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Abstract

By using a coupling method, an explicit log-Harnack inequality with local geometry quantities is estab-
lished for (sub-Markovian) diffusion semigroups on a Riemannian manifold (possibly with boundary). This
inequality as well as the consequent L2-gradient inequality, are proved to be equivalent to the pointwise
curvature lower bound condition together with the convexity or absence of the boundary. Some applications
of the log-Harnack inequality are also introduced.
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1. Introduction

Let M be a d-dimensional connected complete Riemannian manifold possibly with a bound-
ary ∂M . Consider L = � + Z for a C1-vector field Z. Let Xt(x) be the (reflecting) diffusion
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process generated by L with starting point x and life time ζ(x). Then the associated diffusion
semigroup Pt is given by

Ptf (x) := E
[
f

(
Xt(x)

)
1{t<ζ(x)}

]
, t � 0, f ∈ Bb(M).

Although the semigroup depends on Z and the geometry on the whole manifold, we aim to
establish Harnack, resp. gradient type inequalities for Pt by using local geometry quantities.

Let K ∈ C(M) be such that

RicZ := Ric − ∇Z � −K, (1.1)

i.e. for any x ∈ M and X ∈ TxM , Ric(X,X) − 〈X,∇XZ〉 � −K(x)|X|2. Next, for any D ⊂ M ,
let

K(D) := sup
D

K, Dr = {
z ∈ M: ρ(z,D) � r

}
, r � 0,

where ρ is the Riemannian distance on M . Finally, to investigate Pt using local curvature bounds,
we introduce, for a given bounded open domain D ⊂ M , the following class of reference func-
tions:

CD = {
φ ∈ C2(D̄): φ|D > 0, φ|∂D\∂M = 0, Nφ|∂M∩∂D � 0

}
,

where N is the inward unit normal vector field of ∂M . When ∂M = ∅, the restriction Nφ|∂M � 0
is automatically dropped. For any φ ∈ CD , we have

cD(φ) = sup
D

{
5|∇φ|2 − φLφ

} ∈ [0,∞).

The finiteness of cD(φ) is trivial since D̄ is compact. To see that cD(φ) � 0, we consider the
following two situations:

(a) There exists x ∈ ∂D \ ∂M . We have φ(x) = 0 so that cD(φ) � {5|∇φ|2 − φLφ}(x) � 0.
(b) When ∂D \ ∂M = ∅, we have D̄ = M . Otherwise, there exists z ∈ M \ (D ∪ ∂M). For any

z′ ∈ D \ ∂M , let γ : [0,1] → M \ ∂M be a smooth curve linking z and z′. Since z′ ∈ D but
z /∈ D, there exists s ∈ [0,1] such that γ (s) ∈ ∂D. This is however impossible since ∂D ⊂
∂M and γ (s) /∈ ∂M . Therefore, in this case M = D̄ is compact so that the reflecting diffusion
process is non-explosive. Now, let x ∈ D̄ such that φ(x) = maxD̄ φ. Since Nφ|∂M � 0 due
to φ ∈ CD , φ(Xt ) − φ(x) − ∫ t

0 Lφ(Xs)ds is a sub-martingale so that

φ(x) � Eφ(Xt) � φ(x) +
t∫

0

ELφ(Xs)ds, t � 0.

This implies Lφ(x) � 0 (known as the maximum principle) and thus,

cD(φ) �
{
5|∇φ|2 − φLφ

}
(x) � 0.

Theorem 1.1. Let K ∈ C(M). The following statements are equivalent:

(1) (1.1) holds and ∂M is either empty or convex.
(2) For any bounded open domain D ⊂ M and any φ ∈ CD , the log-Harnack inequality
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PT logf (y) − log
(
PT f (x) + 1 − PT 1(x)

)
� ρ(x, y)2

2

(
K(Dρ(x,y))

1 − e−2K(Dρ(x,y))T
+ cD(φ)2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)
,

T > 0, y ∈ D, x ∈ M,

holds for strictly positive f ∈ Bb(M).
(3) For any bounded open domain D ⊂ M and any φ ∈ CD ,

|∇PT f |2(x) �
{
PT f 2 − (PT f )2}(x)

(
K(D)

1 − e−2K(D)T
+ cD(φ)2(e2K(D)T − 1)

2K(D)φ(x)4

)

holds for all x ∈ D, T > 0, f ∈ Bb(M).

