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Abstract

We introduce a new formalism for computing expectations of functionals of arbi-
trary random vectors, by using generalised integration by parts formulae. In doing
so we extend recent representation formulae for the score function introduced in [18]
and also provide a new proof of a central identity first discovered in [8]. We derive a
representation for the standardized Fisher information of sums of i.i.d. random vec-
tors which use our identities to provide rates of convergence in information theoretic
central limit theorems (both in Fisher information distance and in relative entropy).

1 Introduction

Let X be a random vector in R
d, with differentiable density f . The score function

ρX(x) = ∇ log f(x) is a well-understood and oft-used quantity whose behaviour has
long been known to provide useful summaries of the law of X. In particular the
covariance matrix of the random vector ρX(X) (the so-called score of X) is the Fisher
information matrix of X; this matrix is much used by statisticians and probabilists
alike. A much less studied object is the Stein matrix of X, defined in (2), which can
in some sense be seen as a counterpart to the score where rather than taking log-
derivatives one considers a special form of integration. This matrix (whose properties
when d = 1 are closely related to the so-called zero-bias transform, see [7]) has only
recently started to attract the attention of the community. For instance, this matrix
was exploited in [17] to study central convergence on Wiener Chaos. See also [1] for
a detailed study. And as we shall demonstrate, the Stein matrix of a random vector
X is a no less fundamental quantity than its score.

Rather than defining these two quantities explicitly in terms of the density f , we
choose to characterise them by their behaviour through integration by parts formulae
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tailored for integration with respect to the law of X (see definitions (1) and (2)).
These formulae are inspired by results usually exploited within the context of the so-
called Stein’s method (see [16, 5, 6]). Though in some sense elementary, our approach
allows us to obtain a variety of representation formulae for the Fisher information
of an arbitrary random vector X and, as we shall demonstrate, provides powerful
information theoretic bounds for Gaussian approximation problems. The results in
this paper are closely related to the work [18] and tiptoes around the results from
[9, 10] as well as [3, 4]. The idea of exploiting representation formulae for Fisher
information was pioneered in [8] and, as we shall see, our results are closely to theirs.

The outline of the paper is as follows. All formulae and definitions are provided in
Section 2. In Section 3 we show how elementary manipulations of these integration
by parts formulae allow to generalize the central identity from [18] (see forthcoming
Lemma 3.1) and to prove a version of the celebrated MMSE formula from [8]. In Sec-
tion 5 we exploit our identities to provide a general “Stein bound” on the standardized
Fisher information of sums of iid random vectors.

2 Score function and Stein factor

Fix an integer d ≥ 1. Let X,Y be centered random d-vectors (all elements in R
d are

taken as d×1 column vectors) which we throughout assume to admit a density (with
respect to the Lebesgue measure) with support S ⊂ R

d.

Definition 2.1. The score of X is the random vector ρX(X) which satisfies

E [ρX(X)ϕ(X)] = −E [∇ϕ(X)] (1)

(with ∇ the usual gradient in R
d) for all test functions ϕ ∈ C∞

c (Rd). Any random
d× d matrix τX(X) which satisfies

E [τX(X)∇ϕ(X)] = E [Xϕ(X)] (2)

for all test functions ϕ ∈ C∞
c (Rd) is called a Stein matrix for X.

Remark 2.2. The existence of a score function and of a Stein matrix for a random
vector X are substantial (and quite restrictive) assumptions. Let X have density f
with support S ⊂ R

d. Then assumptions on the behavior of the density at the edges
of the support are implicit : indeed it is necessary that f |δ(S) = 0 (δ(S) is the border
of S) in order to have (1) and (2). In the sequel we suppose that, when required, all
such assumptions are satisfied.

