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Abstract

We first prove stochastic representation formulae for space–time harmonic mappings defined on
manifolds with evolving Riemannian metric. We then apply these formulae to derive Liouville type
theorems under appropriate curvature conditions. Space–time harmonic mappings which are defined
globally in time correspond to ancient solutions to the harmonic map heat flow. As corollaries, we establish
triviality of such ancient solutions in a variety of different situations.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

A smooth mapping u : M → N between Riemannian manifolds (M, g) and (N , h) is said
to be harmonic if its tension field ∆g,hu ≡ trace∇du vanishes, see e.g. [9,19]. Since harmonic
maps are characterized by the property that they map M-valued Brownian motions to N -valued
martingales (see e.g. [11, Satz 7.157(ii)]), it is natural to study them using stochastic methods,
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and this has been done in a number of papers, e.g. [2,8,14,15,29,33]. In particular, stochastic
representation formulae for the differential of harmonic maps have turned out to be a powerful
tool to prove Liouville theorems, i.e. theorems stating that harmonic maps in a certain class of
maps and under certain topological or geometric constraints are necessarily constant [33].

Due to Perelman’s proof of the geometrization and hence the Poincaré conjecture using Ricci
flow [25,27,26], there is now a strong interest in studying manifolds M with time-dependent
geometry. In such a context, the notion of harmonic map turns out to be no longer appropriate;
however, it is natural to study space–time harmonic maps which by time reversal provide
solutions to the harmonic map heat flow (or nonlinear heat equation), see e.g. [18,23,35].

The behavior of (positive) solutions to the linear heat equation under Ricci flow has been
intensively studied during the last decade, e.g. [5,21,22]. It is clear from the static case that in
the nonlinear situation under Ricci flow also the geometry of the target space will naturally play
a crucial role, see e.g. [19,31].

Building on our previous work on martingales on manifolds with time-dependent
connection [10], we establish stochastic representation formulae for space–time harmonic maps
and solutions to the harmonic map heat flow defined on a manifold with time-dependent metric.
We then apply these formulae to prove Liouville theorems for space–time harmonic maps and
ancient solutions to the harmonic map heat flow under appropriate curvature conditions.

2. Stochastic representation formulae

Let M be a differentiable manifold equipped with a smooth family g(t) of Riemannian metrics
(t ∈ (T0, T ] with T0 < T ), and let (N , h) be a Riemannian manifold. Let u : (T0, T ] × M → N
be a solution to the harmonic map heat flow

∂u

∂t
=

1
2
∆g(t),hu. (2.1)

Here ∆g(t),hu := trace∇du ∈ Γ (u∗T N ) denotes the tension field of u with respect to g(t) and h.
Recall that, for fixed t , we have the differential du(t, ·) ∈ Γ (T ∗M, u(t, ·)∗T N ) and the Hessian
(∇du)(t, ·) ∈ Γ (T ∗M ⊗ T ∗M, u(t, ·)∗T N ) which provides for each (t, x) a bilinear map

(∇du)(t, x) : Tx M × Tx M → Tu(t,x)N .

The trace of this bilinear map gives the tension (∆g(t),hu)(t, x) ∈ Tu(t,x)N of u at (t, x). Any
solution to Eq. (2.1) with T0 = −∞ is called an ancient solution to the harmonic map heat flow.

Remark 2.1. Let u : (T0, T ] × M → N be a solution to the harmonic map heat flow (2.1) and
let

û(t, ·) = u(T − t, ·) and ĝ(t) = g(T − t, ·)

be defined by time reversal. Then the mapping

û : [0, T − T0) × M → N

is space–time harmonic with respect to the family ĝ(t) of metrics, i.e.

∂ û

∂t
+

1
2
∆ĝ(t),h û = 0.

In particular, any ancient solution to the harmonic map heat flow (2.1) gives rise to a space–time
harmonic map defined on R+×M , and vice versa. For this reason, in the sequel, we formulate our
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results for space–time harmonic maps; however the statements immediately apply to solutions of
the harmonic map heat flow by time reversal.

From now on, let (g(t))t≥0 be a smooth family of Riemannian metrics on M and (N , h) be
a Riemannian manifold. Let u : [0, ∞) × M → N be a space–time harmonic map in the sense
that

∂u

∂t
+

1
2
∆g(t),hu = 0. (2.2)

Notation 2.2. Fixing a point x ∈ M , let (X t )t≥0 be a g(t)-Brownian motion on M [1,7,17,
16,24] starting at x , and consider the image process X̃ t := u(t, X t ) taking values in the target
manifold N . As in [10, Theorem 9.3 and Remark 9.4] let Θ0,t : Tx M → TX t M be the damped
parallel transport along X , defined by the covariant equation

d


//Riem

0,t

−1
Θ0,t


= −

1
2


//Riem

0,t

−1


−
∂g

∂t
+ Ricg(t)

#

Θ0,t dt, Θ0,0 = idTx M ,

where //Riem
0,t : Tx M → TX t M is the Riemann-parallel transport along X , see [10, Definition

