Reasoning on Robot Knowledge from Discrete and Asynchronous Observations

Pouyan Ziafati and Yehia Elrakaiby and Marc van Zee and Leendert van der Torre and Holger Voos

SnT, University of Luxembourg
{Pouyan.Ziafati, Yehia.Elrakaiby, Marc.Vanzee, Leon.Vandertorre, Holger.Voos } @uni.lu

Mehdi Dastani and John-Jules Meyer
Intelligent Systems Group, Utrecht University
{M.M.Dastani, J.J.C.Meyer} @uu.nl

Abstract

Robot knowledge of the world is created from discrete
and asynchronous events received from its perception
components. Proper representation and maintenance of
robot knowledge is crucial to enable the use of robot
knowledge for planning, user-interaction, etc. This pa-
per identifies some of the main issues related to the rep-
resentation, maintenance and querying of robot knowl-
edge based on discrete asynchronous events such as
event-history management and synchronization, and in-
troduces a language for simplifying developers’ job at
making a suitable representation of robot knowledge.

Autonomous robots with cognitive capabilities such as
planning, knowledge intensive task execution and human in-
teraction need to maintain and reason on knowledge about
their environment (Beetz, Mosenlechner, and Tenorth 2010;
Ziafati et al. 2013a; Tenorth and Beetz 2012; Lemaignan et
al. 2011). Robot knowledge is collected by its perception
components, which continuously process input sensory data
and asynchronously output the results in the form of events
representing various information types, such as recognized
objects, faces and robot position (Heintz, Kvarnstréom, and
Doherty 2010; Wrede 2009).

Robot knowledge, consisting of events representing ob-
servations made by its perception components, need to be
properly represented and maintained to reason about it.
However, the discrete and asynchronous nature of observa-
tions and their continuity make querying and reasoning on
such knowledge difficult and pose many challenges on its
use in robot task execution. The representation, fusion and
management of various sources of knowledge and the inte-
gration of different reasoning capabilities have been the fo-
cus of many projects such as logic-based knowledge bases
(Tenorth and Beetz 2012; Lemaignan et al. 2010) and active
memories (Wrede 2009; Hawes, Sloman, and Wyatt 2008).
In this paper, we address three requirements, that are not
satisfactorily supported by existing systems. These require-
ments are (1) representation of continuous and discrete in-
formation, (2) dealing with asynchronousity of events and
(3) management of event-histories.

Building robot knowledge upon its discrete events, time-
stamped with the time of their occurrence, is not always a

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

straightforward task since events contain different informa-
tion types that should be represented and dealt with differ-
ently. For example, to accurately calculate the robot position
at a time point, one needs to interpolate its value based on the
discrete observations of its value in time. One also needs to
deal with the persistence of knowledge and its temporal va-
lidity. For example, it is reasonable to assume that the color
of an object remains the same until a new observation indi-
cating a change of the object’s color is made. In some other
cases, it may not be safe to infer an information, such as the
location of an object, based on an observation that is made
in the far past.

To perform its tasks, the robot’s components such as its
control component query its knowledge base. Queries are
answered based on the knowledge inferred from events,
representing observations made by perception components,
processed and received over a distributed and asynchronous
network. Hence, observations may be received with some
delay and out of order. For example, the event indicating the
recognition of an object in a 3D image is generated by the
object recognition component sometime after the actual time
at which the object is observed because of the delay caused
by the recognition process. Therefore, correct evaluation of
a query may require waiting for the perception components
to finish processing of sensory data to ensure that all data
necessary to evaluate the query is present in the knowledge
base. For example, the query, “how many cups are on the ta-
ble at time ¢?” should not be answered immediately at time
t, but answering the query should be delayed until after the
processing of pictures of the table by the object recognition
component and the reception of the results by the knowledge
base.

Robot perception components continuously send their ob-
servations to the knowledge base, leading to a growth of the
memory required to store and maintain the robot knowledge.
The unlimited growth of the event-history leads to a degra-
dation of the efficiency of query evaluation and may even
lead to memory exhaustion.

In this paper, we introduce a knowledge management sys-
tem, so-called SLR, for robot software that aims at deal-
ing with the aforementioned issues. SLR supports the defini-
tion of programs to create a suitable representation of robot
knowledge based on its discrete and asynchronous observa-
tions. It also supports synchronizing queries to ensure that



all data necessary to answer a query is gathered before the
query is answered. Furthermore, SLR provides two memory
management mechanisms for the removal of outdated and
unneeded data from memory.

The remainder of the paper is organized as follows. Af-
ter presenting an exemplary robot software architecture, we
present the syntax and semantics of the SLR language. Then
we describe the usability of SLR for reasoning on robot
knowledge from its discrete events. Afterwards, we continue
with describing the SLR supports for memory management
and synchronization of queries. Finally, we present related
work and conclude.