If moreover PT 1 = 1, then the statements above are also equivalent to:

(4) For any bounded open domain D ⊂ M and any φ ∈ CD , the Harnack type inequality

PT f (y) � PT f (x)

+ ρ(x, y)

(
K(D)

1 − e−2K(D)T
+ cD(φ)2(e2K(D)T − 1)

2K(D) inf�(x,y) φ4

)1/2√
PT f 2(y)

holds for non-negative f ∈ Bb(M), T > 0 and x, y ∈ D such that the minimal geodesic
�(x, y) linking x and y is contained in D.

Remark. (i) When K is constant, a number of equivalent semigroup inequalities are available for
the curvature condition (1.1) together with the convexity or absence of the boundary, see [8,10]
and references within (see also [3,11] for equivalent semigroup inequalities of the curvature-
dimension condition). When ∂M is either empty or convex, the above result provides at the first
time equivalent semigroup properties for the general pointwise curvature lower bound condition.

(ii) When the diffusion process is explosive, the appearance of 1 − PT 1 in the log-Harnack
inequality is essential. Indeed, without this term the inequality does not hold for e.g. f ≡ 1
provided PT 1 < 1.

(iii) The following result shows that the constant 1/2 involved in the log-Harnack inequality
is sharp.

Proposition 1.2. Let c > 0 be a constant. For any x ∈ M , strictly positive function f with
|∇f |(x) > 0 and logf ∈ C2

0(M), and any constants C > 0, the inequality

PT logf (y) � log
(
PT f (x) + 1 − PT 1(x)

) + cρ(x, y)2
(

C

1 − e−2CT
+ o

(
1

T

))

for small T > 0 and small ρ(x, y) implies that c � 1/2.

Proof. Let us take v ∈ TxM and ys = expx[sv], s � 0. Then the given log-Harnack inequality
implies that

Ps logf (ys) − log
(
Psf (x) + 1 − Ps1(x)

)
� cs2|v|2

(
C

−2Cs
+ o

(
1
))

(1.2)

1 − e s
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holds for small s > 0. On the other hand, for any g ∈ C2(M) with bounded Lg, one has

d

ds
Psg

∣∣∣∣
s=0

= Lg. (1.3)

Indeed, letting Xt be the diffusion process generated by L with X0 = x, by Itô’s formula and the
dominated convergence theorem we obtain

lim
s↓0

Psg(x) − g(x)

s
= lim

s↓0

1

s
E

s∧ζ(x)∫
0

Lg(Xr)dr = E lim
s↓0

1

s

s∧ζ(x)∫
0

Lg(Xr)dr = Lg(x).

Combining (1.2) with (1.3) we obtain

〈v,∇ logf 〉(x) − |∇ logf |2(x) = L logf (x) + 〈v,∇ logf 〉(x) − Lf (x)

f (x)

= lim
s↓0

1

s

{
Ps logf (ys) − log

(
Psf (x) + 1 − Ps1(x)

)}
� c|v|2

2
.

Taking v = r∇ logf (x) for r � 0 we obtain(
r − 1 − cr2

2

)∣∣∇ logf (x)
∣∣2 � 0, r � 0.

This implies c � 1/2 by taking r = 1/c. �
To derive the explicit log-Harnack inequality using local geometry quantities, we may take

e.g. D = B(y,1) := {z: ρ(y, z) < 1}. Let

Ky = 0 ∨ K
(
B(y,1)

)
, Kx,y = K

(
B

(
y,1 + ρ(x, y)

))
,

K0
y = 0 ∨ sup

{−Ric(U,U): U ∈ TzM, |U | = 1, z ∈ B(y,1)
}
,

by = sup
B(y,1)

|Z|.

Then K(Dρ(x,y)) = Kx,y and according to [7, proof of Corollary 5.1] (see page 121 therein

with δ̄x replaced by 1), we may take φ(z) = cos πρ(y,z)
2 so that φ(y) = 1 and

κ(y) := Ky + π2(d + 3)

4
+ π

(
by + 1

2

√
K0

y (d − 1)

)
� cD(φ).