If X has covariance matrix C, then a direct application of the definition of the
Stein matrix yields

E [τX(X)] = C;

similarly we get
E [ρX(X)] = 0 and E

[

ρX(X)XT
]

= −Id,

where AT denotes the transpose of A and Id is the d× d identity matrix.
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For a Gaussian random vector Z with covariance matrix C one uses the well-known
Stein identity (see, e.g., [9] for proof and a history)

E [Zϕ(Z)] = CE [∇ϕ(Z)] (3)

to prove that ρZ(Z) = −C−1Z and τZ(Z) = C are the Gaussian score and Stein
matrix, respectively. Identity (3) characterizes the Gaussian distribution in the sense
that a random vector X with support Rd satisfies (3) if and only if X is itself Gaussian
with covariance C. More generally, the following result holds (see also, e.g., [1, 9, 21]).

Proposition 2.3. Let X have density f and let ρX(x) = ∇ log f(x). Then ρX(X) is
the score of X and is unique.

Proof. Proving that ρX(X) as defined in the statement is a score for X follows from
an easy integration by parts argument (whose validity rests on the border condition
on f). To see uniqueness let ρ(X) be another score of X and note that, then, we have

E [(ρ(X) − ρX(X))ϕ(X)] = 0

for all test functions ϕ. Consequently ρ(X) = ρX(X) almost surely.

In the case d = 1, under standard assumptions of regularity of the density f ,
the existence of the Stein’s matrix τ (which is indeed a one-dimensional mapping
sometimes called Stein’s factor) follows from standard integration by parts arguments,
from which one deduces that

τ(x) = f(x)−1

∫ ∞

x
f(y)dy.

In higher dimensions, the existence of a Stein matrix for X also follows easily
from an integration by parts argument, once one can find a matrix valued function
x 7→ A(x) whose components aij with 1 ≤ i, j ≤ d satisfy

d
∑

j=1

∂

∂xj
(aij(x)f(x)) = −xi (4)

for all i = 1, . . . , d. As demonstrated in the huge body of literature revolving around
Malliavin calculus (see [18] as well as the monograph [16]), a Stein’s matrix alway exist
for random vectors that are given by a smooth transformation of a given Gaussian
field. Contrarily to the score, however, there is no reason for which the Stein matrix,
at least according to our definition, should be unique. See the appendix for a deeper
discussion on this issue.

The following useful properties follow immediately from the definitions.

Proposition 2.4. Let ρX(X) be the score function of X. Then ρaX(aX) = 1
aρX(X)

and ρAX+b(AX + b) = (A−1)T ρX(X) for all a > 0, for all invertible matrices A ∈
M(d) and all vectors b ∈ R

d (AT is the transpose of A).
Similarly, if τX(X) is a Stein matrix of X, then a2τX(X) is a Stein matrix for

aX and AτX(X)AT is a Stein matrix of AX + b .
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Proof. Invariance under translation is immediate. To verify that the effect of scaling
is as announced, we check that the right-hand side of the equalities satisfy the cor-
responding definitions. Take a test function ϕ. Using ∇(ϕ(AX)) = AT∇ϕ(AX), we
can write

E
[

(A−1)TρX(X)ϕ(AX)
]

= −(A−1)TE
[

AT∇ϕ(AX)
]

= −E [∇ϕ(AX)] .

Similarly, we see that

E
[

AτX(X)AT∇ϕ(AX)
]

= AE [τX(X)∇ (ϕ(AX))] = E [AX∇ϕ(AX)] .

In both cases the conclusion follows by definition.

Given a random vector X (with density f) we define its (differential) entropy and
its Fisher information as

H(X) = −E [log f(X)] and I(X) = E
[

ρX(X)ρX(X)T
]

, (5)

respectively. Using Proposition 2.4 we obtain the following result.

Proposition 2.5. For a some positive constant we have

I(aX) =
1

a2
I(X) and H(aX) = log a+H(X). (6)

More generally, for all invertible matrices A ∈ M(d) we get

I(AX + b) = (A−1)T I(X)A−1 and H(AX + b) = log |detA|+H(X) (7)

with b ∈ R
d and detA the determinant of A.

