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Abstract We introduce a new entropy functional for nonnegative $ohs# of the heat
equation on a manifold with time-dependent Riemannianimétinder certain integral as-
sumptions, we show that this entropy is non-decreasingnatéover convex if the metric
evolves under super Ricci flow (which includes Ricci flow anédi metrics with nonnega-
tive Ricci curvature). As applications, we classify noraiige ancient solutions to the heat
equation according to their entropies. In particular, wevsthat a nonnegative ancient so-
lution whose entropy grows sublinearly on a manifold evadviinder super Ricci flow must
be constant. The assumption is sharp in the sense that thesgist nonconstant positive
eternal solutions whose entropies grow exactly linearlgnre. Some other results are also
obtained.
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1 Introduction

Let M be a smooth manifold equipped with a fam{lg(t)):>o of Riemannian metrics de-
pending smoothly oh, and letu be a nonnegative solution of the backward heat equation

E +Ag<t)U: 0. (11)
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The classical Boltzmann-Shannon entropy functional iméefby

Ent(t) = — /M u(t,y) 1ogu(t, ) volyy (dy)

(provided that the integral exists). If the metric does refiehd ort, then, under certain rea-
sonable assumptions ar(for instance ifu grows slowly enough so that integration by parts
can be justified) the Boltzmann-Shannon entropy is norea®ing, and moreover concave
if Ric > 0. In the case of a compact manifold Lim and Luo [21] recertilgled asymptotic
estimates on the time derivative of Ent. However, the ctat&oltzmann-Shannon entropy
has two important drawbacks:

1. It need not be monotone if the metric depends.on

2. On noncompact manifolds it is finite only for a relativerrow class of functions. Even
if uis a positive constant 1 onR" (equipped with the standard metric), its Boltzmann-
Shannon entropy equatso.

In this paper we introduce a new entropy functional of Boltmm-Shannon type which
has much better chances to be finite and which is monotoneifeenmetric depends on
We fix a pointx € M and letp(t, x,y) be the heat kernel of the adjoint heat equation

17} 1.0
a—f :Ag(t)p——tr—gp.

In other words p(t, , ) is the density o with respect to vgjy),
p(t,x,y) volg() (dy) = P{X € dy},

where (X )t>0 is a(g(t))t=o0-Brownian motion started atand speeded up by the factg®,
see [1,11,19]. We assume thgt p(t,X,y) volgy) (dy) = 1 for allt > 0, in other words that
Brownian motion orVl does not explode. By a result of Kuwada and the second autBpr [
this condition is satisfied, in particular, (M, g(t)) is complete for alt > 0 and the metric
evolves under backward super Ricci flow, i.e.

? < 2Ric. (1.2)

We define the entropy af with respect to the heat kernel measure
p(t, X, y) volyr)(dy)
by
&(t) 1 =E[(ulogu)(t, X)]
~ [ (ulogu)(t.y)p(t. x.) Vol (dy). 13)

(From a physical point of view it would be more natural to calf’ entropy. Our sign con-
vention has the advantage of avoiding unnecessary minos.yidote that in contrast to the
classical Boltzmann-Shannon entropy this entropy is @efined for all non-negative solu-
tionsu (because the heat kernel has total mass 1 and the funoctionlogu is bounded from
below). Moreover, thanks to the fast decay of the heat kesnekntropy is finite in most
cases of interest. In the next section we will show that uréetain integral assumptions
& (t) is non-decreasing, and moreover convex in the case of superflRw.
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Remark 1 Monotonicity formulas, or the search for quantities which monotonic along a
geometric flow, play a key role in analysis and geometry, §g12]. They are a powerful
tools to control geometric evolutions. In 2002, Perelmaf] [Btroduced two geometric
guantities, now called Perelman’s entropy and Perelmadsaed volume, which are scale-
invariant, non-decreasing under Ricci flow, and allow totoanthe geometry enough to
prevent collapsing. Our results on the evolutionstf) are clearly inspired by Perelman’s
Z -functional.

Remark 21f we apply the substitution := —t, then (1.1) and (1.2) become

au
a7 = Qo0
and
g .
= >_ . .
I 2Ric 1.4)

In other words, with respect to the new time variab)ehe functionu is a solution to the
forward heat equation arglevolves according to super Ricci flow. In particular, sang
of (1.1) that are defined for all> 0 are the same as ancient solutions of the heat equation.