Note that when ∂M is convex, Nρ(·, y)|∂M � 0 so that Nφ|∂D∩∂M � 0 as required in the defini-
tion of CD . Therefore, Theorem 1.1(2) implies that

Pt logf (y) � log
{
Ptf (x) + 1 − Pt1(x)

}
+ ρ(x, y)2

2

(
Kx,y

1 − e−2Kx,y t
+ κ(y)2(e2Kx,y t − 1)

2Kx,y

)
(1.4)

holds for all strictly positive f ∈ Bb(M), x, y ∈ M and t > 0. As in the proofs of [6, Corol-
lary 1.2] and [9, Corollary 1.3], this implies the following heat kernel estimates and entropy-cost
inequality. When Pt obeys the log-Sobolev inequality for t > 0, the second inequality in Corol-
lary 1.3(2) below also implies the HWI inequality as shown in [4,5].
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Corollary 1.3. Assume (1.1) and that ∂M is either convex or empty. Let Z = ∇V for some
V ∈ C2(M) such that Pt is symmetric w.r.t. μ(dx) := eV (x) dx, where dx is the volume measure.
Let pt be the density of Pt w.r.t. μ. Assume that (1.1) holds.

(1) Let K̄(y) = K(B(y,2)). Then∫
M

pt(y, z) logpt (y, z)μ(dz)

�
√

t ∧ 1

(
K̄(y)

1 − e−2K̄(y)t
+ κ(y)2(e2K̄(y)t − 1)

2K̄(y)

)
+ log

P2t1(y) + μ(1 − Pt1)

μ(B(y,
√

t ∧ 1 ))

holds for all y ∈ M and t > 0.
(2) If μ is a probability measure and Pt1 = 1, then the Gaussian heat kernel lower bound

p2t (x, y)� exp

[
−ρ(x, y)2

2

(
Kx,y

1 − e−2Kx,y t
+ κ(y)2(e2Kx,y t − 1)

2Kx,y

)]
,

t > 0, x, y ∈ M,

and the entropy-cost inequality∫
M

(Ptf ) logPtf dμ

� inf
π∈C (μ,f μ)

∫
M×M

ρ(x, y)2

2

(
Kx,y

1 − e−2Kx,y t
+ κ(y)2(e2Kx,y t − 1)

2Kx,y

)
π(dx,dy),

t > 0,

hold for any probability density function f of μ, where C (μ,f μ) is the set of all couplings
of μ and f μ.

Proof. According to (1.4), the heat kernel lower bound in (2) follows from the proof of
[9, Corollary 1.3], while the other two inequalities can be proved as in the proof of [6, Corol-
lary 1.2]. Below we only present a brief proof of (1).

By an approximation argument we may apply (1.4) to f (z) := pt(y, z) so that

I :=
∫
M

pt(y, z) logpt(y, z)μ(dz)

� log
{
p2t (x, y) + 1 − Pt1(x)

} + ρ(x, y)2

2

(
Kx,y

1 − e−2Kx,y t
+ κ(y)2(e2Kx,y t − 1)

2Kx,y

)
.

Since Kx,y � K̄(y) for x ∈ B(y,1), this implies that

eIμ
(
B(y,

√
t ∧ 1)

)
exp

[
− t ∧ 1

2

(
K̄(y)

1 − e−2K̄(y)t
+ κ(y)2(e2K̄(y)t − 1)

2K̄(y)

)]

� eI

∫
exp

[
−ρ(x, y)2

2

(
Kx,y

1 − e−2Kx,y t
+ κ(y)2(e2Kx,y t − 1)

2Kx,y

)]
μ(dx)
M
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�
∫
M

{
p2t (x, y) + 1 − Pt1(x)

}
μ(dx) = P2t1(y) + μ(1 − Pt1).

This proves (1). �
We remark that the entropy upper bound in (1) is sharp for short time, since both

− logμ(B(y,
√

t )) and the entropy of the Gaussian heat kernel behave like d
2 log 1

t
for small

t > 0.

2. Proof of Theorem 1.1

We first observe that when PT 1 = 1 the equivalence of (3) and (4) is implied by the proof of
[12, Proposition 1.3]. Indeed, by (3)

|∇PT f |2 � {
PT f 2 − (PT f )2}( K(D)

1 − e−2K(D)T
+ cD(φ)2(e2K(D)T − 1)

2K(D) inf�(x,y) φ4

)

holds on the minimal geodesic �(x, y), so that the Harnack inequality in (4) follows from the first
part in the proof of [12, Proposition 1.3]. On the other hand, by the second part of the proof, the
inequality in (4) implies

|∇Ptf |2 � {
PT f 2}( K(D)

1 − e−2K(D)T
+ cD(φ)2(e2K(D)T − 1)

2K(D)φ4

)

on D. Replacing f by f − PT f (x), we obtain the inequality in (3) since ∇PT f = ∇PT (f −
PT f (x)) provided PT 1 = 1.

In the following three subsections, we prove (1) implying (2), (2) implying (3), and (3) im-
plying (1) respectively.