If Z is Gaussian with covariance C then one can use the explicit expression of its
density to compute

H(Z) =
1

2
log((2πe)ddetC) and I(Z) = C−1. (8)

Definition 2.6. Let X be a d-random vector with density f and covariance B, and
let φ be the density of Z ∼ Nd(0, C). The relative entropy of X (with respect to Z)
is

D(X ‖Z) = E [log(f(X)/φ(X))] (9)

and its relative Fisher information matrix is

J (X) = E
[

(ρX(X) +B−1X)(ρX (X) +B−1X)T
]

. (10)

The standardized Fisher information distance is

Jst(X) = tr (BJ (X)) , (11)

with ‘tr’ the usual trace operator.
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Entropy and Fisher information are related to one another via the so-called de
Bruijn’s identity (see [11, Lemma 2.2] for the original statement, as well as [18] for
the forthcoming version).

Lemma 2.7 (Multivariate de Bruijn’s identity). Let X be a random d-vector with
covariance C (invertible); let Z be Gaussian with covariance B and define Xt =√
tX +

√
1− tZ, t ∈ [0, 1]. Let Γt be the covariance matrix of Xt. Then

D(X‖Z) =

∫ 1

0

1

2t
tr
(

CΓ−1
t Jst(Xt)

)

dt (12)

+
1

2

(

tr
(

C−1B
)

− d
)

+

∫ 1

0

1

2t
tr
(

CΓ−1
t − Id

)

dt.

If C = B then

D(X ‖Z) =

∫ 1

0

1

2t
tr(Jst(Xt))dt. (13)

There are a number of fundamental deep inequalities that are known on the behav-
ior of information and entropy over convolutions. For instance, using an elementary
representation formula for the score of a sum of random variables, one can prove (see,
e.g., [9, Lemma 1.21]) that information (and therefore standardized information) de-
creases along convolutions.

Lemma 2.8. If X and Y are independent real-valued random variables then

I(
√
tX +

√
1− tY ) ≤ tI(X) + (1− t)I(Y ) (14)

with equality if and only if X and Y are both Gaussian.

In particular, from (14) and if X is real-valued with unit variance and if Z is
standard Gaussian, we have that for all 0 ≤ t ≤ 1,

Jst(Xt) ≤ tJst(X) + (1− t)Jst(Z) = tJst(X)

so that

D(X ‖Z) ≤ 1

2
tr(Jst(X)). (15)

Hence bounds on the standardized Fisher information translate directly into bounds
on the relative entropy hereby providing, via Pinsker’s inequality

√
2dTV (X,Z) ≤ D(X ‖Z), (16)

bounds on the total variation distance between the law of X and the law of Z.
Applying de Bruijn’s identity one can then integrate the above relation to deduce

H(
√
tX +

√
1− tY ) ≥ tH(X) + (1− t)H(Y ) (17)

for all 0 ≤ t ≤ 1. This is equivalent to the so-called entropy power inequality first put
forth by Shannon in [19] (see [20] or [23] for a proof).
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Lemma 2.9 (Entropy power inequality). If X and Y are independent real-valued
random variables with density having entropy H(X) then

exp (2H(X + Y )) ≥ exp(2H(X)) + exp(2H(Y )). (18)

Fisher information decreases with convolution, while entropy increases accord-
ingly. The amenability of the Gaussian density for computations allows one to easily
prove that relative entropy is positive definite and satisfies

0 ≤ D(X ‖Z) = H(Z)−H(X) +
tr(C−1B)− d

2
; (19)

also direct computations yield

0 ≤ Jst(X) = tr(BI(X) − Id). (20)

Hence it makes sense to quantify the discrepancy between the law of X and the
Gaussian in terms of its relative entropy or of its Fisher information. Adding to
this the fact that the Gaussian has (in dimension 1) maximum entropy and minimal
Fisher information among all random variables with given variance, many authors
have sought to provide intrinsic interpretations of the CLT via maximum entropy
or minimal Fisher information arguments. These observations spawned a series of
papers wherein the authors use either the Fisher information distance or the relative
entropy to prove so-called “information theoretic central limit theorems”; see [9] for
references and details.

In the present paper we take a new angle on these matters via a novel represen-
tation formula which we detail in the forthcoming section.

3 Representation formulae

The following lemma is a generalization of the central formula from [18] and is the
cornerstone of the present paper. The device contained in the proof (namely a prob-
abilistic integration by parts formula) will be used throughout the subsequent argu-
ments.