The most important examples of super Ricci flow are of couredicci flow itself [6-8,
23,29], where (1.4) holds with equality, and fixed metricdwionnegative Ricci curvature.
Other interesting examples are the extended Ricci flow dioized by List [22] and Ricci
flow coupled with harmonic map flow, as studied by Muller [24]

Ancient solutions to the heat equation are generalizatidtsrmonic functions. Yau's
Liouville theorem for positive harmonic functions stateattany positive harmonic function
on a noncompact manifold with nonnegative Ricci curvatsrednstant [31]. However, as
we can see from the examplér,y) = €'Y, Yau’s Liouville theorem cannot be generalized
to positive ancient solutions without any further assuongi

Starting from this observation, Souplet and Zhang [28, Téol.2] proved the follow-
ing Liouville type result for positive ancient solutionsetM be a complete, noncompact
manifold with a fixed metric of nonnegative Ricci curvatuifeu is a positive ancient solu-
tion to the heat equation such that lgg,y) = o(d(y) + 1/|T|) near infinity, theru must be
constant.

This result is a direct consequence of a local Li-Yau gradéstimate of Hamilton type
for positive solutions of the heat equation, see [28, Theotel]. It is meanwhile well
understood how to establish such estimates by means of &tactAnalysis using sub-
martingale arguments, see Arnaudon and Thalmaier [2,8e6}i These arguments can be
generalized to positive solutions of the heat equation uRideci flow, see L.-J. Cheng [4,
Theorem 2.4], and allow to generalize Souplet and Zhengsitiile result to manifolds
whose metric evolves under super Ricci flow.

Souplet and Zhang's result for a static metric has been detéto ancient solutions of
the nonlinear heat equation taking values in non-positieatved manifolds [30], as well as
to certain types of fast diffusion equations on manifold @fimegative Ricci curvature [33].
All these results depend on sharp gradient estimates fardiutions, along with pointwise
growth conditions.

Besides the pointwise assumption of Souplet and Zhangeinseo be desirable to
investigate integral conditions. As an application of aurepy formula, among other results
we prove the following: Assume th%? < 2Ric, and leu be a nonnegative solution of (1.1).
If its entropy&’(t) grows sublinearly, i.e. lim,. £(t)/t = 0, thenu is constant.
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Our assumption tha#’(t) grows sublinearly is an integral one. The result is sharp in
the sense that there do exist nonconstant ancient solutibose entropies grow linearly,
for instanceu(t,y) = €~ whose entropy with parametgr= 0 satisfiess'(t) =t. We also
discuss the special case wh£(t) is a linear function of. In this case under the assumption
that % < 2Ric, we show thati is the product of a function depending only brand a
function depending only on

Our methods come from stochastic analysis. Instead of aqgptassical integration by
parts formulas (which are usually hard to justify on non-paat manifolds), all our calcula-
tions rely on Itd’s formula which does not require extraditions. We need conditions only
to assure that our local submartingales are true submakisigrhe wanted inequalities are
then obtained by taking expectations of the submartingales

Probabilistic approaches to flows of time changing metragetbeen used recently by
several authors. For instance, Kuwada [18] studied cogpliof g(t)-Brownian motions,
see also [20]. Coulibaly-Pasquier [10] applied the techesqto mean curvature flows.
Philipowski [27] constructed stochastic particle appneiions for the normalized Ricci
flow on surfaces and for the non-normalized Yamabe flow on folaisi of arbitrary dimen-
sion. Neel and Popescu [25] developed a stochastic targedagh to Ricci flow on surfaces.
The authors [13,14] developed a theory of martingales onifolda with time-dependent
connection and applied this theory to the study of the haicorap heat flow on mani-
folds with time-dependent Riemannian metric. Chen, ChemgMao [3] recently derived
a stochastic representation formula for solutions of lgag-equations on tensor bundles
over manifolds with time-dependent Riemannian metric.

2 Monotonicity and convexity of the entropy

In this section we derive formulas for the first two variasaf the entropy. We shall see that
the entropy#’(t), under certain assumptions, is non-decreasing. Morefgris convex if

ag f
st < 2Ric.