3.3]. Similarly, in terms of the Riemann curvature tensor R̃ on N , let

Θ̃0,t : TX̃0
N → TX̃ t

N

be the damped parallel transport along X̃ , defined by the covariant equation

d

//−1

0,t Θ̃0,t


= −

1
2
//−1

0,t R̃(Θ̃0,t , d X̃ t )d X̃ t

= −
1
2

m
i=1

//−1
0,t R̃


Θ̃0,t , du(t, X t )ξ

i
t


du(t, X t )ξ

i
t dt, Θ̃0,0 = idTX̃0

N ,

where m = dim M and (ξ1
t , . . . , ξm

t ) is an adapted g(t)-orthonormal basis of TX t M :

ξ i
t = //Riem

0,t ei

for some fixed orthonormal basis (e1, . . . , em) of Tx M .

In [10, Proposition 9.6], we obtained the following theorem which is crucial for all subsequent
results.

Theorem 2.3. For each v ∈ Tx M the Tu(0,x)N-valued process

Θ̃−1
0,t du(t, X t )Θ0,t v, t ≥ 0,

is a local martingale.

The following corollary extends [3, Theorem 5.5] from the case of a fixed metric to the case
of evolving metrics.

Corollary 2.4. Let T > 0. Assume that there is a constant α ∈ R such that

Ricg(t) −
∂g

∂t
≥ α on [0, T ] × M,
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that the sectional curvatures of N are bounded from above and that the differential du of u is
uniformly bounded on [0, T ] × M. Then, for each 0 ≤ t ≤ T ,

du(0, x) = E

Θ̃−1

0,t du(t, X t )Θ0,t


. (2.3)

Proof. Under the above assumptions the local martingale of Theorem 2.3 is bounded on the time
interval [0, T ] and hence a true martingale. The claim follows by taking expectations. �

Corollary 2.4 implies a first Liouville theorem under the assumptions that the metric on M
evolves under uniformly strict backward super Ricci flow and that the curvature of N is non-
positive.

Theorem 2.5 (Cf. [10, Proposition 9.6]). Let M be connected. Suppose that there is a constant
α > 0 such that

Ricg(t) −
∂g

∂t
≥ α

(uniformly strict backward super Ricci flow), that the sectional curvatures of N are non-positive
and that the differential of u is uniformly bounded. Then u is constant.

Proof. By Corollary 2.4

du(0, x) = E

Θ̃−1

0,t du(t, X t )Θ0,t


for every t ≥ 0. The curvature conditions imply that ∥Θ0,t∥ ≤ e−αt/2 and ∥Θ̃−1

0,t ∥ ≤ 1, so that

|du(0, x)| ≤ e−αt/2 sup
y∈M

|du(t, y)|.

The claim now follows from letting t → ∞. �

To prove Liouville theorems under the weaker assumption that the metric on M evolves under
backward super Ricci flow (not necessarily uniformly strict backward super Ricci flow) one
needs more refined representation formulae which rely on integration by parts arguments.

For X and X̃ as above, let B = (Bt )t≥0 be the Riemann-anti-development of X into Tx M
(hence a Tx M-valued Brownian motion, see [10, Remark 8.4]), and

Adef(X̃)t :=

 t

0
Θ̃−1

0,s ◦ d X̃s =

 t

0
Θ̃−1

0,s du(s, Xs) //Riem
0,s d Bs (2.4)

the deformed anti-development of X̃ (cf. [3, Eq. (5.32)]).

Theorem 2.6 (Cf. [3, Theorem 5.6] for the Case of a Fixed Metric). Let ℓ = (ℓ(t))t≥0 be a Tx M-
valued process with absolutely continuous trajectories. The following Tu(0,x)N-valued processes
are local martingales:

Nt := Θ̃−1
0,t du(t, X t )Θ0,t ℓ(t) −

 t

0
Θ̃−1

0,s du(s, Xs)Θ0,s ℓ̇(s) ds,

Mt := Θ̃−1
0,t du(t, X t )Θ0,t ℓ(t) −

 t

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs Adef(X̃)t .
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Proof. We have

d

Θ̃−1

0,t du(t, X t )Θ0,t ℓ(t)


= Θ̃−1
0,t du(t, X t )Θ0,t ℓ̇(t) dt + d


Θ̃−1

0,t du(t, X t )Θ0,t


ℓ(t),

so that N is a local martingale by Theorem 2.3. Since the quadratic covariation of Adef(X̃)t and t
0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs equals

Adef(X̃),

 ·

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs


t
=

 t

0
Θ̃−1

0,s du(s, Xs)Θ0,s ℓ̇(s) ds,

it follows that M is a local martingale as well. �

In general, the processes N and M of Theorem 2.6 are only local martingales, not necessarily
true martingales. To obtain stochastic representation formulas by taking expectations, a possible
strategy is to stop these processes before the underlying Brownian motion X leaves a relatively
compact domain. The Tx M-valued process ℓ may then be chosen appropriately.

