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Abstract We introduce a new entropy functional for nonnegative solutions of the heat
equation on a manifold with time-dependent Riemannian metric. Under certain integral as-
sumptions, we show that this entropy is non-decreasing, andmoreover convex if the metric
evolves under super Ricci flow (which includes Ricci flow and fixed metrics with nonnega-
tive Ricci curvature). As applications, we classify nonnegative ancient solutions to the heat
equation according to their entropies. In particular, we show that a nonnegative ancient so-
lution whose entropy grows sublinearly on a manifold evolving under super Ricci flow must
be constant. The assumption is sharp in the sense that there do exist nonconstant positive
eternal solutions whose entropies grow exactly linearly intime. Some other results are also
obtained.

Keywords Ricci flow · Brownian motion· Entropy

Mathematics Subject Classification (2010)53C44· 58J65

1 Introduction

Let M be a smooth manifold equipped with a family(g(t))t≥0 of Riemannian metrics de-
pending smoothly ont, and letu be a nonnegative solution of the backward heat equation

∂u
∂ t

+∆g(t)u= 0. (1.1)
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The classical Boltzmann-Shannon entropy functional is defined by

Ent(t) =−
∫

M
u(t,y) logu(t,y)volg(t)(dy)

(provided that the integral exists). If the metric does not depend ont, then, under certain rea-
sonable assumptions onu (for instance ifu grows slowly enough so that integration by parts
can be justified) the Boltzmann-Shannon entropy is non-increasing, and moreover concave
if Ric ≥ 0. In the case of a compact manifold Lim and Luo [21] recently studied asymptotic
estimates on the time derivative of Ent. However, the classical Boltzmann-Shannon entropy
has two important drawbacks:

1. It need not be monotone if the metric depends ont.
2. On noncompact manifolds it is finite only for a relatively narrow class of functions. Even

if u is a positive constant6= 1 onRn (equipped with the standard metric), its Boltzmann-
Shannon entropy equals±∞.

In this paper we introduce a new entropy functional of Boltzmann-Shannon type which
has much better chances to be finite and which is monotone evenif the metric depends ont.
We fix a pointx∈ M and letp(t,x,y) be the heat kernel of the adjoint heat equation

∂ p
∂ t

= ∆g(t)p−
1
2

tr
∂g
∂ t

p.

In other words,p(t,x, ·) is the density ofXt with respect to volg(t),

p(t,x,y)volg(t)(dy) = P{Xt ∈ dy},

where(Xt)t≥0 is a(g(t))t≥0-Brownian motion started atx and speeded up by the factor
√

2,
see [1,11,19]. We assume that

∫

M p(t,x,y)volg(t)(dy) = 1 for all t > 0, in other words that
Brownian motion onM does not explode. By a result of Kuwada and the second author [19]
this condition is satisfied, in particular, if(M,g(t)) is complete for allt ≥ 0 and the metric
evolves under backward super Ricci flow, i.e.

∂g
∂ t

≤ 2Ric. (1.2)

We define the entropy ofu with respect to the heat kernel measure

p(t,x,y)volg(t)(dy)

by

E (t) : = E [(ulogu)(t,Xt)]

=

∫

M
(ulogu)(t,y)p(t,x,y)volg(t)(dy). (1.3)

(From a physical point of view it would be more natural to call−E entropy. Our sign con-
vention has the advantage of avoiding unnecessary minus signs.) Note that in contrast to the
classical Boltzmann-Shannon entropy this entropy is well-defined for all non-negative solu-
tionsu (because the heat kernel has total mass 1 and the functionu 7→ ulogu is bounded from
below). Moreover, thanks to the fast decay of the heat kernelour entropy is finite in most
cases of interest. In the next section we will show that undercertain integral assumptions
E (t) is non-decreasing, and moreover convex in the case of super Ricci flow.
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Remark 1Monotonicity formulas, or the search for quantities which are monotonic along a
geometric flow, play a key role in analysis and geometry, e.g.[9,12]. They are a powerful
tools to control geometric evolutions. In 2002, Perelman [26] introduced two geometric
quantities, now called Perelman’s entropy and Perelman’s reduced volume, which are scale-
invariant, non-decreasing under Ricci flow, and allow to control the geometry enough to
prevent collapsing. Our results on the evolution ofE (t) are clearly inspired by Perelman’s
F -functional.