Robot Software Architecture

A user is interacting with robot X, requesting information
about objects around it. To reply to the user’s questions,
the robot’s software relies on its components shown in Fig-
ure 1: The segmentation component uses a real-time al-
gorithm such as the one presented by Uckermann et al.
(Uckermann, Haschke, and Ritter 2012) to process 3D im-
ages from the robot’s Kinect camera into 3D point cloud
data segments corresponding to individual objects. Its out-
put to SLR consists of events of the form seg( O,L)T, each
corresponding to the recognition of an object O at time T
at a location L relative to the camera. A unique identifier O
is assigned to each event, using an anchoring and data as-
sociation algorithm such as the one presented by Elfring et
al. (Elfring et al. 2012), to distinguish between events cor-
responding to the recognition of the same object segment.
When a new object segment O is recognized, the segmenta-
tion component sends its corresponding data to the objRec
component. The objRec component processes the data and
sends an event of the form obj(O, Type, C010r)T to SLR, spec-
ifying the type Type and color Color of the recognized ob-
ject. The StatePublisher component generates events of the
form tf( ‘base’, ‘world’, TF )T and #f{ ‘cam’, ‘base’, TF )T. These
events specify the relative position between the world co-
ordination frames and the robot’s base, and between the
robot’s base and camera respectively, at time 7. The con-
trol component handles interaction with the user and queries
SLR for the robot’s knowledge of the world answered by
SLR based on events received from perception components.
The control component also controls the orientation of the
head of the robot by sending commands to the Gaze compo-
nent.

StatePublisher

Figure 1: Robot’s software components

SLR Language

SLR is a knowledge management system for robot software
enabling the high-level representation, querying about and

maintenance of robot knowledge. In particular, SLR is aimed
at simplifying the representation of the discrete pieces of
information received from the robot software components,
and improving efficiency and accuracy of query process-
ing by providing synchronization and event-history manage-
ment mechanisms.

The input data to SLR is a stream of events, representing
robot’s observations of the world. An event is a piece of sen-
sory information, time-stamped by the component generat-
ing it. For example, the event face(Neda, 70)?® could mean
that Neda’s face was recognized at time 28 with a confi-
dence of 70%. Events could also be stamped with a time
interval, as opposed to a time point. For example, an event
observed(Neda)!*>*% could mean that Neda’s face was con-
tinuously perceived between times 28 and 49.

The SLR language bears close resemblance to logic pro-
gramming and is both in syntax and semantics very similar
to Prolog, which is the most familiar logic programming sys-
tem today. Therefore we will first review the main elements
of Prolog, and then define SLR language using these defini-
tions.

The logic programming syntax is defined using Horn
clauses. An atom is an expression of the form P(¢y,...,t,),
where P is a relation symbol and ¢4, .. .,t, are terms that
are built up from constants and variables, using function
symbols. A literal is an atom, or the negation of an atom.
A literal is ground if it contains no variables.

A Horn clause is of the form By, ..., B, — A, where A
an atom and the head of the clause, and By, ..., B, are lit-
erals called the body. A <+ true is called a fact and usually
written as A. A program clause is a Horn clause whose head
is non-empty. A logic program P is a finite set of program
clauses.

One executes a logic program by asking it questions—
queries— and it is determined by SLDNF resolution (Apt and
van Emden 1982) whether or not these queries follow from
the program. Queries may result in a substitution of the free
variables. We use P g7, pnp @6 to denote the query Q on
the program P, resulting in a substitution 6.

SLR Syntax

The SLR language includes constant symbols, floating point
numbers, variables, time points, and two kinds of atoms. The
first kind of atom is an ordinary Prolog atom which we call
a static atom, while the second kind is called an event atom,
which is an atom whose last two arguments denote a time
interval.

Definition (SLR Signature). A signature S =
(C,R,V, Z, P?, P¢) for SLR language consists of:
e AsetC = {a,b,c,...} of constant symbols.

o A set R C Ry of non-negative rational numbers, not
necessarily disjoint from C.

o AsetV ={x,y,z,...} of variables.
e Aset Z C RUYV of time points

o P°={P§,...,P:}, where each pf(t1,...
static atom of arity 1.

,t;) € Pfisa



o P¢ = {P¢,...,Pc}, where each p§(t1,ta,...,t;) € Pf

is an event atom of arity ¢ s.t. ¢ > 2 and t;,t;,_1 € Z.

For the sake of readability, an event

atom  pt(t1,...,tn—2,21,22) is  denoted  with
Pr(ty,- .. ,tn_g)[zlvzz’]. Moreover, an event atom
Pr(ty, ... 7tn,2)[z1’z2] whose z; and 2z are identical
is denoted with p, (t1, ..., th—2)%.
Definition (Event). An event is a ground event atom
Pn(t1,..ty)F1%2] where 2 is called the start time of the
event and z is called the end time. The relation symbol p,,
of an event is called event type.

We introduce two static atoms, the next and the prev
atom who respectively refer to occurrence of an event of
a certain type observed right after and right before a time
point, if this event exists. In the next section we will give
semantics to these notions. For now, we restrict ourselves to
the syntax of SLR.

Definition (Next Atom). Given a signature .S, the next
atom next(py, (t1, ...tn)[zl"z?] , Zs, Ze) € P? has an event term
pn(t1,..ty)F1*2] € P and two time point z,, z, € Z rep-
resenting a time interval [z, 2] as its arguments.