Theorem 1 Let u be a solution of the backward heat equafidri). Suppose that fort 0,

. 15(ulogu?(t.y) pit. x.y) voly(dy) < = 25)

P(E)

Then as long ag’(t) is finite its first derivative is given by

and
2

(t,y) p(t, %, y) volgq) (dy) < oo. (2.6)

) |Oul?
80 = [ 5o (L) pltxy) volgg (dy) @7)
and its second derivative by
1" ' 2 . ldg
é’(t):/ 2u( |O0logu|” + RIC*EE (Ologu,Ologu) | | (t,y)
M

p(t,X,y) voly)(dy). (2.8)

For the proof we need the following lemma:
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Lemma 1 If u solves the backward heat equatignl), we have

9 Ou?
(E JrAg(t)) (U|OgU) = u (2.9)

and

7} Oul? . d
(Ewg(t)) (%) =u <2||]I]Iogu|2+ <2R|cfa—?) (DIogu,DIogu)) . (2.10)

Proof The first equality is straight-forward. The second one islkebwn in the case of
a fixed Riemannian metric (e.g. [15]; for a proof see [21, Bsijpn 2.1]). The additional
term —‘;—?(Dlog u,dlogu) appearing here comes from the time-derivativelai|? via the

formula

9 : -
- (1DfP?) :fﬁ—?(Df,Df), fec®(Mm). 2.11)

Note that not only - |, but alsol depends on, which is the reason for the minus sign in
formula (2.11). ad

Using Lemma 1 it is easy to give a formal proof of Theorem 1 mtagration by parts.
However, sinceM is not assumed to be compact, the feasibility of integrakiprparts is
difficult to justify, and therefore we present a proof basedstochastic analysis. In this
proof the assumptions (2.5) and (2.6) are used to show thtticdocal martingales are
indeed true martingales. One should note that thanks toxthenential decay of the heat
kernel (see e.g. [5] for the case of a fixed metric and [32,i@2&.5] for the case of Ricci
flow) the conditions (2.5) and (2.6) are satisfied in most sadénterest.

Remark 31n terms of &ag(t) )i>0-Brownian motion(X; )i>o started ak, conditions (2.5) and
(2.6) read as

E [|D(ulogu)[?(t,X%)] < e, 2.12)

o (22)

/t]E[|D(qugu)\2(sx)]ds<oo and /t]E
0 e 0

E

2
(t,Xt)} < o, (2.13)

A (22)

where we simply used that the left-hand sides of (2.12) ari@jare locally bounded in the
time variable. The last two conditions are standard comwitito assure that the martingale
parts of the processes

and imply that
2

(s,xs)} ds<oew  (2.14)

|Ouf?

(ulogu)(s,Xs), (s,%s), 0<s<t, (2.15)

are true martingales (evérf-martingales). The condition, analogous to (2.12) resi.32
guaranteeing that the local martingale

u(s,Xs), 0<s<t,
is a trueL2-martingale reads as

E [|Duf?(t,%)] < o. (2.16)
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In many cases it may be straight-forward to verify directimttthe martingale parts of
(2.15) are true martingales (for instance, if estimates|faf?/u are available [4, Theo-
rem 2.4], or if sup 1),y U < Cr). Then the technical conditions (2.5) and (2.6), respAR.1
and (2.13), are dispensable.

Proof (of Theoreml) Denote dinM = n and letU be a horizontal lift of the(g(t)i>o-
Brownian motionX andZ the corresponding anti-developmentaf(Note thatZ is anR"-
valued Brownian motion speeded up by the fagt@). By Itd's formula (see [19, Lemma 1])

d(ulogu)(t,X) = (% +Ag(t>> (ulogu)(t, X )dt + dM, (2.17)

where thanks to (2.5) the local martingale
n ot .
My = zi/o (O(ulogu) (s, Xe), (Usg ) dZ1)
i=

is a true martingale (as stochastic integral of a squassable process, see e.g. [17,
Chapt. 3, Def. 2.9]). Combining (2.17) and (2.9) we obtain

t 2
E(ulogu)(1.X)] = (vlogu)(0.)+ & | [ 5 (e )dd]
0
or in other words,
. . t o [1Bu?
g(t):g(0)+/01E (5% | ds
and hence
iy 1012 _/ |Ou(t,y)|?
o' =2 [ E ] = [ 5 pxyvolgo (@)
as claimed.
The formula for the second derivative &fcan be proved in the same way, using (2.6)
and (2.10). ad

3 Gradient-entropy estimates

In this section we give gradient estimates for positive tsohs of the backward heat equa-
tion (1.1) in terms of their entropy.