Theorem 2.7 (Cf. [33, Theorem 3.1, Remark 3.4 and Theorem 4.1]). Let v ∈ Tx M, R > 0,

DR := {(t, y) ∈ R+ × M | dg(t)(x, y) < R}

and τ a bounded stopping time satisfying τ ≤ τR , where

τR := inf{t ≥ 0 | dg(t)(x, X t ) ≥ R}

= inf{t ≥ 0 | (t, X t ) ∉ DR}.

Suppose that the process ℓ satisfies ℓ(0) = v, ℓ(τ ) = 0 and

E

 τ

0
|ℓ̇(s)|2ds

(1+ε)/2


< ∞ (2.5)

for some ε > 0. Then the following stochastic representation formulas hold:

du(0, x)v = −E
 τ

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs Adef(X̃)τ


(2.6)

and

du(0, x)v = −E
 τ

0
Θ̃−1

0,s du(s, Xs)Θ0,s ℓ̇(s) ds


.

Proof. To prove the claimed representation formulas it is sufficient to show that the stopped
processes (Mt∧τ )t≥0 and (Nt∧τ )t≥0 are true martingales. By Theorem 2.6 we already know that
they are local martingales. To show that the process (Mt∧τ )t≥0 is a true martingale it suffices to
show that for each c ≥ 0 the family {Mσ∧τ | σ stopping time, σ ≤ c} is uniformly integrable,
which holds if there is a constant C < ∞ such that for every stopping time σ ≤ c

E

|Mσ∧τ |

1+ε


≤ C. (2.7)

We first observe that the terms Θ̃−1
0,t du(t, X t )Θ0,t ℓ̇(t) and Adef(X̃)t are bounded as long as

t ≤ τR ∧ c. Moreover, using the Burkholder–Davis–Gundy inequality (see e.g. [13, Theorem
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3.3.28]) and the fact that Θ0,s is bounded for s ≤ τR ∧ c, we obtain

E

 σ∧τ

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs

1+ε


≤ C̃ E

 τ

0
|ℓ̇(s)|2ds

(1+ε)/2


and hence (2.7), so that the process (Mt∧τ )t≥0 is indeed a martingale.
In a similar way the process (Nt∧τ )t≥0 is shown to be a martingale as well. �

3. A priori estimates

In this section we prove differential estimates for space–time harmonic maps u : R+ × M →

N under the assumption that the metric on M evolves under backward super Ricci flow

∂g

∂t
≤ Ricg(t).

By time reversal the results apply to ancient solutions to the harmonic map heat flow under
forward super Ricci flow. These estimates will then be used in the next section to derive Liouville
type results for space–time harmonic mappings, respectively ancient solutions to the harmonic
map heat flow. The starting point of our approach is the estimate

|du(0, x)v| ≤ E
 t∧τR

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs

p1/p

E

|Adef(X̃)t∧τR |

q
1/q

(3.8)

for p, q > 1 such that 1/p + 1/q = 1, which follows immediately from formula (2.6). The
process ℓ satisfies ℓ(0) = v, ℓ(τ ) = 0 and condition (2.5); otherwise it may be chosen arbitrarily.

Note that in estimate (3.8) geometric information of the evolving manifold M only enters
through the first term on the right-hand side, while the second term captures the geometry of the
target N . In this sense, estimate (3.8) allows to separate the contributions of the curvatures of M
and N to the differential of u.

3.1. Estimation of the first factor

To estimate the first factor on the right-hand side of (3.8), we have to choose the process ℓ in
a suitable way. To this end we fix R > 0 and, similarly to [32, Proof of Corollary 5.1], define
f : D̄R → [0, 1] by

f (u, y) := cos
 π

2R
dg(u)(x, y)


.

For p ≥ 1 let

cp(R) := sup
(u,y)∈D̃R


f p+2


∂ f −p

∂u
+

1
2
∆g(u)( f −p)


,

where D̃R := {(t, y) ∈ DR : y ≠ x and y ∉ Cutg(t)(x)}.

Lemma 3.1. Suppose that

∂g

∂t
≤ Ricg(t)
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and that there exists r0 > 0 such that

C(x, r0) := sup

|Ric(t, y)| : t ≥ 0, dg(t)(x, y) ≤ r0


(3.9)

is finite. Then cp(R) is finite for each R > 0, and moreover

cp(R) = O(1/R), as R → ∞. (3.10)

Remark 3.2. In the case of a fixed metric g with non-negative Ricci curvature, instead of (3.10)
one obtains the much better estimate

cp(R) ≤
pπ2(p + d + 1)

8R2 , (3.11)

cf. [32, Proof of Corollary 5.1] for the case p = 2. This is due to the fact that the estimate for
the drift of the radial part of Brownian motion is much better in the case of a fixed metric with
non-negative Ricci curvature than in the case of backward super Ricci flow, see Remark 3.3.

Proof of Lemma 3.1. We first observe that

cp(R) = sup
(u,y)∈D̃R


p(p + 1)

2
|∇ f |

2
− p f


∂ f

∂u
+

1
2
∆g(u) f


.