Definition (Previous Operator). Given a signature .S, the
previous atom prev(py, (t1, ...t )*%21 2) € P* has an event
term py, (t1, ...tn)[zlsz] € P¢ and a time point z € Z as its
arguments.

To enable simplifying the representation of robot knowl-
edge, SLR enables the definition of programs specifying how
robot knowledge should be maintained. SLR also enables
event-history management and query synchronization to im-
prove the efficiency and accuracy of query answering.

Definition (SLR Program). Given a signature S, an SLR
program D consists of a finite set of Horn clauses of the
form By A ... A B, — A built from the signature .S, where
n > 1, and the clauses Bi,..., B, do not contain events
(i.e. ground event terms).

SLR Operational Semantics

In order to define the semantics for a SLR program, we in-
troduce a notion of an event stream view, which contains all
events up to a certain time point. Then we using these event
views in order to limit the scope of the queries that can be
posed to the SLR program.

Definition (Event Stream). An event stream € is a (possible
infinite) set of events.

Definition (Event Stream View). An event stream view €(z)
is the subset of the event stream e such that all events in €(z)
do not have an end time greater than time point z, i.e.:

e(z) = {pn(ts,...

Definition (Knowledge base). Given a signature S and an
SLR program D, a knowledge base k is a tuple (D, €) where
D is a SLR program and € is an event stream.

Definition (SLR Query). Given an SLR signature .S, an SLR
query (Q, z) on an SLR knowledge base k consists of a reg-
ular Prolog query () built from the signature S and a time

,tn,g)[zl’@] €el|z <z}

point z. We write k Fspr (@, )0 to denote an SLR query
(Q, z) on the knowledge base k, resulting in the substitution
0.

The result of a query (Q, z) on a knowledge base k =
(D, €) is a set of substitutions (i.e. variable bindings) 6 such
that DU e g pnr QO under the condition that event terms
which are not arguments of “next” and “prev” operators can
only be unified with events that belong to €(z).

The operational semantics of SLR follows the standard
Prolog operational semantics (i.e. unification, resolution and
backtracking) (Apt and van Emden 1982) in the definition
of query evaluation as follows: The evaluation of a query
(Q, =) given a knowledge base k = (D, €) in SLR consists
in performing a depth-first search to find a variables binding
that enables derivation of the () from the rules and static
facts in D, and event facts (i.e. events) in €. In particular, @
succeeds when a substitution unifying it with a (static/event)
fact is found, or if it matches the head of a rule whose body
succeeds.

The event stream models observations made by the robot
perception components. Events are added to SLR knowl-
edge base, in the form of facts, when new observations are
made. Each event is time-stamped with the time of its oc-
currence. In a query @, the parameter z limits query evalua-
tion to the set of observations made up until the time 2. This
means that the query (Q, z) cannot be evaluated before the
time z, since SL R would not have received robot’s observa-
tions necessary to evaluate ().

A query (@, z) can be posted to SLR long after the time
z in which case the SLR knowledge base contains observa-
tions made after the time z. In order to have a clear seman-
tics of queries, the SLR operational semantics applies the
following rule. When evaluating a query (@, z), a goal can
only be unified with event facts whose end times are earlier
or equal to z (i.e. event facts € €(z)). The only exception is
when a “next” or “prev” clause is evaluated as a goal. Such
clauses are evaluated based on their declarative definitions
regardless of the z parameter of the query as follows.

The prev(pn(ti,..t,)#%2 2) € P° atom unifies
Pn(t1, ...t,)F122] with an event p,, (], ...tﬁl)[zll*zé] € e such
that z >= 2/ and there is no other such event in € which has
the end time later than zJ. If such a unification is found, the
“prev” clause succeeds as a goal and fails otherwise.

A “prev” clause prev(py (ti,...t,) 2122 2,) is evaluated
as a goal using the following rule over the event facts €
€(z5). By definition, the variable z, should be already in-
stantiated when the “prev” clause is evaluated and an error
is generated otherwise. It is also worth noting that the “prev”
clause can be evaluated only after the time z; when all events
with end time earlier or equal to z, have been received by
and stored in the SLR knowledge base. The — symbols rep-
resents Prolog negation.

prev(pn (th ~~~tn)[21722] ) Zs):'
pn(tla ~~~tn)[Z1’Z2]722 S Zs

9 9\ [217,22” X 9
_‘(pn(tl a~-~tn )[ ! 2 ]722 S Zsy R1 > Zl)

The next(py(t1,...tn)#%2) 2, 2.) € P* atom unifies



pn(ty, ...t,)F122] with an event p,, (¢, ...t/ )1*1%2] € € such
that z, <= 2z{, 25 <= z. and there is no other such
event in ¢ which has the start time earlier than z{. If such
a unification is found, the “next” clause succeeds as a goal
and fails otherwise. Note that z; and z9 can be either time
points or variables and p,,(t1, ...t,, 21, 22) event term and
pn(t], ...t 21, 25) ground event term are to be unifiable.