Remark 2If we apply the substitutionτ :=−t, then (1.1) and (1.2) become

∂u
∂ τ

= ∆g(−τ)u

and
∂g
∂ τ

≥−2Ric. (1.4)

In other words, with respect to the new time variableτ , the functionu is a solution to the
forward heat equation andg evolves according to super Ricci flow. In particular, solutions
of (1.1) that are defined for allt ≥ 0 are the same as ancient solutions of the heat equation.

The most important examples of super Ricci flow are of course the Ricci flow itself [6–8,
23,29], where (1.4) holds with equality, and fixed metrics with nonnegative Ricci curvature.
Other interesting examples are the extended Ricci flow introduced by List [22] and Ricci
flow coupled with harmonic map flow, as studied by Müller [24].

Ancient solutions to the heat equation are generalizationsof harmonic functions. Yau’s
Liouville theorem for positive harmonic functions states that any positive harmonic function
on a noncompact manifold with nonnegative Ricci curvature is constant [31]. However, as
we can see from the exampleu(τ ,y) = eτ+y, Yau’s Liouville theorem cannot be generalized
to positive ancient solutions without any further assumptions.

Starting from this observation, Souplet and Zhang [28, Theorem 1.2] proved the follow-
ing Liouville type result for positive ancient solutions: Let M be a complete, noncompact
manifold with a fixed metric of nonnegative Ricci curvature.If u is a positive ancient solu-
tion to the heat equation such that logu(τ ,y) = o(d(y)+

√

|τ |) near infinity, thenu must be
constant.

This result is a direct consequence of a local Li-Yau gradient estimate of Hamilton type
for positive solutions of the heat equation, see [28, Theorem 1.1]. It is meanwhile well
understood how to establish such estimates by means of Stochastic Analysis using sub-
martingale arguments, see Arnaudon and Thalmaier [2, Section 6]. These arguments can be
generalized to positive solutions of the heat equation under Ricci flow, see L.-J. Cheng [4,
Theorem 2.4], and allow to generalize Souplet and Zheng’s Liouville result to manifolds
whose metric evolves under super Ricci flow.

Souplet and Zhang’s result for a static metric has been extended to ancient solutions of
the nonlinear heat equation taking values in non-positively curved manifolds [30], as well as
to certain types of fast diffusion equations on manifold of non-negative Ricci curvature [33].
All these results depend on sharp gradient estimates for thesolutions, along with pointwise
growth conditions.

Besides the pointwise assumption of Souplet and Zhang, it seems to be desirable to
investigate integral conditions. As an application of our entropy formula, among other results
we prove the following: Assume that∂g

∂ t ≤ 2Ric, and letu be a nonnegative solution of (1.1).
If its entropyE (t) grows sublinearly, i.e. limt→∞ E (t)/t = 0, thenu is constant.
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Our assumption thatE (t) grows sublinearly is an integral one. The result is sharp in
the sense that there do exist nonconstant ancient solutionswhose entropies grow linearly,
for instanceu(t,y) = ey−t whose entropy with parameterx = 0 satisfiesE (t) = t. We also
discuss the special case whenE (t) is a linear function oft. In this case under the assumption
that ∂g

∂ t ≤ 2Ric, we show thatu is the product of a function depending only ont and a
function depending only ony.

Our methods come from stochastic analysis. Instead of applying classical integration by
parts formulas (which are usually hard to justify on non-compact manifolds), all our calcula-
tions rely on Itô’s formula which does not require extra conditions. We need conditions only
to assure that our local submartingales are true submartingales. The wanted inequalities are
then obtained by taking expectations of the submartingales.

Probabilistic approaches to flows of time changing metrics have been used recently by
several authors. For instance, Kuwada [18] studied couplings of g(t)-Brownian motions,
see also [20]. Coulibaly-Pasquier [10] applied the techniques to mean curvature flows.
Philipowski [27] constructed stochastic particle approximations for the normalized Ricci
flow on surfaces and for the non-normalized Yamabe flow on manifolds of arbitrary dimen-
sion. Neel and Popescu [25] developed a stochastic target approach to Ricci flow on surfaces.
The authors [13,14] developed a theory of martingales on manifolds with time-dependent
connection and applied this theory to the study of the harmonic map heat flow on mani-
folds with time-dependent Riemannian metric. Chen, Cheng and Mao [3] recently derived
a stochastic representation formula for solutions of heat-type equations on tensor bundles
over manifolds with time-dependent Riemannian metric.