Lemma 3.1. Let X and Y be stochastically independent centered random vectors in
R
d. Suppose that X (resp., Y ) allows a score ρX(X) (resp., ρY (Y )) as well as a Stein

matrix τX(X) (resp., τY (Y )). Then, for all 0 < t < 1, we have

ρWt
(Wt) + Γ−1

t Wt

= E

[

t√
1− t

(Id− Γ−1
t τX(X))ρY (Y ) +

1− t√
t
(Id− Γ−1

t τY (Y ))ρX(X)
∣

∣Wt

]

(21)

with Wt =
√
tX +

√
1− tY and Γt the covariance matrix of Wt.
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Proof. Let ϕ ∈ C1
c be a test function. Applying first (1) (with respect to Y ) then (2)

(with respect to X) we get

E
[

E
[

(Id− Γ−1
t τX(X))ρY (Y ) |Wt

]

ϕ(Wt)
]

= E
[

(Id− Γ−1
t τX(X))ρY (Y )ϕ(Wt)

]

= −
√
1− tE

[

(Id− Γ−1
t τX(X))∇ϕ(Wt)

]

= −
√
1− t

(

E [∇ϕ(Wt)]− Γ−1
t

1√
t
E [Xϕ(Wt)]

)

.

Likewise

E
[

E
[

(Id− Γ−1
t τY (Y ))ρX (X) |Wt

]

ϕ(Wt)
]

= −
√
t

(

E [∇ϕ(Wt)]− Γ−1
t

1√
1− t

E [Y ϕ(Wt)]

)

.

Hence

E

[

E

[

t√
1− t

(Id− Γ−1
t τX(X))ρY (Y ) +

1− t√
t
(Id− Γ−1

t τY (Y ))ρX(X)
∣

∣Wt

]

ϕ(Wt)

]

= −E [∇ϕ(Wt)] + E
[

Γ−1
t Wtϕ(Wt)

]

= E
[

(ρWt
(Wt) + Γ−1

t Wt)ϕ(Wt)
]

,

and the conclusion (21) follows.

In the sequel we simply write ρt instead of ρWt
. In [18] we use a version of (21)

specialised to the case where X has covariance C and Y = Z is a Gaussian random
vector also with covariance C. Then Γt = C and, setting here and throughout
Xt =

√
tX +

√
1− tZ, we get

ρt(Xt) + C−1Xt = − t√
1− t

E
[(

Id− C−1τX(X)
)

C−1Z |Xt

]

(22)

for all 0 < t < 1 (recall that ρZ(Z) = −C−1Z and τZ(Z) = C). Taking squares we
obtain the following representations for the (standardized) Fisher information of an
arbitrary random vector with density.

Theorem 3.2. For all 0 < t < 1

I(Xt) =
t2

1− t
E
[

E
[(

Id− C−1τX(X)
)

C−1Z |Xt

]2
]

+ C−1 (23)

and

Jst(Xt) =
t2

1− t
tr
(

CE
[

E
[(

Id− C−1τX(X)
)

C−1Z |Xt

]2
])

(24)

for all 0 < t < 1.
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Proof. Equation (24) follows from (23), (22) and (20) without further ado. We prove
(23). Take C = Id for simplicity and apply (22) to get

I(Xt) =
t2

1− t
E
[

E [(Id− τX(X))Z |Xt]
2
]

+ E
[

XtX
T
t

]

− t√
1− t

E
[

E [(Id− τX(X))Z |Xt]X
T
t

]

− t√
1− t

E
[

XtE [(Id− τX(X))Z |Xt]
T
]

.

It is immediate that

E
[

E [(Id− τX(X))Z |Xt]X
T
t

]

= E
[

XtE [(Id− τX(X))Z |Xt]
T
]

= 0.

The conclusion follows.

4 Connection with a formula of Guo, Shamai

and Verdú

It was brought to our attention (by Oliver Johnson, personal communications) that
representation (22) resembled, at least in principle, an identity for Fisher informa-
tion discovered in [8]. An explicit connection between the two approaches is easily
obtained, as follows. We start with a different proof of their identity.