A “next” clause next(py (t1, ...t )?1%2) [z, z.]) is evalu-
ated as a goal using the following rule over the event facts
€ €(ze). By definition, the variables z, and z. should be in-
stantiated when the “next” clause is evaluated and an error
is generated otherwise. The “next” clause can only be evalu-
ated after the time z, when all events with end time earlier or
equal to z, have been received and stored in the SLR knowl-
edge base. However, if we assume that events of the same
type (i.e. with same predicate symbol and same arity) are
received by SLR in order of their end time, the next clause
can be evaluated as soon as the first event that can be uni-
fied with p,, (t1,...t,)*"*2] and has the end time later than
zs 1s received by SLR, to not postpone queries when unnec-
essary. This holds when there is only one perception compo-
nent generating events of the specified type p, (t1, ...t,,) and
those events are sent to SLR in the order of their generation.

next(pn(t1, ...tn)[zl’zz]7 [2s, e )i
P (t1, ...tn)[zl’zﬂ,zs < 21,29 < Ze,

A(pn(tr”, oty 2] 20 < 27 27 < zey21” < 21)

Persistence and Maintaining State

Robot knowledge of the world is constructed from obser-
vations made by its perception components. These observa-
tions take the form of discrete events, stamped with the time
of their occurrence. This representation of robot knowledge
makes the formulation of queries over the knowledge base
difficult. For example, if an object was observed at some lo-
cation L at time 2 and again at the same location at time 4,
then a query about whether the object was at L at time 3
will fail since the knowledge base does not include an event
indicating the location of the object at time 3.

SLR, by enabling the definition of programs, aims at sim-
plifying the task of the programmer of making a suitable
representation of robot knowledge. In particular, programs
are meant to enable transforming the event-based represen-
tation of robot knowledge, i.e. events, into a state-based rep-
resentation of knowledge, using derived facts. This section
discusses some of the typical cases where a state-based rep-
resentation is more suitable and how it can be specified.

Persistent Knowledge Persistent knowledge refers to in-
formation such as color of an object that is assumed not to
change over time.

Example. The following rule specifies that the color of an
object is the color that the object was perceived to have at its
last observation.

color(0, C) - prev(obj(O,, C)?,T).

Persistence with Temporal Validity The temporal valid-
ity of persistence means the period of time during which it
is safe to assume that information derived an observation re-
mains valid. For example, when an object is observed at time
t1 at a location L, it may be safe to assume that the object
is at L for some time period § after t;. However, after the
elapse of 4, it should be considered that the location of the
object is unknown since it has not observed at this location
for a sufficiently long time, i.e. J.

Example. To pick up an object O, its location should be de-
termined and send to a planner to produce a trajectory for
the manipulator to perform the action. This task can be pre-
sented as a sequence actions 1) determine the object’s loca-
tion L 2) compute manipulation trajectory 77j, 3) check lo-
cation L of the object is still valid and 4) Perform trajectory
Traj. However, due to for example operating in a dynamic
environment, the robot needs to check that the object’s lo-
cation has not been changed and the computed trajectory is
still valid before executing the actual manipulation task. The
following three rules in the SLR program can be used to de-
termine the location of the object and its validity as follows.
If the last observation of the object is within last 5 seconds,
the object location is set to the location at which the object
was seen last time. If the last observation was made before
5 seconds ago, the second rule specifies that the location is
outdated and finally, the third rule set the location to “never-
observed”, if such an object has never been observed by the
robot. The symbol ! represents Prolog cut operator. For the
sake of brevity, Objects’ location determined by these rules
are relative to robot’s camera. In reality we either need to
calculate object’s locations in the world reference frame, or
in the case we are using relative locations, we should also
encode that the movement of the robot itself also invalidates
locations.

location(O, L)T:- prev(seg(O, L)%, T),T — Z < 5, 1.
location(O, “outdated”)™ :- prev(seg(O, L)%, T),
T—-7>5,l

location(O, “never-observed”)™ .

Continuous Knowledge Continuous knowledge refers to
information that takes continuous values such as a relative
position between a moving robot’s camera and its base co-
ordination frames. For example, to precisely position an ob-
ject in the world reference coordination frame, the camera
to base relative position at time of the recognition of the ob-
ject needs to be interpolated/extrapolated based on discrete
events of observations of camera to base relative position
over time.

Example. The following rule calculates the camera to base
relative position T'F' at a time 7' by interpolating from the
last observation (i.e. event) of the camera to base relative
position T'F'1 at time T'1 equal or earlier than 7" and the
first observation of the camera to base relative position T'F'2
at time 72 equal or later than 7. The interpolate predi-
cate is a user defined predicate which performs the actual
interpolation. When evaluating the camera to base position



at time 7" using this rule, the SLR execution system post-
pones the evaluation of the query until it receives the first
tf(‘cam’, ‘base’, TF2)T? event whose end time (i.e. T'2) is
equal or later than T'.

tf(‘cam’, ‘base’, TF)" : —
prev(tf(‘cam’, ‘base’, TF1)™ | T,
prev(tf(‘cam’, ‘base’, TF2)"? [T, c]),
interpolate(TF, [TF1,TI], [TF2,T2)).