Proposition 1 Letu: [0,T] x M — R be a positive solution of the backward heat equation

(1.1) satisfying the condition2.12) (2.13)and (2.16)for t = T. Assume thai;? < 2Ric.
Then, for each £]0,T] and xe M,

Cul? u(t.X) |, u(t.X)
t u (O <E [ u(0,x) log u(0,x)

(3.18)

where(Xs) is a (g(s)s>0-Brownian motion starting at x. In other words, if u is nortizald
such that @0, x) = 1, then
)

|0ul?(0,x) < - (3.19)
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Proof Consider the process

2
Ns:= (t—9) [Bul

(s,Xs) + (ulogu) (s, Xs), 0<s<t, (3.20)

which is easily seen to be a submartingale under the giveditbmms. This enables us to
exploit the inequality£[No] < E[N] which gives

t

|Oul?
T (0,x) + (ulogu) (0,x) < E [(ulogu) (t,X)] - (3.21)

Combining this with the fact thai(0,x) = E[u(t, X)] which follows from the martingale
property of(u(s, Xs))o<s<t, the claimed inequality is obtained. O

Corollary 1 Let u be a positive solution of the backward heat equatioh)on [0, T] x M.
We keep the assumptions of Theorem 1. lebkand0O <t <T.

1. Then, for any) > 0,
Ou

(0,%) < %+iE {”(t’x‘) log ”(t’x‘)} (3.22)

|Oy| 1 m
_— < - )
; (O’X)—tl/Z‘“ogu(O,x) (3.23)

Note that estimate (3.23) is Hamilton’s gradient estimagobal form. Estimate (3.18)
shows that the entropy

2. If m 1= supgy.m U, then

u(t, %) u(t,x)
u(0,x) log u(0,x)

Euwmwmxnzﬁ{

of a (normalized) positive solutiownt, -) := llj(%x)) to the backward heat equation grows at

least linearly irt, and trivially at most as logn /u(0, x)) with my = supu|[0,t] x M.

4 Entropy and linear growth

We now investigate positive solutions of the backward hgaagon (1.1) according to their
entropy. Recall that by Remark 2 any global solution to thekivard equation (1.1) gives
rise to an ancient solution of the forward heat equation.

Theorem 2 Letu: R, x M — R, be a positive solution of the backward heat equafibi)
satisfying(2.5)and(2.6)for allt > O. If % < 2Ricand if the entropy of u grows sublinearly,
i.e.limi_. & (t)/t =0, then u is constant.

Proof Since& is convex, the condition lim,« g{” = 0 implies thats’ is constant. Therefore

|Cuf?

0 -2 S| =0

so thatu is constant. a
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Remark 4Note that Theorem 2 also immediately follows from the resoftthe last sec-
tion. Indeed, if the conditions (2.5) and (2.6), or equindlg the conditions (2.12), (2.13)
hold for allt > 0, we have that (3.20) is a true submartingale. Rewrifiifityo] < E[N],
resp.E[N; /o] <E[N¢], we have

|Ouf?

(0,X) + t} (ulogu) (0,x) <
{lDUZ

""II—‘

E [(ulogu)(t,%)], resp.,

X))
2 2
/22| + 25 [(ulogu)(1/2.X,2)] < [ (ulogu) 1. %)

and it suffices to take the limit ds— oo.

Remark 5Let ‘3,? < 2Ric. For a positive solution: Ry x M — R, of the backward heat

equation (1.1) we may consider the constant

N o/
0:= tlm &'(t)
which is well-defined by the monotonicity resulting fromraula (2.8). The value o may
be zero, a positive constant @ro. Theorem 2 can then be rephrased to the statement that a
positive solutioru: R, x M — R, of the backward heat equation (1.1), satisfying (2.5) and
(2.6) for allt > 0, is trivial if and only if6 = 0.