Let now ρ(u, y) := dg(u)(x, y) and f̄ (ξ) := cos


πξ
2R


, so that f (u, y) = f̄ (ρ(u, y)) and

consequently

cp(R) = sup
(u,y)∈D̃R


p(p + 1)

2
f̄ ′(ρ)2

|∇ρ|
2
− p f̄ (ρ)


1
2

f̄ ′′(ρ) |∇ρ|
2

+ f̄ ′(ρ)


∂ρ

∂u
+

1
2
∆g(u)ρ


.

Since | f̄ | ≤ 1, | f̄ ′
| ≤ π/(2R), | f̄ ′′

| ≤ π2/(4R2) and |∇ρ| ≡ 1 (on D̃R), it follows that

cp(R) ≤
(p2

+ 2p)π2

8R2 +
pπ

2R
sup

(u,y)∈D̃R


sin

πρ

2R

 
∂ρ

∂u
+

1
2
∆g(u)ρ


.

By [17, Proposition 2] we have

∂ρ

∂u
+

1
2
∆g(u)ρ ≤

d − 1
2


k(r0) coth(k(r0)(ρ(u, y) ∧ r0)) + k(r0)

2(ρ(u, y) ∧ r0)


,

(3.12)

where k(r0) :=


C(x,r0)

d−1 . Therefore, using the inequality coth ξ ≤ 1 + 1/ξ valid for ξ > 0, we
obtain for ρ(u, y) ≤ r0,

pπ

2R
sin

πρ

2R

 
∂ρ

∂u
+

1
2
∆g(u)ρ


≤

pπ

2R
sin

πρ

2R

 d − 1
2


k(r0) coth(k(r0)ρ) + k(r0)

2ρ


≤
(d − 1)pπ2

8R2


k(r0)ρ + 1 + k(r0)

2ρ2


≤
(d − 1)pπ2

8R2


k(r0)r0 + 1 + k(r0)

2r2
0


,
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and for ρ(u, y) ≥ r0,

pπ

2R
sin

πρ

2R

 
∂ρ

∂u
+

1
2
∆g(u)ρ


≤

pπ

2R
sin

πρ

2R

 d − 1
2


k(r0) coth(k(r0)r0) + k(r0)

2r0


≤

(d − 1)pπ

4R


k(r0) +

1
r0

+ k(r0)
2r0


,

which completes the proof. �

Remark 3.3. The key ingredient of the proof above is estimate (3.12) for the radial drift of
Brownian motion, which should be seen as a parabolic version of the Laplacian comparison
theorem for evolving manifolds. In the case of a fixed metric with non-negative Ricci curvature
the Laplacian comparison theorem however provides the much better estimate

1
2
∆ρ ≤

d − 1
2ρ

. (3.13)

Since in many respects manifolds evolving under backward super Ricci flow behave in a similar
way as manifolds with a fixed metric of non-negative Ricci curvature (see e.g. [20] or [34, Section
6.5]), one might expect that an estimate similar to (3.13) also holds under backward super Ricci
flow. This, however, is not the case, as the following example shows.

Example 3.4 (Brownian Motion on Hamilton’s Cigar). Let M = R2 be equipped with the time-
dependent metric

g(t, x) :=
1

e−2t + |x |2
g eucl(x),

where g eucl denotes the standard metric on R2. As shown in [6, Section 4.3], the family (g(t))t∈R
is an eternal solution of the backward Ricci flow, called “Hamilton’s cigar” or “Witten’s black
hole”. By elementary calculations one obtains

ρ(t, x) = arcsinh(et
|x |),

and consequently

∂ρ

∂t
(t, x) =

1
1 + e−2t |x |−2

and

∆g(t)ρ(t, x) =
1

e2t |x |2


1 + e−2t |x |−2
.

It is now easy to see that for each t ∈ R the function |x | →


∂ρ
∂t +

1
2∆g(t)ρ


(t, x) is decreasing,

and hence bounded from below by

lim
|x |→∞


∂ρ

∂t
+

1
2
∆g(t)ρ


(t, x) = 1.

Consequently, a parabolic analogue to (3.13) cannot hold under backward super Ricci flow. The
drift part of the distance process ρ(t, X t ) of Brownian motion grows at least like t .
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We now consider the strictly increasing process (T (s))s∈[0,τR) given by

T (s) :=

 s

0

1

f 2(u, Xu)
du,

and let the process (σ (r))r≥0 be defined by

σ(r) :=


inf {s ∈ [0, τR) : T (s) ≥ r} if such an s exists,
τR otherwise.

Lemma 3.5. For all stopping times τ ≤ τR we have

E


f −p(τ, Xτ )


≤ E

ecp(R)T (τ )


.