2 Monotonicity and convexity of the entropy

In this section we derive formulas for the first two variations of the entropy. We shall see that
the entropyE (t), under certain assumptions, is non-decreasing. MoreoverE (t) is convex if
∂g
∂ t ≤ 2Ric.

Theorem 1 Let u be a solution of the backward heat equation(1.1). Suppose that for t> 0,
∫

M
|∇(ulogu)|2(t,y) p(t,x,y)volg(t)(dy)< ∞ (2.5)

and
∫

M

∣

∣

∣

∣

∇
( |∇u|2

u

)∣

∣

∣

∣

2

(t,y) p(t,x,y)volg(t)(dy)< ∞. (2.6)

Then as long asE (t) is finite its first derivative is given by

E
′(t) =

∫

M

|∇u|2
u

(t,y) p(t,x,y)volg(t)(dy), (2.7)

and its second derivative by

E
′′(t) =

∫

M

(

2u

(

|∇∇ logu|2+
(

Ric−1
2

∂g
∂ t

)

(∇ logu,∇ logu)

))

(t,y)

p(t,x,y) volg(t)(dy). (2.8)

For the proof we need the following lemma:
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Lemma 1 If u solves the backward heat equation(1.1), we have
(

∂
∂ t

+∆g(t)

)

(ulogu) =
|∇u|2

u
(2.9)

and
(

∂
∂ t

+∆g(t)

)( |∇u|2
u

)

= u

(

2|∇∇ logu|2+
(

2Ric−∂g
∂ t

)

(∇ logu,∇ logu)

)

. (2.10)

Proof The first equality is straight-forward. The second one is well-known in the case of
a fixed Riemannian metric (e.g. [15]; for a proof see [21, Proposition 2.1]). The additional
term− ∂g

∂ t (∇ logu,∇ logu) appearing here comes from the time-derivative of|∇u|2 via the
formula

∂
∂ t

(

|∇ f |2
)

=−∂g
∂ t

(∇ f ,∇ f ), f ∈C∞(M). (2.11)

Note that not only| · |, but also∇ depends ont, which is the reason for the minus sign in
formula (2.11). ⊓⊔

Using Lemma 1 it is easy to give a formal proof of Theorem 1 via integration by parts.
However, sinceM is not assumed to be compact, the feasibility of integrationby parts is
difficult to justify, and therefore we present a proof based on stochastic analysis. In this
proof the assumptions (2.5) and (2.6) are used to show that certain local martingales are
indeed true martingales. One should note that thanks to the exponential decay of the heat
kernel (see e.g. [5] for the case of a fixed metric and [32, Section 6.5] for the case of Ricci
flow) the conditions (2.5) and (2.6) are satisfied in most cases of interest.

Remark 3In terms of a(g(t))t≥0-Brownian motion(Xt)t≥0 started atx, conditions (2.5) and
(2.6) read as

E
[

|∇(ulogu)|2(t,Xt)
]

< ∞, (2.12)

E

[

∣

∣

∣

∣

∇
( |∇u|2

u

)∣

∣

∣

∣

2

(t,Xt)

]

< ∞, (2.13)

and imply that

∫ t

0
E
[

|∇(ulogu)|2(s,Xs)
]

ds< ∞ and
∫ t

0
E

[

∣

∣

∣

∣

∇
( |∇u|2

u

)∣

∣

∣

∣

2

(s,Xs)

]

ds< ∞ (2.14)

where we simply used that the left-hand sides of (2.12) and (2.13) are locally bounded in the
time variable. The last two conditions are standard conditions to assure that the martingale
parts of the processes

(ulogu)(s,Xs),
|∇u|2

u
(s,Xs), 0≤ s≤ t, (2.15)

are true martingales (evenL2-martingales). The condition, analogous to (2.12) resp. (2.13),
guaranteeing that the local martingale

u(s,Xs), 0≤ s≤ t,

is a trueL2-martingale reads as

E
[

|∇u|2(t,Xt)
]

< ∞. (2.16)
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In many cases it may be straight-forward to verify directly that the martingale parts of
(2.15) are true martingales (for instance, if estimates for|∇u|2/u are available [4, Theo-
rem 2.4], or if sup[0,T]×M u≤CT ). Then the technical conditions (2.5) and (2.6), resp. (2.12)
and (2.13), are dispensable.