Lemma 4.1 (Guo, Shamai and Verdú [8]). Let X be a centered random vector with
covariance C and let Z be Gaussian with the same covariance as X. Then, for all
0 < t < 1, the random vector Xt =

√
tX +

√
1− tZ has a score

ρt(Xt) = − 1

1− t
C−1

(

Xt −
√
tE [X |Xt]

)

(25)

and its Fisher information is

I(Xt) =
1

1− t
C−1 − t

(1− t)2
C−1E

[

(X − E [X |Xt]) (X −E [X |Xt])
T
]

C−1. (26)

Proof. Clearly Xt has a differentiable density with support R
d. Let ϕ be a test

function. Then (once again recall ρZ(Z) = −C−1Z)

E
[

C−1
(

Xt −
√
tE [X |Xt]

)

ϕ(Xt)
]

= E
[

C−1
(

Xt −
√
tX
)

ϕ(Xt)
]

=
√
1− tE

[

C−1Zϕ(Xt)
]

= (1− t)E [∇ϕ(Xt)] .

The first identity ensues. Next, to prove (26), we simply use (25) and compute

I(Xt) =
1

(1− t)2
C−1E

[

(

Xt −
√
tE [X |Xt]

)(

Xt −
√
tE [X |Xt]

)T
]

C−1

=
1

(1− t)2
C−1

{

E
[

XtX
T
t

]

+ tE
[

E [X |Xt]E [X |Xt]
T
]

−
√
tE
[

XtE [X |Xt]
T
]

−
√
tE
[

E [X |Xt]X
T
t

]

}

C−1.
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By independence of X and Z we can write

E
[

XtE [X |Xt]
T
]

= E
[

XtX
T
]

=
√
tC = E

[

E [X |Xt]X
T
t

]

so that

I(Xt) =
1

(1− t)2
C−1

{

C − 2tC + tE
[

E [X |Xt]E [X |Xt]
T
]}

C−1

=
1

(1− t)2
C−1

{

C(1− t)− t
(

C −E
[

E [X |Xt]E [X |Xt]
T
])}

C−1.

Finally, we have

C − E
[

E [X |Xt]E [X |Xt]
T
]

= E
[

XXT
]

− E
[

E [X |Xt]E [X |Xt]
T
]

= E
[

(X − E [X |Xt]) (X − E [X |Xt])
T
]

,

whence the claim.

As in [8] we define the MMSE as the minimal mean square error when estimating
X with observation Xt, that is,

MMSE(X, t) = E
[

(X −E [X |Xt]) (X − E [X |Xt])
T
]

. (27)

Combining the previous relationships we obtain the connection between our identities
and theirs (results are obvious and stated without proof).

Proposition 4.2. Let all notations be as above, and let τX(X) be a Stein matrix for
X. Let At be as above. Then

Id− 1

1− t
MMSE(X, t)C−1 = tCE

[

E
[(

Id− C−1τX(X)
)

C−1Z |Xt

]2
]

(28)

so that

Jst(Xt) =
t

1− t
tr

(

Id− 1

(1− t)
MMSE(X, t)C−1

)

. (29)

5 Information bounds for sums of random vec-

tors

Let X1,X2, . . . ,Xn be a sequence of independent random vectors having a density on
R
d. We first extend (21) to an arbitrary number of summands. Proof is immediate

by following the same route and is left to the reader.

Lemma 5.1. For all t = (t1, . . . , tn) ∈ [0, 1]d such that
∑n

i=1 ti = 1 we define Wt =
∑n

i=1

√
tiXi and denote Γt the corresponding covariance matrix. Then

ρt(Wt) + Γ−1
t Wt =

n
∑

i=1

ti√
ti+1

E
[(

Id− Γ−1
t τi(Xi)

)

ρi+1(Xi+1) |Wt

]

(30)

where we identify Xn+1 = X1 and tn+1 = t1, and where we set τi = τXi
, ρi = ρXi

and ρt = ρWt
for simplicity.
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In the sequel we suppose (for simplicity) that the Xi are isotropic, that is, we
suppose that their covariance matrix is the identity. We first prove that Fisher in-
formation distance is bounded by a measure of the discrepancy between the Stein
matrix and the identity.