The following rule calculates the base to world relative
position TF at a time 7' by checking whether the first
tf(*base’, ‘world’, TF2)T? event occurring at or later than T
occurs within a second after T' (i.e. within [T, 7+1]). In this
case, the value of T'F is interpolated similar to the previous
example. Otherwise, the value of TF is extrapolated solely
based on the last observation of the base to world relative
position T'F'1 at time T'1 equal or earlier than 7. The SLR
execution system evaluates the value of T'F’ using this rule as
soon as it receives the first #f(‘base’, ‘world’, TF2)T 2 event
whose end time is equal or later than 7" or as soon as it waits
enough to assure that such an event did not occur within
[T, T+1]. The — symbol represents Prolog “If-Then-Else”
choice operator.

f(‘base’, ‘world’, TF)T : —
prev(tf(‘base’, ‘world’, TF1)™ | T),
(prev(tf(‘base’, ‘world’, TF2)"? [T, T+1]) —
interpolate([TF, T), [TF1,TI], [TF2,T2])) ;
extrapolate([TF, T), [TF1,TI]) ).

The following rule calculates the position WorldPos of an
object O in the world reference coordination frame by
querying the knowledge base (implemented by previous two
rules) for the camera to base and the base to world relative
positions at the time 7" at which the object was recognized at
the position RelativePos relative to the robot’s head camera.

position(seg(O, RelPos)™, WorldPos) : —
f(‘cam’, ‘base’, TF1)T
f(‘base’, ‘world’, TF2)",
pos_multiply([RelPos, TF1, TF2], WorldPos).

Aggregation It is often needed to query the number of
some items in a state for example objects the robot is aware
of. The formulation of these queries can be simplified by
transforming the event-based representation of events into a
state-based representation.

Example. The query (goal,t.) with the goal below gives
the list List of all objects the robot is aware of up to the time
te which can be used for drinking coffee, along with their
positions in the world, taken from their last observations.
The result is in the form of object(O, WorldPos) facts, the

template specified by the first argument of the findAll clause.
findAll(object(O, WPos), (0bj(O, Type, Color)™,
usedFor(Type, tea), prev(seg(O, RPos)™2 1)
position(seg(O, RPos)™2, WPos)), List)

Event History Management

SLR knowledge base continuously receives and stores the
events generated by robot’s software components process-
ing the robot’s sensory data. All sensory events cannot be
permanently stored as the amount of information grows un-
bounded over the lifetime of the robot. Therefore outdated
data needs to be pruned from the memory to cope with
memory limited size and to increase efficiency in evaluat-
ing queries on the knowledge base.

SLR language supports two types of event history man-
agement mechanisms allowing the programmer to spec-
ify which events should be maintained and the duration
of their storage. Event history management mechanisms in
SLR are configured using two special purpose predicates:
time-buffer tBuffer(P,T) and count-buffer cBuffer(P, N).
A tBuffer(P,T) fact specifies that events unifiable with P
should be maintained in the knowledge base for T" seconds
after their end time. A cBuffer(P, N) fact in the knowledge
base specifies that only the last N of the events unifiable
with P by substituting its anonymous variables, represented
by _, should be kept in the knowledge base. If P contains
non-anonymous variables, for each distinct values of those
variables, a separate count-buffer is created.

To eliminate any ambiguity in query evaluation due to the
memory management mechanisms, SLR requires that there
should not be any count or time buffers buffer(P1, X) and
buf fer(P2,Y) defined whose first argument P1 and P2
could be unified with each other. Otherwise, one buffer could
for example specify that the last event of type a only needs
to be maintained in the memory and the other one specify
that all events of type a occurring during last 300 seconds
needs to be maintained. This property of an SLR program
can be checked automatically to generate an error if it is not
satisfied.

Example. The following time buffers specify that all
face(P) events with end time during the last 60 seconds and
all #(S, D, TF) with end time during the last 300 seconds
should be kept in the memory and be removed otherwise.

tBuffer(face(P),60s).
tBuffer(tf(S, D, TF), 300s).
The following count buffers specify that only the last event
of recognition of each distinct person and only the last event
of recognition of each distinct object should be kept in the
memory.
cBuffer(inView(face(P, ), 1).
cBuffer(inView(obj(O, _)), 1).

Having the memory management mechanisms implemented
as above, the following queries the SLR knowledge base for



all people and objects that the robot have observed during its
life time. The result contains only one event corresponding
to each person or object. Also the location of each person
or object in the result corresponds to the last location of that
person/object the robot has observed.

findAll(Item, inView (Item) "™ T2 | List).

Note the non-anonymous variable P in
cBuffer(inView(face(P,_)),1) means buffering the
last recognition of each distinct person. In con-
trast, cBuffer(inView(face(_,_)),1) means only keep-
ing only the recognition of the last person and
cBuffer(inView(face(P,L)),1) means keeping the last
recognition of each distinct person in each distinct location.

Synchronizing Queries over Asynchronous
Events

Robot’s perception components process their sensory inputs
in a distributed and parallel setting. SLR receives the re-
sults of the perception components as events published asyn-
chronously and possibly over a computer network. When
SLR evaluates a query {goal, z), it needs to ensure that it
has already received all relevant events with end time earlier
or equal to z. Intuitively, this means that when SLR is to an-
swer a query based on robot’s observations of the world up
to time z, it needs to first make sure that the processing of
relevant sensory inputs acquired up to 2z has been finished by
all corresponding perception components and it has received
all the results. SLR receives queries with unique IDs and an-
swer them as soon as they can be evaluated. Thin means in
principle postponing the evaluation of one query does not
need to delay the evaluation of the other.