Proof. Applying Itô’s formula to the process Yr := f −p(σ (r), Xσ(r)) (0 ≤ r < T (τR)) we ob-
tain

dYr
m
≤


∂ f −p

∂u
+

1
2
∆g(σ (r))( f −p)


(σ (r), Xσ(r))σ̇ (r) dr

= f −p(σ (r), Xσ(r))


f p+2


∂ f −p

∂u
+

1
2
∆g(σ (r))( f −p)


(σ (r), Xσ(r)) dr

≤ cp(R) f −p(σ (r), Xσ(r)) dr
= cp(R) Yr dr,

where the inequality (modulo differentials of local martingales) in the first step is due to the local
time at the cut-locus, see [17, Theorem 2]. Since Y0 = 1, it follows that

E


f −p(τ, Xτ )


= E

YT (τ )


≤ E


ecp(R)T (τ )


. �

Lemma 3.6. If cp(R) is finite, we have

lim
s↑τR

T (s) = +∞

almost surely.

Proof. Let τ n
:= inf{t ≥ 0 : f (t, X t ) ≤ 1/n}. The previous lemma with p = 1 and

τ = σ(t) ∧ τ n implies that for each t ≥ 0

nP

τ n

≤ σ(t)


≤ E


f −1(σ (t) ∧ τ n, Xσ(t)∧τ n )


≤ ec1(R)t

and consequently, since τ n
↑ τR ,

P {σ(t) = τR} = lim
n→∞

P

τ n

≤ σ(t)


= 0.

Since 
lim
s↑τR

T (s) < ∞


=


0≤t∈Q

{σ(t) = τR},

the claim follows. �

Lemma 3.7 (Cf. [33, Lemma 4.3] for the Case of a Fixed Metric). Assume that

∂g

∂t
≤ Ricg(t)
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and that there exists r0 < 0 such that C(x, r0) defined in (3.9) is finite. Then, for all t ≥ 0,

E
 t∧τR

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs

p
≤

C p

2cp(R)/p

p/2
1 − exp(−2cp(R)t/p)

p/2 |v|
p (3.14)

where C p is the constant in the Burkholder–Davis–Gundy inequality with exponent p.

Proof. Fix t > 0. As a consequence of the previous lemma we have

σ(r) = inf{s ∈ [0, τR) : T (s) ≥ r}.

Moreover, σ(r) ≤ r, σ (r) ≤ τR, T (σ (r)) = r and

σ̇ (r) = 1/Ṫ (σ (r)) = f 2(σ (r), Xσ(r))

for all r ≥ 0, and σ(T (s)) = s for all s ∈ [0, τR). Now let

h0(s) :=

 s∧σ(t)

0

1

f 2(r, Xr )
dr = T (s ∧ σ(t)) = T (s) ∧ t

and

h1(r) = 1 −
1 − exp(−2cp(R)r/p)

1 − exp(−2cp(R)t/p)
,

and define

ℓ(s) := h1(h0(s)) v.

Note that h1(0) = 1, h1(t) = 0 and ḣ1(r) < 0 for all r ≥ 0, so that |ḣ1(r)| dr is a probability
measure on [0, t].

Since ∂g
∂t ≤ Ric implies that |Θ0,s | ≤ 1, we obtain using the Burkholder–Davis–Gundy

inequality that

E
 t∧τR

0


//Riem

0,s

−1
Θ0,s ℓ̇(s) · d Bs

p
≤ C p E

 t∧τR

0

ℓ̇(s)2 ds

p/2


.

Moreover, since

ḣ0(s) =


f −2(s, Xs) if s < σ(t),
0 if s > σ(t),

we have

E

 t∧τR

0

ℓ̇(s)2 ds

p/2


= E

 t∧τR

0
|ḣ1(h0(s))|

2
|ḣ0(s)|

2 ds

p/2


|v|
p

= E


 σ(t)

0
|ḣ1(h0(s))|

2 1

f 4(s, Xs)
ds


p/2

 |v|
p

= E

 t

0
|ḣ1(h0(σ (r)))|2

1

f 4(σ (r), Xσ(r))
σ̇ (r) dr

p/2


|v|
p

= E

 t

0
|ḣ1(r)|2

1

f 2(σ (r), Xσ(r))
dr

p/2


|v|
p
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≤ E
 t

0
|ḣ1(r)|p/2+1 1

f p(σ (r), Xσ(r))
dr


|v|

p

=

 t

0
|ḣ1(r)|p/2+1 E


1

f p(σ (r), Xσ(r))


dr |v|

p

≤ |v|
p
 t

0
|ḣ1(r)|p/2+1 ecp(R)r dr,

where in the fifth step we used Jensen’s inequality with respect to the probability measure
|ḣ1(r)| dr on [0, t] (recall that p ≥ 2).

Since

ḣ1(r) = −
2cp(R)/p

1 − exp(−2cp(R)t/p)
e−2cp(R)r/p

and consequently

|ḣ1(r)|p/2+1 ecp(R)r
=


2cp(R)/p

1 − exp(−2cp(R)t/p)

p/2+1

e−2cp(R)r/p,

the claim follows. �

3.2. Estimation of the second factor

To estimate the second factor of (3.8) we start by estimating the inverse of the damped parallel
transport.