Theorem 5.2. Let Wn = 1√
n

∑n
i=1 Xi where the Xi have Stein matrix τi(Xi) and

score function ρi(Xi). Define W
(t)
n =

√
tWn +

√
1− tZ. Then

Jst(W
(t)
n ) ≤ 1

n2

t2

1− t

n
∑

i=1

tr
(

E
[

(Id− τi(Xi)) (Id− τi(Xi))
T
])

(31)

for all 0 ≤ t ≤ 1. If the Xi are i.i.d. copies of X then

Jst(W
(1/2)
n ) ≤ 1

2n
tr
(

E
[

(Id− τX(X)) (Id− τX(X))T
])

. (32)

Proof. First note that Stein matrices behave similarly as score functions over convo-
lutions, in the sense that

τWn
(Wn) =

1

n

n
∑

i=1

E [τi(Xi) |Wn] , (33)

(see [21, 18] for a proof). Hence, by Jensen’s inequality in (24),

Jst(W
(t)
n ) ≤ t2

1− t
tr
(

E
[

(Id− τWn
(Wn))(Id − τWn

(Wn))
T
])

=
t2

1− t
tr



E





(

1

n

n
∑

i=1

(Id− E [τi(Xi) |Wn])

)2








≤ 1

n2

t2

1− t
tr



E





(

n
∑

i=1

(Id− τi(Xi))

)2








Independence of the Xi as well as the fact that E [Id− τi(Xi)] = 0 allow to deduce
the first claim. The second claim is then immediate.

By Cramer’s theorem [12], convergence of Wn to the Gaussian is equivalent to

convergence of W
(1/2)
n , and (32) provides rates of convergence (of order 1/n) of the

Fisher information under the assumption that X has a well-defined Stein matrix
τX(X). Using Pinsker’s inequality as well as (15), we then obtain rates of convergence
in total variation which have the correct order.

6 Stein representations for Fisher information

In all the above identities, one translates the problem of controlling the variance of
a random vector into that of control the squared conditional expectation of another
random vector. Our next lemma (communicated to us by Guillaume Poly) exploits
the duality representation of the norm on a Hilbert space to allow to control moments
of conditional expectations very efficiently.
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Lemma 6.1. Let X and Y be square-integrable random variables. Assume moreover
that E[X] = 0. Then

E
[

(E [X |Y ])2
]

= sup
ϕ∈H(Y )

(E [Xϕ(Y )])2 , (34)

where the supremum is taken over the collection H(Y ) of test functions ϕ such that
E[ϕ(Y )] = 0 and E

[

ϕ(Y )2
]

≤ 1.

Proof. First, by Cauchy-Schwarz,

sup
ϕ∈H(Y )

(E [Xϕ(Y )])2 = sup
ϕ∈H(Y )

(E [E[X|Y ]ϕ(Y )])2

≤ sup
ϕ∈H(Y )

E
[

E[X|Y ]2
]

E
[

ϕ(Y )2
]

≤ E
[

E[X|Y ]2
]

.

To prove the reverse inequality define ϕ(y) = E [X|Y = y] /
√

E [E[X|Y ]2]. Clearly
E[ϕ(Y )] = 0 and E[ϕ(Y )2] ≤ 1 so that ϕ ∈ H(Y ) and

sup
ϕ∈H(Y )

(E [Xϕ(Y )])2 ≥
(

E

[

X
E [X|Y ]

√

E [E[X|Y ]2]

])2

=
(E [XE [X|Y ]])2

E [E[X|Y ]2]
= E

[

E [X|Y ]2
]

.

Equality ensues.

We immediately deduce an original proof (not relying on Stein’s method!) of
a recently discovered fact (see e.g. [13, 14]) that the Fisher information distance
is dominated by expressions which appear naturally within the context of Stein’s
method.