Proof (of Theorem1) Denote dimM = n and letU be a horizontal lift of the(g(t)t≥0-
Brownian motionX andZ the corresponding anti-development ofX. (Note thatZ is anRn-
valued Brownian motion speeded up by the factor

√
2). By Itô’s formula (see [19, Lemma 1])

d(ulogu)(t,Xt) =

(

∂
∂ t

+∆g(t)

)

(ulogu)(t,Xt)dt+dMt , (2.17)

where thanks to (2.5) the local martingale

Mt :=
n

∑
i=1

∫ t

0
〈∇(ulogu)(s,Xs),(Usei)dZi

s〉

is a true martingale (as stochastic integral of a square-integrable process, see e.g. [17,
Chapt. 3, Def. 2.9]). Combining (2.17) and (2.9) we obtain

E [(ulogu)(t,Xt)] = (ulogu)(0,x)+E

[

∫ t

0

|∇u|2
u

(s,Xs)ds

]

,

or in other words,

E (t) = E (0)+
∫ t

0
E

[ |∇u|2
u

(s,Xs)

]

ds,

and hence

E
′(t) = E

[ |∇u|2
u

(t,Xt)

]

=

∫

M

|∇u(t,y)|2
u(t,y)

p(t,x,y)volg(t)(dy),

as claimed.
The formula for the second derivative ofE can be proved in the same way, using (2.6)

and (2.10). ⊓⊔

3 Gradient-entropy estimates

In this section we give gradient estimates for positive solutions of the backward heat equa-
tion (1.1) in terms of their entropy.

Proposition 1 Let u: [0,T]×M →R+ be a positive solution of the backward heat equation
(1.1) satisfying the conditions(2.12), (2.13)and (2.16) for t = T. Assume that∂g

∂ t ≤ 2Ric.
Then, for each t∈ ]0,T] and x∈ M,

t

∣

∣

∣

∣

∇u
u

∣

∣

∣

∣

2

(0,x)≤ E

[

u(t,Xt)

u(0,x)
log

u(t,Xt)

u(0,x)

]

(3.18)

where(Xs) is a (g(s)s≥0-Brownian motion starting at x. In other words, if u is normalized
such that u(0,x) = 1, then

|∇u|2(0,x)≤ E (t)
t

. (3.19)
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Proof Consider the process

Ns := (t −s)
|∇u|2

u
(s,Xs)+

(

ulogu
)

(s,Xs), 0≤ s≤ t, (3.20)

which is easily seen to be a submartingale under the given conditions. This enables us to
exploit the inequalityE[N0]≤ E[Nt] which gives

t
|∇u|2

u
(0,x)+

(

ulogu
)

(0,x)≤ E
[(

ulogu
)

(t,Xt)
]

. (3.21)

Combining this with the fact thatu(0,x) = E[u(t,Xt)] which follows from the martingale
property of(u(s,Xs))0≤s≤t , the claimed inequality is obtained. ⊓⊔

Corollary 1 Let u be a positive solution of the backward heat equation(1.1)on [0,T]×M.
We keep the assumptions of Theorem 1. Let x∈ M and0< t ≤ T.

1. Then, for anyδ > 0,
∣

∣

∣

∣

∇u
u

∣

∣

∣

∣

(0,x)≤ δ
2t

+
1

2δ
E

[

u(t,Xt)

u(0,x)
log

u(t,Xt)

u(0,x)

]

(3.22)

2. If mt := sup[0,t]×M u, then

|∇u|
u

(0,x)≤ 1

t1/2

√

log
mt

u(0,x)
. (3.23)

Note that estimate (3.23) is Hamilton’s gradient estimate in global form. Estimate (3.18)
shows that the entropy

E [(vlogv)(t,Xt)] = E

[

u(t,Xt)

u(0,x)
log

u(t,Xt)

u(0,x)

]

of a (normalized) positive solutionv(t, ·) := u(t, ·)
u(0,x) to the backward heat equation grows at

least linearly int, and trivially at most as log(mt/u(0,x)) with mt = supu|[0, t]×M.