Lemma 3.8 (Cf. [33, Lemma 2.12]). For y ∈ N let κ(y) be the supremum of the sectional
curvatures of N at y. Moreover, for (s, x) ∈ R+ × M, let λ1(s, x) ≥ · · · ≥ λm(s, x) ≥ 0 be the
eigenvalues of the map du(s, x)∗du(s, x) : Tx M → Tx M. ThenΘ̃−1

0,t

 ≤ exp


1
2

 t

0
Ls ds


,

where

Ls :=


|du|

2(s, Xs) κ(u(s, Xs)) if κ(u(s, Xs)) ≥ 0
m

i=2

λi (s, Xs) κ(u(s, Xs)) if κ(u(s, Xs)) ≤ 0.

Proof. Let w ∈ TX̃0
N . Using the definitions of Θ̃0,t and κ we obtain on {κ(u(t, X t )) ≥ 0}

d

dt

Θ̃0,tw
2

= −

m
i=1


R̃

Θ̃0,tw, du(t, X t ) ξ i

t


du(t, X t ) ξ i

t , Θ̃0,tw


≥ −

m
i=1

κ(u(t, X t ))

Θ̃0,tw
2

du(t, X t ) ξ i
t

2
−


Θ̃0,tw, du(t, X t ) ξ i

t

2


≥ −

m
i=1

κ(u(t, X t ))
Θ̃0,tw

2
du(t, X t ) ξ i

t

2

= −κ(u(t, X t ))
Θ̃0,tw

2
|du|

2(t, X t )

= −L t
Θ̃0,tw

2
.
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On the set {κ(u(t, X t )) ≤ 0} we moreover use the fact that

m
i=1


Θ̃0,tw, du(t, X t )ξ

i
t

2
≤ λ1(t, X t ) |Θ̃0,tw|

2

and obtain

d

dt

Θ̃0,tw
2

≥ −

m
i=1

κ(u(t, X t ))

Θ̃0,tw
2

du(t, X t )ξ
i
t

2
−


Θ̃0,tw, du(t, X t )ξ

i
t

2


≥ −κ(u(t, X t ))
Θ̃0,tw

2
m

i=2

λi (t, X t )

= −L t
Θ̃0,tw

2

as well. �

Lemma 3.9 (Cf. [33, Lemma 4.5(1)]). For any stopping time τ we have

E

|Adef(X̃)τ |

q


≤ Cq E
 τ

0
|du|

2(s, Xs)

× exp
 s

0
|du|

2(r, Xr ) κ+(u(r, Xr )) dr


ds

q/2


,

where κ+(y) := max(κ(y), 0).

Proof. By the Burkholder–Davis–Gundy inequality we have

E

|Adef(X̃)τ |

q


≤ CqE

 τ

0

Θ̃−1
0,s du(s, Xs)

2ds

q/2


,

and by the previous lemmaΘ̃−1
0,s

2
≤ exp

 s

0
|du|

2(r, Xr ) κ+(u(r, Xr )) dr


. �

Lemma 3.10 (Cf. [33, Lemma 4.5(2)]). If N is simply connected and has non-positive curvature,
then for any bounded stopping time τ

E

|Adef(X̃)τ |

2


≤ E

distN


u(τ, Xτ ), u(0, x)

2

.

Proof. Let ρ(z) := distN (z, u(0, x)). Using the chain rule for the tension field (see e.g.
[12, Lemma 8.7.2]) and the Hessian comparison theorem (see e.g. [11, Satz 7.236]) we obtain

−
∂(ρ2

◦ u)

∂t
+

1
2
∆(ρ2

◦ u) = −∇(ρ2)
∂u

∂t
+

1
2

tr


Hess(ρ2) ◦ (du ⊗ du)


+
1
2
∇(ρ2)1u

≥ |du|
2,

and therefore, using the Burkholder–Davis–Gundy inequality and Itô’s formula

E

|Adef(X̃)τ |

2


≤ E
 τ

0

Θ̃−1
0,s du(s, Xs)

2ds
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≤ E
 τ

0
|du|

2(s, Xs) ds


≤ E

 τ

0


−

∂(ρ2
◦ u)

∂t
+

1
2
∆(ρ2

◦ u)


(s, Xs) ds


= E


ρ2(u(τ, Xτ ))


,

as claimed. �

Lemma 3.11 (Cf. [33, Lemma 4.6]). Assume that N has non-positive curvature and let

K (t, x) :=
λ1(t, x)

m
i=2

λi (t, x)

(with the convention 0/0 := 0). Then for any stopping time τ

E

|Adef(X̃)τ |

q


≤ CqE
 τ

0
|du|

2(s, Xs)

× exp
 s

0
|du|

2(r, Xr )
κ(u(s, Xs))

K (s, Xs)
dr


ds

q/2


.

Proof. This follows immediately from the Burkholder–Davis–Gundy inequality, Lemma 3.8 and
the definition of K . �

Corollary 3.12. Suppose that

κ(u(s, x))

K (s, x)
≤ −b < 0

for all s ≥ 0 and all x ∈ M. Then we have

E

|Adef(X̃)τ |

2


≤
1
b

E


1 − exp


−b
 τ

0
|du|

2(r, Xr ) dr


≤

1
b
.

