0.29 0.03 0.10
π
12 0.54 0.28 0.07 0.12
π
6 0.49 0.26 0.30 0.20
π
4 0.43 0.23 0.36 0.21
π
3 0.32 0.20 0.41 0.23

5π
12 < 10−3 0.14 0.43 0.23
π
2 < 10−3 < 10−3 < 10−3 < 10−3

Table 2: The error in the SIFs for the inclined center crack problem (47× 47 structured mesh)

4.6 XDFEM for crack propagation

A three point bending beam with three holes is simulated in this section to test the versatility
of XDFEM in simulating crack propagation. Holes strongly in�uence crack propagation in
structures and the chosen example is a decisive test for computational fracture problems, as the
crack path obtained is most sensitive to the accuracy of the crack driving force computation, as
well as the chosen propagation increment, as will be seen below. This experiment is designed
to explore the e�ect of holes on the crack trajectories. The geometry and load condition are
illustrated in Figure 28. Plexiglas specimens are used for which E = 1000 and ν = 0.37 is used
in the simulations. Plane strain condition is assumed. With the variation of the position of the
initial crack, di�erent crack trajectories are obtained [51] [52]. A set of test cases, as listed in
Table 3, are simulated. The maximum hoop stress criterion and the equivalent domain form
of the interaction energy integral for SIFs extraction [1] is adopted to judge the orientation of
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crack propagation. The model is discretized by 27869 nodes and 55604 triangular elements.
Figure 29 illustrates the crack evolution of the listed three cases. And the results show that
both methods are in good agreement with the experiment. In the numerical tests it is noted
that, though, the error of energy norm decreases in XDFEM, the crack path is still very close to
that of the XFEM. It can also be observed from Figure 29 that, there is very minor di�erence
in the crack path trajectory between XFEM and XDFEM. However the crack paths obtained
from both methods show a signi�cant deviation when the crack passes through the hole in case
1 and case 3, which tends to make an in�uence to the �nal trajectories. We should somehow
be aware that the di�erent crack increment will a�ect the crack path as well declared in [53].
The SIFs for the three crack trajectories are plotted in Figure 30. It can be observed that the
SIFs tend to change in a bigger amplitude when the crack goes through the hole in case 1 and
case 3. The SIFs for each case compare well between the two methods. Figure 31 compares
the stress contours of the XFEM and the XDFEM. The XDFEM provides smooth stress �elds
without any post-processing.

d a crack increment number of propagation

case 1 5 1.5 0.052 67

case 2 6 1.0 0.060 69

case 3 6 2.5 0.048 97

Table 3: Test cases for the three points bending beam problem

(a)
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(b)

(c)

Figure 29: Crack evolution of the three cases
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Figure 30: SIFs variation in three cases

5 Conclusion

This paper presented an enriched double-interpolation approximation method for linear elastic
fracture and crack growth analysis. The double-interpolation approximation is constructed
through two consequent stages of interpolation, i.e., the linear �nite element interpolation for
the �rst stage to produce an initial approximation �eld which will be utilized to reproduce the
solution via a latter interpolation with smooth nodal gradients. Several examples are performed
to explore and demonstrate the basic features of DFEM and XDFEM. The key points are
summarized as follows:

• The precision of the solution �eld is almost improved by a level of O(10−1) error in both
displcement and energy norm without increasing the total DOFs, due to the fact that the
basis functions of the double-interpolation approximation have been enhanced through the
embedment of a kind of area weighted `average' gradients. Numerical tests have shown
that the double-interpolation method is even more accurate than the Q4 �nite element in
the same model size, despite of using the simplex mesh dicretization. It is well known that
the quadrilateral (hexahadronal) mesh can achieve much better accuracy while, simplex
mesh is more convenient to generate and has a strong adaptivity for using with arbitrary
shape. DFEM proves to unite the two factors together to provide an practical and e�cient
modeling technique.

• The convergence rate of the DFEM is shown to behave like an intermediate of the linear �-
nite element and quadratic �nite element. The DFEM improves the accuracy based on the
linear �nite element mesh while decreases the DOFs if compared against quadratic �nite
element, which gives a comprise between the DOFs and precision in numerical modeling.
In contrast to common higher-order �nite element, DFEM owns the C1 continuity on
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Figure 31: Contour plots of Von Mises stress in case 3
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most nodes. For continuum mechanics problems, it does not require any post-processing
for recovering the nodal stress. For fracture analysis, only the topological enriched nodes
need extra post-processing. Post-processing procedure is almost omitted in DFEM and
XDFEM, which improves the e�ciency of the simulation and maintains all the variables
in the same space.

• It should be highlighted that the major factor which hampers the e�ciency of DFEM is the
increased bandwidth issue which is caused by the introduction of the average gradients.
When the element-by-element strategy is used, the extra time needed in searching the
sti�ness matrix because of the expanded bandwidth can be saved.

• The XDFEM provide a robust application in crack propagation problems analogous to
XFEM, whilst with a smoother stress �eld generated for evaluation. This could be more
useful in improving the accuracy in 3D fracture modeling, in which the precision of
Lagrange-based XFEM is poor due to the low continuity of the solution.

For the future work, the 3D XDFEM should be investigated to verify the accuracy of the
solution with more practical implementation such as the preconditioning technique and element-
by-element storage. The error estimation based on XDFEM is also an interesting topic for
investigation. Further it would be bene�cial to identify a procedure to maintain C1 continuity
at the topological enriched nodes. To further analyze the advantageous of XDFEM, detailed
comparison should be made between XDFEM and the popular smoothed XFEM in terms of
precision, stability and e�ciency.
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