4 Entropy and linear growth

We now investigate positive solutions of the backward heat equation (1.1) according to their
entropy. Recall that by Remark 2 any global solution to the backward equation (1.1) gives
rise to an ancient solution of the forward heat equation.

Theorem 2 Let u:R+×M →R+ be a positive solution of the backward heat equation(1.1)
satisfying(2.5)and(2.6) for all t > 0. If ∂g

∂ t ≤ 2Ricand if the entropy of u grows sublinearly,
i.e. limt→∞ E (t)/t = 0, then u is constant.

Proof SinceE is convex, the condition limt→∞
E (t)

t = 0 implies thatE is constant. Therefore

E
′(t) = E

[ |∇u|2
u

(t,Xt)

]

≡ 0,

so thatu is constant. ⊓⊔
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Remark 4Note that Theorem 2 also immediately follows from the results of the last sec-
tion. Indeed, if the conditions (2.5) and (2.6), or equivalently, the conditions (2.12), (2.13)
hold for all t > 0, we have that (3.20) is a true submartingale. RewritingE[N0] ≤ E[Nt ],
resp.E[Nt/2]≤ E[Nt ], we have

|∇u|2
u

(0,x)+
1
t

(

ulogu
)

(0,x)≤ 1
t
E
[(

ulogu
)

(t,Xt)
]

, resp.,

E

[ |∇u|2
u

(t/2,Xt/2)

]

+
2
t
E
[(

ulogu
)

(t/2,Xt/2)
]

≤ 2
t
E
[(

ulogu
)

(t,Xt)
]

,

and it suffices to take the limit ast → ∞.

Remark 5Let ∂g
∂ t ≤ 2Ric. For a positive solutionu: R+×M → R+ of the backward heat

equation (1.1) we may consider the constant

θ := lim
t→∞

E
′(t)

which is well-defined by the monotonicity resulting from formula (2.8). The value ofθ may
be zero, a positive constant or+∞. Theorem 2 can then be rephrased to the statement that a
positive solutionu : R+×M →R+ of the backward heat equation (1.1), satisfying (2.5) and
(2.6) for allt ≥ 0, is trivial if and only ifθ = 0.

Theorem 3 Let u: [0,T]×M → R+ be a positive solution of the backward heat equation
(1.1)satisfying(2.5)and (2.6) for t = T. If ∂g

∂ t ≤ 2RicandE (t) is an exactly linear function
of t, then u has the form

u(t,y) = ψ(y)φ(t) (4.24)

for some functionsψ andφ . Moreover,ψ andφ satisfy the differential equation

∂ φ/∂ t
φ

=−∆ψ
ψ

. (4.25)

Proof SinceE (t) is exactly linear, we have

E
′′(t) = E

[

2u

(

|∇∇ logu|2+
(

Ric−1
2

∂g
∂ t

)

(∇ logu,∇ logu)

)

(t,Xt)

]

=
∫

M
2u

(

|∇∇ logu|2+
(

Ric−1
2

∂g
∂ t

)

(∇ logu,∇ logu)

)

pdy≡ 0.

In particular,∇∇ logu≡ 0 implies that

∇
(

|∇ logu|2
)

= 2∇∇ logu(∇ logu, ·) = 0

so that|∇ logu| is a function oft only. Since

0= tr(∇∇ logu) = ∆ logu=
∆u
u

− |∇u|2
u2 =−∂ logu

∂ t
−|∇ logu|2,

we have
∂ logu

∂ t
=−|∇ logu|2
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and hence

logu(t,y)− logu(0,y) =−
∫ t

0
|∇ logu|2(s)ds.

It follows that

u(t,y) = u(0,y)exp

(

−
∫ t

0
|∇ logu|2(s)ds

)

,

and this proves Eq. (4.24). Then Eq. (4.25) follows immediately from (4.24) and the back-
ward heat equation foru. ⊓⊔

We also have the following simple observation:

Proposition 2 If 2Ric− ∂g
∂ t is positive definite everywhere, then no nonconstant positive

solution to the backward heat equation satisfying(2.5)and (2.6)can have linear entropy.