Definition (Event Process Time). The process time (i.e. t,)
of an event is the time it is received by and added to SLR
knowledge base.

Definition (Event Delay Time). The delay time (t4) of an
event is the difference between its process time and its end
time (i.e. t4(p*1*2)) = t,(p*1#2)) — 22).

The delay time of an event is mainly due to the time it
takes for a perception component to generate it. For exam-
ple, if Neda is recognised in the picture taken at time ¢; and
it takes k£ ms for the face recognition component to process
that image, the event recogized(‘Neda’)'* is generated at a
time ¢; + k. Then this event is sent to SLR, possibly over
a computer network and hence processed by SLR at some
later time t,. To guarantee the correct evaluation of a query,
the delay times of events needs to be taken into account.
Otherwise, SLR might answer a query using incomplete in-
formation not having the complete set of events relevant to
the query already received and stored in the SLR knowledge
base.

Definition (Goal Set). The goal set of a query (goal, z) for
a SLD program D is the largest set of types of event (i.e.
event predicate symbols) which the “SLDNF” method could
possibly backtrack on event terms of such types, when eval-
uating goal on SLR knowledge base with the SLR program
D and an arbitrary event stream €. In world, the goal set

determines the set of all event types that if events of such
types are part of the €(z), then the result of (goal, z) on SLR
knowledge base (D, ¢€) could be different than the case of
not having those events included in €(z). The goal set can
be determined by going though all rules in D using which
the goal could be possibly proven and gathering all event
predicates appearing in bodies of those rules.

Before evaluating a query (goal, z), SLR first makes sure
that it has received all input events with end time up to time
z whose types are included in the goal set of goal. In other
words, the query can be evaluated when the full history of
all event types in the goal set of goal is available up to time
2 as defined below !.

Definition (Full History Availability). The history of events
of a type p, up to the time z is fully available at a time ¢
when at this time the SLR has received and stored all events
of the type p,, occurring by the time z (having end time ear-
lier or equal to t,).

In addition to having the full history of all relevant
event types available up to the z parameter of the query,
the query can be evaluated only after all “next” and
“prev”’ operators which are backtracked on when eval-
uating the query can be evaluated based on their def-
initions. A “prev” clause prev(py(t1,...t,)*2] z,) can
be evaluated only after the full history of event of type
pn(t1, ...tn)[zh'z?] up to time z; is available. A “next” clause
next(py (1, ...tn )F122 [z, 2.]) can be evaluated as soon as
the first event of type p,(t1, ...t,, )*1:*2] with end time later
than z, is received by SLR or when the full history of such
events is fully available up to time z..

To specify when the history of events of a type p,, up to
the time z is fully available, SLR can be programmed in two
complementary ways. In the first way, the programmer spec-
ifies a maximum delay time (i.e. 4, ) for events of each
type. When the system time passes t4,, (p,) seconds after a
time 2z, SLR assumes that the history of events of type p,, up
to the time z is fully available.

The maximum delay times of events depends on the run-
time of the perception components generating such events
and need to be approximated by the system developer or de-
rived based on monitoring the system runtime. When less
maximum delay times of events are assumed, SLR answers
the queries faster and hence the overall system works in
more real-time fashion, but there is more chance of answer-
ing a query when the complete history of events asked by
the query is not available yet. When more maximum delay
times of events are assumed, there is a higher chance to have
all sensory data up to the time specified by the query al-
ready processed by perception components and their results
are received by SLR when the query is evaluated. However,
the evaluation of the query is performed with the specified
delay.

"For practical reasons, we also allow unsynchronized queries
which are immediately evaluated only on events which have been
actually received by the knowledge base by the time of the evalua-
tion



The other way that SLR can be ensured about already hav-
ing access to the full history of events of a type p,, up to
a time z is by being told so by a component, usually the
one generating events of the type p,,. When SLR receives an
event fullyUpdated(P,)?, it considers the history of events
of the type p,, up to the time z is fully available.

Example. When the position of an object O in world co-
ordination frame at time 7" is queried, the query can be an-
swered as soon as both camera to base and base to world
relative positions at time 7' can be evaluated. The former
can be evaluated (i.e interpolated) as soon as SLR receives
the first #f{‘cam’, ‘base’, P) event with an occurrence time
equal or later than T'. The latter can be evaluated as soon as
the SLR receives the first ¢ f (‘base’, ‘world’, P) event with
the occurrence time equal or later than 7", or when it can
ensures that there is no #f{(‘base’, ‘world’, P) event occurred
within [T, T + 1]. If we assume tg4,, (¢t f(‘base’, ‘world’, P))
is set to 0.05 seconds, SLR has to wait 1.05 seconds after T’
to ensure this.

The tq,,,, (tf(‘base’, ‘world’, P)) can be set by the sys-
tem developer but it can be also set by monitoring the
system runtime. Whenever a tf(‘base’, ‘world’, P) event
is processed, SLR can check its delay, the difference be-
tween its end time and its time of process, and sets the
ta,, (tf(‘base’, ‘world’, P)) to the maximum delay of such
events encountered so far.