Proof. Since
d

ds
exp


−b

 s

0
|du|

2(r, Xr ) dr


= −b |du|

2(s, Xs) exp


−b
 s

0
|du|

2(r, Xr ) dr


we have τ

0
|du|

2(s, Xs) exp
 s

0
|du|

2(r, Xr )
κ(u(s, Xs))

K (s, Xs)
dr


ds

≤
1
b

−
1
b

exp


−b
 τ

0
|du|

2(r, Xr ) dr


. �

4. Liouville theorems

In this section we derive Liouville type results for space–time harmonic mappings,
respectively ancient solutions to the harmonic map heat flow. We work out details in three typical
cases: Mappings of sub-square-root growth, of bounded dilatation, and of small image. From now
on we suppose that M is connected.
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4.1. Space–time harmonic maps of sub-square-root growth

We say that a function u : R+ × M → N is of sub-square-root growth if for each x ∈ M
there exists a function ϕ : R+ → R+ with

ϕ(r)/
√

r → 0 (4.15)

as r → ∞ such that for all t ≥ 0 and all z ∈ M

distN (u(t, z), u(0, x)) ≤ ϕ(dg(t)(z, x)). (4.16)

Theorem 4.1. Suppose that M is connected,

∂g

∂t
≤ Ricg(t)

(backward super Ricci flow), that for each x ∈ M there exists r0 > 0 such that the constant
C(x, r0) defined in (3.9) is finite, and that N is simply-connected and has non-positive sectional
curvatures. Then every space–time harmonic mapping u : R+ × M → N of sub-square-root
growth is constant.

Proof. By Lemmas 3.7 and 3.10 and (4.16) we have for each R > 0

|du(0, x)v|
2

≤ C2 c2(R) |v|
2 E


distN (u(τR, XτR ), u(0, x))2


≤ C2 c2(R) |v|

2 E

ϕ2(dg(τR)(XτR , x))


= C2 c2(R) |v|

2 ϕ(R)2.

The claim now follows by letting R → ∞, taking into account Lemma 3.1 and (4.15). �

Analogously, a mapping u : (−∞, T ] × M → N is said to be of sub-square-root growth if
(4.16) holds for all (t, z) ∈ (−∞, T ] × M .

Corollary 4.2. Suppose that M is connected and that

∂g

∂t
≥ −Ricg(t) on (−∞, T ] × M

(forward super Ricci flow). Assume that for each x ∈ M there exists r0 > 0 such that
sup


|Ric(t, y)| : t ∈ (−∞, T ], dg(t)(x, y) ≤ r0


(the analogue of the constant C(x, r0) defined

in (3.9)) is finite, and that N is simply-connected and has non-positive sectional curvatures. Then
any ancient solution of sub-square-root growth u : (−∞, T ] × M → N to the harmonic map
heat flow is constant.

Remark 4.3. Theorem 4.1 should be compared with S.-Y. Cheng’s Liouville theorem [4] which
gives an analogous statement for harmonic maps of sublinear growth when M is equipped with
a fixed metric of non-negative Ricci curvature, see [33, Corollary 5.10] and [30] for stochastic
proofs. All these proofs depend crucially on the Laplacian comparison theorem. In the case of
backward super Ricci flow the stronger assumption of sub-square-root growth is needed because
estimate (3.10) is weaker than estimate (3.11) which holds in the case of a fixed metric with
non-negative Ricci curvature, see the discussion in Remark 3.2.
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4.2. Space–time harmonic maps of bounded dilatation

Let u : R+ × M → N be a space–time harmonic map. We say that u is of bounded dilatation
if there is a real constant C such that

λ1(t, x) ≤ C
m

i=2

λi (t, x) (4.17)

for all (t, x) ∈ R+ × M . Similarly, an ancient solution u : (−∞, T ] × M → N to the harmonic
map heat flow is said to be of bounded dilatation if (4.17) holds for all (t, x) ∈ (−∞, T ] × M .

Theorem 4.4 (Cf. [33, Corollary 5.15] for Harmonic Maps in the Case of a Fixed
Metric). Suppose that M is connected,

∂g

∂t
≤ Ricg(t)

(backward super Ricci flow), that for each x ∈ M there exists r0 > 0 such that C(x, r0) is finite,
and that N has uniformly strictly negative sectional curvatures. Then any space–time harmonic
map u : R+ × M → N of bounded dilatation is constant.

Proof. The assumptions on the curvature of N and the dilatation of u imply that there is a
constant b > 0 such that

κ(u(t, x))

K 2(t, x)
≤ −b < 0

for all t ≥ 0 and all x ∈ M . Lemma 3.7 and Corollary 3.12 then imply that

|du(0, x)v|
2

≤
C2c(R)|v|

2

b(1 − exp(−c(R)t))2 .