Theorem 6.2 (Stein representation for Fisher information). Let Wn = 1√
n

∑n
i=1 Xi

where the Xi have Stein matrix τi(Xi) and score function ρi(Xi). Then

J (Wn) = sup
ϕ∈H(Wn)

(E [∇ϕ(Wn)−Wnϕ(Wn)])
2 . (35)

Proof. We combine (30) (in the special case t1 = t2 = . . . = tn = 1/n) and (34) to
deduce (we abuse of notation by writing A2 instead of AAT )

J (Wn) = E
[

(ρn(Wn) +Wn)
2
]

= E





(

1√
n
E

[(

n
∑

i=1

(Id− τi(Xi))ρi+1(Xi+1)

)

|Wn

])2




=
1

n
sup

ϕ∈H(Wn)

(

n
∑

i=1

E [(Id− τi(Xi))ρi+1(Xi+1)ϕ(Wn)]

)2

=
1

n
sup

ϕ∈H(Wn)
E

[

√
n∇ϕ(Wn)−

n
∑

i=1

Xiϕ(Wn)

]2

,

and the conclusion follows.
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A Appendix: Non-uniqueness of the Stein ma-

trix

Take two random matrices τ and τ̃ satisfying (2) and define Ψ(X) = τX(X)−τ̃X (X) =
(Ψ1(X),Ψ2(X), . . . ,Ψd(X))T . Then, for all 1 ≤ i ≤ d, the vector-valued function Ψi

is integrable (with respect to X) with expectation 0 and satisfies

E [Ψi(X)∇ϕ(X)] = E

[

div(Ψi(X)f(X))

f(X)
ϕ(X)

]

= 0

for all test functions ϕ (with div the divergence operator), with f the density of X.
In other words τX(X) and τ̃X(X) are Stein matrices for X if and only if Ψ(x) =
τX(x)− τ̃X(x) satisfies E [Ψ(X)] = 0 and

div(Ψi(x)f(x)) = 0 (36)

almost surely for all 1 ≤ i ≤ d. Of course there are many ways to construct a matrix
function Ψ such that div(Ψi(x)f(x)) = F (x) for any given function F , see for instance
the interesting discussion at end of the proof of [2, Theorem 4].

Example A.1. We provide an explicit construction in case d = 2 and (X,Y ) ∼ f
some regular 2-dimensional distribution. Let Ψj = (Ψj1,Ψj2) for j = 1, 2. Then (36)
is satisfied as soon as ∂x (Ψj1(x, y)f(x, y)) = −∂y (Ψj2(x, y)f(x, y)) for all (x, y) ∈
R
2. Integrating, we see that for any choice of sufficiently regular Ψj2 such that

E [Ψj2(X,Y )] = 0 it suffices to take

Ψj1(x, y)f(x, y) = −
∫ x

−∞
∂yΨj2(u, y)f(u, y)du.

to ensure that (36) is satisfied. Moreover, the condition E [Ψj(X,Y )] = 0 is then
automatically satisfied. Hence, letting W = (X,Y ), if τW (W ) is a Stein matrix for
W then so is

τW (W ) +

(

Ψ11(X,Y ) Ψ12(X,Y )
Ψ21(X,Y ) Ψ22(X,Y )

)

for Ψij as constructed above. Thus the Stein matrix is not unique.

Example A.2. Starting from the condition E [Ψi(X)∇ϕ(X)] = 0, the furthest we
can go with respect to the identification of the Stein matrix of X is by requiring that
E [τ ] = E [τ̃ ] and

E [τij(X) |Xj ] = E [τ̃ij(X) |Xj ] ;

this conclusion is reached by considering all test functions ϕ(X) = ϕ(Xi) for 1 ≤ i ≤
d.

12



Example A.3. If we further require in the definition that the Stein matrix be sym-
metric then we can take Ψ as in Example A.1 with the further requirement that
Ψ21(X,Y ) = Ψ12(X,Y ); the Stein matrix remains non-unique. Choosing Ψ22(x, y) =
Ψ11(x, y) then the function Ψ2 not only need have mean 0 with respect to the law f
but also (using (4)) it needs to satisfy the wave equation

∂2
x (Ψ2(x, y)f(x, y)) = ∂2

y (Ψ2(x, y)f(x, y)) (37)

for all (x, y). Still it is not unique.
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