Example. The robot is asked to look at the fablel and tell
about the cups it sees. To answer the question, the control
component controls the head of the robot to take 3D pictures
of the tablel from its left to its right side starting by the time
t1 and finishing by the time t5. Finally, it queries SLR for
the cups observed on the table as (goal, t3) where the goal
is

findall(O, (0bj (O, “cup”, C’)T37 next(seg(O, P)T, [t1,t2]), L)

The query lists all object segments O whose type is “cup”
and are observed during [t1,¢3] in L. One could also calcu-
late their positions and check whether they are on tablel, but
such details have been omitted for the sake of brevity.

To answer this query, SLR should wait until the segmen-
tation component processes all images acquired up to time
to for object segments and receive the results. Moreover,
if a new object segment is recognized, the objRec compo-
nent processes it for its type. Therefore SLR should also
wait for the objRec component to process all new object
segments recognized in acquired pictures up to to and to
receive the results. Whenever the segmentation component
processes an image acquired at a time ¢, it outputs the rec-
ognized object segments and at the end, it sends an event
terminate(Segmentation )t to SLR. Whenever SLR receives
a terminate(segmentation)’ event, it can make sure that it
has already received all object segments up to the time ¢ (the
history of seg(O,P)* events up to time t is fully available).
The objectRec component also informs the SLR, when it
finishes processing of sensory data up to each time point.
SLR processes this event signals and proceeds with evaluat-
ing the query whenever the full history of both 0bj(0,T,C)*
and seg(O,P)* events up to time t, is available. Then the
result is sent back to the control component.

Related Work

There are several tools for sensory data and knowledge inte-
gration in robotics, surveys of which can be found in (Wrede
2009) and (Lemaignan 2012). A category of these tools are
active memories provided for instance in IDA (Wrede 2009)
and CAST (Hawes and Hanheide 2010) frameworks. Ac-
tive memories are used to integrate, fuse and store robot
sensory data. These system do not process or reason on
knowledge themselves but employ event-based mechanisms
to notify other components when the content of their mem-
ories change. When notified through events, external com-
ponents query the memories, process the results and often
update back the memories which in turn can activate other
processes. Another category of these tools are knowledge
management systems such as ORO (Lemaignan et al. 2010)
and KnowRob (Tenorth and Beetz 2009). These systems are
used to store and reason on logical facts. The focus of these
systems are on providing common ontologies for robotic
data, integration and sharing of various knowledge including
common-sense knowledge and integration of various rea-
soning functionalities such as ontological, rule-based and
spatial reasoning.

Persistence and Maintaining State Dealing with the per-
sistence of knowledge over time is an issue that has been
extensively studied in the area of languages for reasoning
about knowledge and change for example in knowledge for-
malisms such as event calculus (Kowalski and Sergot 1989;
Shanahan 1999) and situation calculus (Levesque, Pirri, and
Reiter 1998). The “next” and “prev” operators in the SLR
language provides a practical solution to simplify the pro-
gramming task of reasoning on robot continuous world
from its discrete observations. Among the robotic knowl-
edge management systems, KnowRob applies a similar ap-
proach to ours where observations are time-stamped and the
knowledge base can be queried for the world state at differ-
ent time points. For example, a qualitative relation rel(A,B)
between objects A and B for an arbitrary point in time T can
be examined using holds(rel(A,B),T)) predicate. This predi-
cate is evaluated by reading the location of the last percep-
tion of the objects before time 7. However, such predicates
are to be implemented by a programmer himself in Prolog.

Synchronization of Queries A unique feature of SLR
comparing to other robotic sensory data and knowledge in-
tegration systems is its support for synchronizing queries
over asynchronous events from distributed and parallel pro-
cesses. It provides two synchronization mechanisms to en-
sure that all sensory data up to a time point have been pro-
cessed by corresponding processes and the results have been
made available to SLR when a query on such data is evalu-
ated. These mechanisms are not supported by other systems
and hence need to be implemented by external components
who issue queries. This lack of support obviously makes the
programming of external components querying data com-
plex. The other disadvantage is that it makes a modular in-
tegration of external processes in active memories or knowl-
edge management systems difficult. For example, consider a



component validating the recognition of “typing” action, de-
noting a human typing on a keyboard, by checking whether a
computer is also recognized in the scene (Wrede 2009). SLR
query synchronization mechanisms allow such a component
to query the SLR for a recognized computer whenever this
component receives an event of the recognition of the “typ-
ing” action. This component can be sure that if a computer
has been recognized by the time of the query, the query re-
sult contains its corresponding information no matter which
component processes data to recognize computers and how
much time the processing takes.

History Management Pruning outdated data from mem-
ory is a necessary functionality for any system managing and
integrating robotic sensory data. CoSy and KnowRob rely
on external components to prune data from their memory. In
ORO, knowledge is stored in different memory profiles, each
keeping data for a certain period of time. In IDA, a script-
ing language is provided to program various tasks operat-
ing on the memory. These tasks are activated periodically
or in response to events generated when a memory opera-
tion is performed. IDA uses this mechanism to implement
a garbage collection functionality similar to the time-based
history management in SLR. In SLR, flexible garbage col-
lection functionalities are blended in the syntax of the lan-
guage. This functionalities allow to specify a time period to
keep the history of certain events or for example to specify
that only the record of the last occurrence of certain events
needs to be kept in the memory.