Letting first t → ∞ and then R → ∞, one obtains that du(0, x) = 0. �

Corollary 4.5. Suppose that M is connected,

∂g

∂t
≥ −Ricg(t) on (−∞, T ] × M

(forward super Ricci flow), that for each x ∈ M there exists r0 > 0 such that sup

|Ric(t, y)| :

t ∈ (−∞, T ], dg(t)(x, y) ≤ r0


is finite, and that N has uniformly strictly negative sectional
curvatures. Then any ancient solution of bounded dilatation u : (−∞, T ] × M → N to the
harmonic map heat flow is constant.

4.3. Space–time harmonic maps of small image

Let (N , h) be a Riemannian manifold and λ > 0. Recall that an N -valued martingale Y is
said to have exponential moments of order λ if

E


exp

λ


∞

0
h(dYs, dYs)


< ∞.

Remark 4.6. Let (N , h) be a Riemannian manifold, B ⊂ N an open subset and λ > 0. Suppose
that there is a real-valued C2 function f on B satisfying c1 ≤ f ≤ c2 for some positive constants



3550 H. Guo et al. / Stochastic Processes and their Applications 124 (2014) 3535–3552

c1, c2 such that

∇d f + 2λ f ≤ 0. (4.18)

Then every N -valued martingale taking its values in B has exponential moments of order λ,
see [28, Proposition 2.1.2], [33, Remark 5.2].

Definition 4.7. Let (N , h) be a Riemannian manifold, y ∈ N a point, and B = B(y, r) an open
geodesic ball about y of radius r . Such a geodesic ball is said to be regular if it does not meet
the cut locus of its center y and if κ < (π/2r)2 where κ denotes an upper bound of the sectional
curvatures of N on B(y, r).

Example 4.8. Suppose that B(y, r) is a relatively compact regular geodesic ball in N such that
r < π/(2

√
κ) where κ > 0 is an upper bound of the sectional curvatures of N on B(y, r). Let

f = cos
√

κq d(y, ·)


where q > 1 is chosen in such a way that 0 < c1 ≤ f holds on B(y, r)

for some c1 > 0. Then

∇d f + κq f ≤ 0,

which by Remark 4.6 means that any B(y, r)-valued martingale has exponential moments of
order κq/2.

Theorem 4.9 (Cf. [33, Corollary 5.5] for Harmonic Maps in the Case of a Fixed
Metric). Suppose that M is connected and

∂g

∂t
≤ Ricg(t)

(backward super Ricci flow) and that for each x ∈ M there exists r0 > 0 such that C(x, r0)

is finite. Let B be a relatively compact regular geodesic ball in N of radius r such that
r < π/(2

√
κ) where κ > 0 is an upper bound of the sectional curvatures of N on B. Then

any space–time harmonic map u : R+ × M → N taking its values in B is constant.

Proof. Let q ∈ (1, 2] be as in Example 4.8 and p be such that 1/p + 1/q = 1. Since by
Lemma 3.7 the L p-norm term on the right-hand side of (3.8) tends to 0 as t → ∞ and then
R → ∞, it is sufficient to show that E


|Adef(X̃)t∧τR |

q


is bounded uniformly in t and R. By
Lemma 3.9 we have

E

|Adef(X̃)t∧τR |

q


≤ Cq E

 t∧τR

0
ρ(s) exp

 s

0
ρ(r) κ+(X̃r ) dr


ds

q/2


,

where ρ(s) := |du|
2(s, Xs). Since by assumption κ+(X̃r ) ≤ κ for a constant κ > 0, and using

ρ(s) exp

κ

 s

0
ρ(r) dr


=

1
κ

d

ds
exp


κ

 s

0
ρ(r) dr


,

we finally obtain

E

|Adef(X̃)t∧τR |

q


≤ CqE


1
κ


exp


κ

 t∧τR

0
|du|

2(r, Xr ) dr


− 1

q/2


≤
Cq

κq/2 E


exp


κ


∞

0
|du|

2(r, Xr ) dr


− 1

q/2


.



H. Guo et al. / Stochastic Processes and their Applications 124 (2014) 3535–3552 3551

The last term is finite since by Example 4.8 the martingale X̃ t = u(t, X t ) has exponential
moments of order κq/2, which is equivalent to say that

E


exp


κq

2


∞

0
|du|

2(r, Xr ) dr


< ∞. �

Corollary 4.10. Suppose that M is connected and

∂g

∂t
≥ −Ricg(t) on (−∞, T ] × M

(forward super Ricci flow) and that for each x ∈ M there exists r0 > 0 such that
sup


|Ric(t, y)| : t ∈ (−∞, T ], dg(t)(x, y) ≤ r0


is finite. Let B be a relatively compact regular

geodesic ball in N of radius r such that r < π/(2
√

κ) where κ > 0 is an upper bound of
the sectional curvatures of N on B. Then any ancient solution u : (−∞, T ] × M → N to the
harmonic map heat flow taking values in B is constant.
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[23] R. Müller, Ricci flow coupled with harmonic map flow, Ann. Sci. Éc. Norm. Supér. 45 (2012) 101–142.
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