Proof If E (t) is linear, we haveE ′′(t)≡ 0 which implies that
(

2Ric−∂g
∂ t

)

(∇ logu,∇ logu)≡ 0,

as the heat kernelp(t,x,y) is strictly positive everywhere. Since 2Ric− ∂g
∂ t is strictly positive

everywhere, we get∇ logu≡ 0. ⊓⊔

Example 1Let u(t,y) = ey−t onR equipped with the standard metric. Choosex= 0 in the
heat kernel, so thatp(t,x,y) = e−y2/4t/

√
4πt. We first check that the assumptions (2.5) and

(2.6) are satisfied: By elementary and straightforward calculations, for everyt > 0 we have
∫

R

|∇(ulogu)|2(t,y)p(t,x,y)dy= (9t2+8t +1)e2t < ∞

and
∫

R

∣

∣

∣

∣

∇
( |∇u|2

u

)∣

∣

∣

∣

2

(t,y)p(t,x,y)dy= e2t < ∞.

An easy calculation shows that

E (t) =
1√
4πt

∫

R

(−t +y)e−
y2
4t +y−tdy

=
1√
4πt

∫

R

((y−2t)+ t)e−
1
4t (y−2t)2dy= t,

so thatE grows exactly linearly.
More generally, for any constantsa> 0 andb, the functionu(t,y)= aeby−b2t is a positive

solution of the backward heat equation, and its entropyE (t) = a(loga+b2t) grows exactly
linearly. Similar examples can be constructed onR

n.

Example 2Let M = R
3\{0} be equipped with the standard metric. The function

u(x) = ‖x‖−1

is harmonic onM, and thusu(t,x)≡ u(x) provides trivially a stationary solution of the back-
ward heat equation (1.1) with respect to the static Euclidean metric. LetX be a Brownian
motion onR3 (with generator∆ ) starting ate1 = (1,0,0). Since

∇u(x) =− x
‖x‖3 and

|∇u|2
u

(x) =
1

‖x‖3 ,
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it is easy to check that

E (t) = E [(ulogu)(Xt)] =− 1

(4πt)3/2

∫

R3\{0}

log‖x‖
‖x‖ exp

(

−‖x−e1‖2

4t

)

dx,

which is clearly bounded as function oft, whereas

E

[ |∇u|2
u

(Xt)

]

=
1

(4πt)3/2

∫

R3\{0}

1
‖x‖3 exp

(

−‖x−e1‖2

4t

)

dx=+∞.

This shows that Theorem 1 fails in general without assumptions onu. Since the entropyE (t)
of u grows sublinearly, it also shows that Theorem 2 fails without extra assumptions, like
the conditions (2.5) and (2.6).

5 Monotonicity and convexity of local entropy

The results presented in the previous sections depend on thetechnical conditions (2.5) and
(2.6) which have been used to assure that certain local martingales are true martingales. As
indicated, due to the fast decay of the heat kernel on complete non-compact manifolds, the
required conditions are rather weak. In this section we describe some ideas how stochastic
analysis can be used to localize the entropy.

Definition 1 For a relatively compact domainD ⊂ M we define local entropies as follows:

ED(t) := E [(ulogu)(t ∧ τD,Xt∧τD)] and ED := E [(ulogu)(τD,XτD)] ,

whereτD is the first exit time ofX from D (with the conventionτD := 0 if X does not start
in D).

Note that since(Xt)t≥0 is an elliptic diffusion and sinceD is relatively compact, the
stopping timeτD is finite almost surely. By Fatou’s lemma we trivially have

ED ≤ lim
t→∞

ED(t).

Remark 6As before letX be a(g(t))t≥0-Brownian motionX. Itô’s formula, along with
Eq. (2.9), implies

E [(ulogu)(t ∧ τD,Xt∧τD)] = (ulogu)(0,x)+E

[

∫ t∧τD

0

|∇u|2
u

(s,Xs)ds

]

,

in other words,

ED(t) = ED(0)+
∫ t

0
E

[ |∇u|2
u

(s,Xs) ·1{s≤τD}

]

ds, (5.26)

and in particular,

E
′
D(t) = E

[ |∇u|2
u

(t,Xt) ·1{t≤τD}

]

≥ 0.
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Notation Equation (5.26) shows thatED(t) is monotone both as a function oft andD. We
define

EM(t) := lim
D↑M

ED(t)≡ ED(0)+
∫ t

0
E

[ |∇u|2
u

(s,Xs)

]

ds. (5.27)

By Fatou’s lemma we observe that

EM(t)≥ E (t), t ≥ 0.