Theorem 3 Let u: [0, T] x M — R, be a positive solution of the backward heat equation

(1.1)satisfying(2.5)and (2.6)fort =T. If "9 < 2Ricand&'(t) is an exactly linear function
of t, then u has the form

ut,y) = w(y)e(t) (4.24)
for some functiong/ and ¢. Moreover,iy and ¢ satisfy the differential equation
o9/ot _ Ay (4.25)
@ Y

Proof Since&(t) is exactly linear, we have

") =E {ZU (\DDIogu\2+ (Rm—E?) (Dlogu,Dlogu)) (t,Xt)}

:/ 2u <|DDIogu\2+ (Ric Ea_g> (Dlogu,Dlogu)) pdy= 0.
M
In particular,d00logu = 0 implies that

0 (|Dlogu\2> = 200logu(Ologu, -) =

so that|Ologul| is a function oft only. Since

_ Au_ |Ou? _ dlogu
0=tr(0O0logu) = AlogufT 2 ot

— |Ologul?,

we have
7] Iogu

2
ot —|Ologul|
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and hence
logu(t,y) —logu(0,y) = / |Ologul?(s)ds
It follows that .
u(ty) = uo y)exp( - ' [Diogul(sids)
0

and this proves Eq. (4.24). Then Eq. (4.25) follows immetjafrom (4.24) and the back-
ward heat equation far. ad

We also have the following simple observation:

Proposition 2 If 2R|c—ﬁ is positive definite everywhere, then no nonconstant pesiti

solution to the backward heat equation satisfy{@d) and (2.6) can have linear entropy.

Proof If £(t) is linear, we haves” (t) = 0 which implies that

(2 Ric—%) (Ologu,Ologu) =

as the heat kerngl(t,x,y) is strictly positive everywhere. Since 2 Rk% is strictly positive
everywhere, we gdillogu = 0. ad

Example 1Let u(t,y) = &' on R equipped with the standard metric. Choase 0 in the

heat kernel, so thai(t,x,y) = e*y2/4t/\/4nt. We first check that the assumptions (2.5) and
(2.6) are satisfied: By elementary and straightforwardwatmons, for every > 0 we have

/R |0(ulogu) [2(t,y) p(t, x,y)dy= (92 + 8t + 1)e? < o

LR

An easy calculation shows that

and

(t,y)p(t,x,y)dy=€* < co.

y2
~t+y)e @V ld
)= e ey
\/H/ (y—2t)+t)e a2 dy—t,

so thaté” grows exactly linearly.

More generally, for any constardas> 0 andb, the functioru(t,y) = adyPlisa positive
solution of the backward heat equation, and its ent§fty = a(loga+ b?t) grows exactly
linearly. Similar examples can be constructedr®n

Example 2LetM = R3\ {0} be equipped with the standard metric. The function
ue) =[x ~*

is harmonic orM, and thusu(t, x) = u(x) provides trivially a stationary solution of the back-
ward heat equation (1.1) with respect to the static Euclideatric. LetX be a Brownian
motion onR3 (with generator}) starting ate; = (1,0,0). Since

X Ou?, . 1

Oux)=——= and ——(X) = —,
%= "Txpe TR E
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it is easy to check that

_ 2
£(0) =B [(wlogu) (X)) =~ iy [, CO exp( A

which is clearly bounded as function gfwhereas

|Oul? 1 / 1 x—el? _
5| = @072 Jeo o TR P )=t

This shows that Theorem 1 fails in general without assumptanu. Since the entropy’(t)
of u grows sublinearly, it also shows that Theorem 2 fails withextra assumptions, like
the conditions (2.5) and (2.6).

5 Monotonicity and convexity of local entropy

The results presented in the previous sections depend dadheical conditions (2.5) and
(2.6) which have been used to assure that certain localmgatés are true martingales. As
indicated, due to the fast decay of the heat kernel on complat-compact manifolds, the
required conditions are rather weak. In this section weritessome ideas how stochastic
analysis can be used to localize the entropy.

Definition 1 For a relatively compact domald C M we define local entropies as follows:
ép(t) := E[(ulogu)(t A o, %arp)]  and &p :=E[(ulogu)(tp, Xr,)],

whereTp is the first exit time ofX from D (with the conventiortp := 0 if X does not start
in D).