An early version of the synchronization and memory
management mechanisms introduced in this paper are previ-
ously presented in (Ziafati et al. 2013b), an extended version
of which has been submitted to Al journal. However, those
mechanisms are to synchronize queries over, and prune out-
dated data from so called memory buffers which are similar
to memory items in active memory systems. In this work,
these mechanisms are tightly integrated into a Prolog-based
logic programming language.

Conclusion

The discrete and asynchronous nature of observations made
by robot perception components make the representation,
maintenance and query of robot knowledge a challenging
task. This paper identifies three requirements for robotic
knowledge management systems related to discreteness and
asynchronousity of robot observations and introduces the
SLR language to support these requirements.

SLR aims at supporting the programming tasks of 1-) rea-
soning on persistence, continuity and temporal validity of
information, 2-) managing histories of observations to prune
outdated and unnecessary data from memory and 3-) deal-
ing with query synchronization. In particular, SLR supports
state-based representation of robot knowledge through the
definition of SLR programs and implements two automatic
synchronization mechanisms to make query and reasoning
about robot knowledge more accurate. Furthermore, SLR
provides two mechanisms to enable the programmer to deal
with the growth of event-histories.

Acknowledgement

Pouyan Ziafati is supported by the National Research Fund
(FNR), Luxembourg.

References

Apt, K. R., and van Emden, M. H. 1982. Contributions to
the theory of logic programming. J. ACM 29(3):841-862.

Beetz, M.; Mosenlechner, L.; and Tenorth, M. 2010. CRAM
A Cognitive Robot Abstract Machine for everyday manipu-
lation in human environments. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 1012—
1017. IEEE.

Elfring, J.; van den Dries, S.; van de Molengraft, M.; and
Steinbuch, M. 2012. Semantic world modeling using prob-
abilistic multiple hypothesis anchoring. Robotics and Au-
tonomous Systems 61(2):95-105.

Hawes, N., and Hanheide, M. 2010. CAST: Middle-
ware for memory-based architectures. Proceedings of the
AAAI Robot Workshop: Enabling Intelligence Through Mid-
dlware.

Hawes, N.; Sloman, A.; and Wyatt, J. 2008. Towards an inte-
grated robot with multiple cognitive functions. Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelli-
gence (AAAI 2008), AAAI Press 1548—-1553.

Heintz, F.; Kvarnstrom, J.; and Doherty, P. 2010. Bridg-
ing the sense-reasoning gap: DyKnow Stream-based mid-
dleware for knowledge processing. Advanced Engineering
Informatics 24(1):14-26.

Kowalski, R., and Sergot, M. 1989. A logic-based calculus
of events. In Foundations of knowledge base management.
Springer. 23-55.

Lemaignan, S.; Ros, R.; Mosenlechner, L.; Alami, R.; and
Beetz, M. 2010. ORO, a knowledge management platform
for cognitive architectures in robotics. 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
3548-3553.

Lemaignan, S.; Ros, R.; Sisbot, E. A.; Alami, R.; and Beetz,
M. 2011. Grounding the Interaction: Anchoring Situated
Discourse in Everyday Human-Robot Interaction. Interna-
tional Journal of Social Robotics 4(2):181-199.
Lemaignan, S. 2012. Grounding the Interaction: Knowl-
edge Management for Interactive Robots. PhD Thesis, Lab-
oratoire d’Analyse et d’Architecture des Systemes (CNRS) -
Technische Universitdit Miinchen.

Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foundations
for the situation calculus. Linkdping Electronic Articles in
Computer and Information Science 3(18).

Shanahan, M. 1999. The event calculus explained. In Arti-
ficial intelligence today. Springer. 409-430.

Tenorth, M., and Beetz, M. 2009. KnowRob: Knowledge
Processing for Autonomous Personal Robots. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
Tenorth, M., and Beetz, M. 2012. Knowledge Processing
for Autonomous Robot Control. Proceedings of the AAAI
Spring Symposium on Designing Intelligent Robots: Reinte-
grating Al . Stanford, CA: AAAI Press.



Uckermann, A.; Haschke, R.; and Ritter, H. 2012. Real-
Time 3D Segmentation of Cluttered Scenes for Robot
Grasping. [EEE-RAS International Conference on Hu-
manoid Robots (Humanoids 2012), Osaka, Japan.

Wrede, S. 2009. An information-driven architecture for
cognitive systems research. Ph.D. dissertation, Faculty of
Technology Bielefeld University.

Ziafati, P.;; Dastani, M.; Meyer, J.-J.; and Torre, L. 2013a.
Agent programming languages requirements for program-
ming autonomous robots. 7837:35-53.

Ziafati, P.; Dastani, M.; Meyer, J.-j.; and van der Torre, L.
2013b. Event-Processing in Autonomous Robot Program-
ming. Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems 95-102.