Note that, as long asEM(t) is finite, we always have

E
′
M(t) := E

[ |∇u|2
u

(t,Xt)

]

≡ lim
D↑M

E
′
D(t).

Remark 7With a similar argument we have

lim
n→∞

E

[ |∇u|2
u

(t ∧ τDn,Xt∧τDn
)

]

=
|∇u|2

u
(0,x)

+

∫ t

0
E

[(

2u|∇∇ logu|2+2u

(

Ric−1
2

∂g
∂ t

)

(∇ logu,∇ logu)

)

(s,Xs)

]

ds.

Theorem 4 Suppose that∂g
∂ t ≤ 2Ric, and let(Dn)n∈N be an increasing sequence of rela-

tively compact domains in M satisfying∪n∈NDn = M. Let u: R+×M → R+ be a positive
solution of the backward heat equation(1.1)such that

sup
[0,t]×M

|∇u|2
u

≤Ct (5.28)

for each t with a constant Ct depending on t. Then if the entropy of u is of sublinear growth,
i.e.

EM(t)
t

→ 0, as t→ ∞, (5.29)

then u is constant.

Proof Under condition (5.28) the local submartingale

|∇u|2
u

(t,Xt), t ≥ 0, (5.30)

is bounded on compact time intervals, and hence is a true submartingale. In particular, the
expectations

t → E

[ |∇u|2
u

(t,Xt)

]

are non-decreasing. On the other hand, the condition

EM(t)
t

≡ EM(0)
t

+
1
t

∫ t

0
E

[ |∇u|2
u

(s,Xs)

]

ds→ 0, ast → ∞,

implies that

E

[ |∇u|2
u

(tn,Xtn)

]

→ 0
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for a sequencetn ↑ ∞. Hence,

E

[ |∇u|2
u

(t,Xt)

]

≡ 0

and consequently,∇u(t, ·)≡ 0 for all t, so thatu is constant in space. Sinceu solves the heat
equation, this implies∂u/∂ t = 0 andu is constant in space and time. ⊓⊔

Theorem 5 Let (Dn)n∈N be an increasing sequence of relatively compact domains in M
satisfying∪n∈NDn = M. Let u: [0,T]×M →R+ be a positive solution of the backward heat
equation(1.1)such that

sup
[0,T ]×M

|∇u|2
u

≤CT . (5.31)

Suppose that t7→ EM(t) is a linear function on[0,T].

(1) If ∂g
∂ t ≤ 2Ric, then u has the form

u(t,y) = ψ(y)φ(t)

for some functionsψ andφ . Moreover,ψ andφ satisfy the differential equation

∂ φ/∂ t
φ

=−∆ψ
ψ

.

(2) If 2Ric− ∂g
∂ t is positive definite everywhere, then u is constant.

Proof SinceEM is linear, we get

t 7→ E

[ |∇u|2
u

(t,Xt)

]

is a constant function. By Remark 7 we may conclude that

E

[(

2u|∇∇ logu|2+2u

(

Ric−1
2

∂g
∂ t

)

(∇ logu,∇ logu)

)

(t,Xt)

]

= 0.

One can now apply the same arguments as in the proofs of Theorem 3 and Proposition 2. ⊓⊔

Remark 8For the results above, condition (5.28) has been only used toassure that (5.30) is
a true submartingale. In terms ofτn := τDn a necessary and sufficient condition for the true
submartingale property is that

liminf
n→∞

E

[ |∇u|2
u

(τn,Xτn)1{τn≤t}

]

= 0, (5.32)

see for instance [16].

Remark 9One may always write

E

[ |∇u|2
u

(t ∧ τn,Xt∧τn)

]

= E

[ |∇u|2
u

(t,Xt)1{t<τn}

]

+E

[ |∇u|2
u

(τn,Xτn)1{τn≤t}

]

(5.33)

where the left-hand side of Eq. (5.33) is monotone int andn. Thus, if u is of sublinear

growth, by lettingt → ∞ in (5.33), monotonicity ofn 7→E

[

|∇u|2
u (τn,Xτn)

]

is obtained (with-

out extra conditions). In the proof to Theorem 4 we used however monotonicity along de-

terministic times, i.e. monotonicity oft 7→E

[

|∇u|2
u (t,Xt)

]

which follows from Eq. (5.33), as

n→ ∞, but under only the additional hypothesis (5.32).
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