Note that sincgX;)i>o0 is an elliptic diffusion and sinc® is relatively compact, the
stopping timerp is finite almost surely. By Fatou’s lemma we trivially have

< i .
b < lim &p(t)

Remark 6As before letX be a(g(t)):>o0-Brownian motionX. Itd’'s formula, along with
Eq. (2.9), implies

E [(ulogu)(t A Tp, Xiarp)] = (ulogu)(0,x) +E [/Omro |Oul?

(s, Xs)ds} ,

in other words,
|Ouf?
u

t
0 =0+ [ 5[ 600 1ocry | 05 (5.26)

and in particular,
|Ouf?
u

ép(t) =E { (t, %) l{tSTD}} 20.
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Notation Equation (5.26) shows th&h(t) is monotone both as a function bandD. We
define

t 2
&m(t) ;== lim &p(t) = 6p(0) +/ E {&(s, Xs)} ds (5.27)
DM 0 u
By Fatou’s lemma we observe that

ut)>&(t), t>0.
Note that, as long a&y (t) is finite, we always have

{IDUZ

Ep(t) = t,X)| = gm(g’,g(t).

Remark 7With a similar argument we have

|COuf?

(0,x)

n— o0

. Oul?
limE {%(M TDthAan)} =

t
+/ E {(2u\DDIogu|2+2u (RIC*%?) (Ologu, Dlogu)) (s,Xs)} ds
0

Theorem 4 Suppose thaf;ﬁ < 2Ric, and let(Dn)nen be an increasing sequence of rela-
tively compact domains in M satisfying,.nyDn = M. Let u: R, x M — R, be a positive
solution of the backward heat equati¢h 1) such that

2
sup \24° ¢ (5.28)
otxm U
for each t with a constant@lepending on t. Then if the entropy of u is of sublinear growth
ie.
ém(t)

n —0, ast— oo, (5.29)

then u is constant.
Proof Under condition (5.28) the local submartingale

2
B x). t=0 (5.30)

is bounded on compact time intervals, and hence is a true atibigrale. In particular, the
expectations

PDUZ
t—E

t xo}

are non-decreasing. On the other hand, the condition

2
M) = t/ [‘DL” SXS)}ds—m, ast — o,

implies that

E {'Duz(tn,xtn)} o
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for a sequenct, 1 «. Hence,

Oul?
B[Sk ex] =0
and consequentlyju(t, - ) = 0 for allt, so thatu is constant in space. Sincesolves the heat
equation, this impliegu/dt = 0 andu is constant in space and time. ad

Theorem 5 Let (Dn)nen be an increasing sequence of relatively compact domains in M
satisfyingnenDn = M. Let u: [0, T] x M — R be a positive solution of the backward heat
equation(1.1) such that

2
sup & <Cr. (5.31)
oTxm U

Suppose thatts &y (t) is a linear function or0, T].
Q) If < 2Ric, then u has the form
ut,y) = g(y)e(t)
for some functiongy and ¢. Moreover, |y and ¢ satisfy the differential equation
o9/t _ Ay
® y
2) If 2 Rlc—— is positive definite everywhere, then u is constant.
Proof Sincedy is linear, we get

PDUZ
t—E

%)
is a constant function. By Remark 7 we may conclude that

E KZU\DDIOQU|Z+ZU (Rm—%?) (Dlogu,Dlogu)) (t,)(t)} =

One can now apply the same arguments as in the proofs of Thebamd Proposition 2. O

Remark 8For the results above, condition (5.28) has been only usaddore that (5.30) is
a true submartingale. In terms of := 1p,, a necessary and sufficient condition for the true
submartingale property is that

|yl
||Erl)|2fE |:T(Tn,x-[n)1{rn<t} 0 (532)
see for instance [16].

Remark 90ne may always write

g [10u? |COuf? |Ouf?

—(tA rn,an)} =E [ (t, %) 1{t<rn}} +E [

where the left-hand side of Eq. (5.33) is monotond endn. Thus, if u is of sublinear

growth, by letting — o in (5.33), monotonicity o — E [@ (rn,Xrn)] is obtained (with-

out extra conditions). In the proof to Theorem 4 we used hewewnotonicity along de-
terministic times, i.e. monotonicity of— E [% (t, Xt)} which follows from Eq. (5.33), as
n — oo, but under only the additional hypothesis (5.32).

(Tn,x-[n) l{TnSt}:| (533)
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