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1 Formulation

The energy release rate with respect to a fracture growth direction θi can be obtained
by differentiation of the potential energy Π of the system:

Gsi = −∂Π

∂θi
(1)

Considering a general case of multiple fractures, the rate of the energy release rate can
be obtained as:

Hsi,j =
∂Gsi
∂θj

= − ∂2Π

∂θi∂θj
(2)

In a discrete setting, the potential energy of a static system can be written as:

Π =
1

2
u′Ku− u′f (3)

where u, K, and f are the displacement vector, the stiffness matrix, and the applied
force vector. The energy release rate with respect to some arbitrary crack incitement
angle θi is defined as the negative variation of the potential energy:

Gsi = −1

2
u′δiKu+ u′δif − δiu′(Ku− f) (4)

in which case the last term in (4) can be presumed zero due to equilibrium of the discrete
system i.e. Ku = f . Hence, the expression for the energy release rate becomes:

Gsi = −1

2
u′δiKu+ u′δif (5)

where δif only needs to be accounted for if the applied loads influence the virtual crack
rotation, e.g. due to crack face tractions and body-type loads. Also, it is worth observing
that, non-zero contributions to the variations δiK, δif occur only in those elements that
experience the virtual crack rotation. The rates of the energy release rate, Hsij are
obtained by differentiating Gsi in (5) with respect to θj :
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Hsij = −
(

1

2
u′δ2

ijKu− u′δ2
ijf

)
− δju′ (δiKu− δif) (6)

The variations of displacements δju in (6) are not local but global, and can be determined
from the condition of equilibrium of the discrete system by considering its variation i.e.
δj(Ku− f) = 0:

δu = −K−1(δKu− δf) (7)

Therefore, substitution of (7) in (6) leads to:

Hsij = −
(

1

2
u′δ2

ijKu− u′δ2
ijf

)
+ (δjKu− δjf)′K−1(δiKu− δif) (8)

It is worth highlighting that second order cross derivatives δ2
ijK, δ2

ijf in (8) capture the
interaction between the rotations of different crack increments when i 6= j and as such
can be disregarded since the variations of both K and f are local and generally disjoint
from one another. Hence, in keeping only the self-interaction i.e. δ2

iiK, δ2
iif , equation

(8) turns to:

Hsij = −
(

1

2
u′δ2

iiKu− u′δ2
iiF

)
+ (δjKu− δjf)′K−1(δiKu− δif) (9)

The global stiffness matrix is obtained by summing the element level contributions:

K =

nel∑
i=1

∫
Ω̄e

BTDBdet(J) dξdη (10)

The global force vector e.g. for fracture surface tractions, is computed in a similar
way, by summing the element level contributions of those elements that are cut by the
interface:

f =

ncut
el∑
i=1

∫ +1

−1
JNKT

[
−m l
l m

] [
p
τ

]
d

dζ
(s) dζ (11)

where J·K denotes a jump in the shape functions across the interface and p and τ are
the local crack surface tractions, namely: pressure (positive when induces opening) and
shear (positive when induces top face sliding relative to bottom face, in the direction
of the crack crack). Variations of the element level stiffness matrix can be obtained as
follows (note: dΩ̄ := dξdη):

δKe =

∫
Ωe

(δBTDB + BTDδB) det(J) dΩ̄ +

∫
Ωe

BTDB δdet(J) dΩ̄ (12)

δ2Ke =

∫
Ωe

(δ2BTDB + 2δBTDδB + BTDδ2B) det(J) dΩ̄ +

+

∫
Ωe

2 (δBTDB + BTDδB) δdet(J) dΩ̄ +

∫
Ωe

BTDB δ2det(J) dΩ̄ (13)
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Similarly, the variations of the element level force vector due to crack surface tractions
are given as (assuming constant values, and noting that for an anti-clockwise rotation
convention we have: δl = −m, δm = l):

δfe =

∫
Γ̄crk

JNKT
([
−l −m
−m l

] [
p
τ

]
d

dζ
(s) +

[
−m l
l m

] [
p
τ

]
d

dζ
(δs)

)
dζ (14)

The variations of various components of equations (12), (13) are given below:

δJ =

nnd∑
I=1

[
∂NI
∂ξ
∂NI
∂η

] [
δxI δyI

]
(15)

δ2J =

nnd∑
I=1

[
∂NI
∂ξ
∂NI
∂η

] [
δ2xI δ2yI

]
(16)

det(J) =

nnd∑
I=1

nnd∑
J=1

xI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
yJ (17)

δdet(J) =

nnd∑
I=1

nnd∑
J=1

δxI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
yJ +

+

nnd∑
I=1

nnd∑
J=1

xI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
δyJ (18)

δ2det(J) =

nnd∑
I=1

nnd∑
J=1

δ2 xI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
yJ +

+

nnd∑
I=1

nnd∑
J=1

2 δxI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
δyJ +

+

nnd∑
I=1

nnd∑
J=1

xI

(
∂NI

∂ξ

∂NJ

∂η
− ∂NI

∂η

∂NJ

∂ξ

)
δ2yJ (19)

The variations of the inverse of the Jackobian matrix are (note: J−1J = I ):

δJ−1 =− J−1 δJJ−1 (20)

δ2J−1 =− J−1 δ2JJ−1 + 2J−1 δJJ−1 δJJ−1 (21)

The variation of the Cartesian derivatives are then:
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δ

[
∂NI
∂x
∂NI
∂y

]
= δJ−1

[
∂NI
∂ξ
∂NI
∂η

]
(22)

δ2

[
∂NI
∂x
∂NI
∂y

]
= δ2J−1

[
∂NI
∂ξ
∂NI
∂η

]
(23)

The variations of the strain matrix are:

δBI =

[
δ ∂NI
∂x 0 δ ∂NI

∂y

0 δ ∂NI
∂y δ ∂NI

∂x

]
(24)

δ2BI =

[
δ2 ∂NI

∂x 0 δ2 ∂NI
∂y

0 δ2 ∂NI
∂y δ2 ∂NI

∂x

]
(25)

The spatial variations used in the equations above can be written solely in terms of the
variation of the polar angle itself since the radius is constant due to pure rotation (note
the polar-Cartesian relationship: x = r cos(θ), y = r sin(θ)):

δx = −y δθi, δy = x δθi (26)

δ2x = −x δθi, δ2y = −y δθi (27)

2 Implementation

The first and second order global variations of the stiffness matrix, Kg and the force
vector fg are determined by assembling the element level contributions Ke and fe of
those elements affected by the infinitesimal crack tip rotation. Figure 1, illustrates a
general instance of a finite length crack tip segment undergoing a clockwise rotation, in
turn subjecting the elements in the vicinity to changes in geometry, which brings about
the variations in Ke and fe. In order to carry out the geometrical differentiation of
elements due to the crack tip rotation, it is first useful to separate elements into ones
that rotate purely rigidly, and into those that experience some change in shape. From the
point of view of XFEM it is computationally efficient to consider the enriched elements
in the vicinity of the crack tip as purely rotational elements since the derivatives become
computationally cheap to compute. The elements surrounding the enriched patch are
the non-enriched or standard elements, therefore it is chosen that these elements undergo
the conformal changes in geometry that are coherent with the rotating patch of enriched
elements. As seen in figure 1, the standard elements lasso the enriched elements.

2.1 Updating of enrichment ?

3 Results
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Differentiation of the stiffness matrix
w.r.t. crack increment direction
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Figure 1: variations of the stiffness matrix
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Figure 2: RMS roughness vs. percentage cracked for different damage depths
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