2.1. Proof of (1) implying (2)

We assume the curvature condition (1.1) and that ∂M is either empty or convex. To prove the
log-Harnack inequality in (2), we will make use of the coupling argument proposed in [1]. As
explained in [1, Section 3], we may and do assume that the cut-locus of the manifold is empty.

Now, let T > 0 and y ∈ D,x �= y be fixed. For any z, z′ ∈ M , let Pz,z′ :TzM → Tz′M be the
parallel transport along the unique minimal geodesic from z to z′. Let Xt solve the following Itô
type SDE on M

dIXt = √
2Φt dBt + Z(Xt)dt + N(Xt)dlt , X0 = x,

up to the life time ζ(x), where Bt is the d-dimensional Brownian motion, Φt is the horizontal
lift of Xt on the frame bundle O(M), and lt is the local time of Xt on ∂M if ∂M �= ∅. When
∂M = ∅, we simply take lt = 0 so that the last term in the equation disappears.

To construct another process starting at y such that it meets Xt before T and its hitting time
to ∂D, let Yt solve the SDE with Y0 = y

dI Yt = √
2PXt ,Yt Φt dBt + Z(Yt )dt −

√
ξ1(t)2 + ξ2(t)2 ∇ρ(Xt , ·)(Yt )dt + N(Yt )dl̃t ,

(2.1)

where l̃t is the local time of Yt on ∂M when ∂M �= ∅, and
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ξ1(t) = 2K(Dρ(x,y)) exp[−K(Dρ(x,y))t]
1 − exp[−2K(Dρ(x,y))T ] ρ(x, y)1{Yt �=Xt },

ξ2(t) = 2cD(φ)ρ(Xt , Yt )

φ(Yt )2
, t ∈ [0, T ].

Then Yt is well-defined before T ∧ τD(x,y)(x) ∧ τD(y), where

τD(y) := inf
{
t ∈ [

0, T ∧ ζ(x)
)
: Yt ∈ ∂D

}
, τD(x,y)(x) = inf

{
t � 0: Xt /∈ D(x,y)

}
.

Let

τ = inf
{
t ∈ [

0, ζ(x) ∧ ζ(y)
)
: Xt = Yt

}
,

where inf∅ = ∞ by convention.
Let Θ = τ ∧ T ∧ τD(y) ∧ τD(x,y)(x) and set

η(t) = 1√
2

√
ξ1(t)2 + ξ2(t)2 ∇ρ(·, Yt )(Xt ), t ∈ [0,Θ).

Define

R = exp

[
−

Θ∫
0

〈
η(t),Φt dBt

〉 − 1

2

Θ∫
0

∣∣η(t)
∣∣2 dt

]
.

We intend to prove

(i) R is a well-defined probability density with

E{R logR}� ρ(x, y)2

2

(
K(Dρ(x,y))

1 − e−2K(Dρ(x,y))T
+ cD(φ)2(e2K(Dρ(x,y))

T − 1)

2K(Dρ(x,y))φ(y)4

)
.

(ii) τ � T ∧ τD(y) ∧ τD(x,y)(x) holds Q-a.s., where Q := RP.

Once these two assertions are confirmed, by taking Yt = Xt for t � τ we see that Yt solves (2.1)
up to its life time ζ(y) = ζ(x) and XT = YT for T < ζ(x). Moreover, by the Girsanov theorem
the process

B̃t := Bt +
t∫

0

η(s)ds, t � 0

is a d-dimensional Brownian motion under Q and Eq. (2.1) can be reformulated as

dI Yt = √
2PXt ,Yt Φt dB̃t + Z(Yt )dt + N(Yt )dl̃t , Y0 = y. (2.2)

Combining this with the Young inequality (see [2, Lemma 2.4])

PT logf (y) = E
{
R1{T <ζ(y)} logf (YT )

} = E
{
R1{T <ζ(x)} logf (XT )

}
� ER logR + logE exp

[
1{T <ζ(x)} logf (XT )

]
= log

(
PT f (x) + 1 − PT 1(x)

) +ER logR

� log
(
PT f (x) + 1 − PT 1(x)

)
+ ρ(x, y)2

2

(
K(Dρ(x,y))

1 − e−2K(Dρ(x,y))T − 1
+ cD(φ)2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)
.

This gives the desired log-Harnack inequality.
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Below we prove (i) and (ii) respectively.

Lemma 2.1. For any n� 1, let

τn(y) = inf
{
t ∈ [

0, T ∧ ζ(x)
)
: ρ

(
Yt ,D

c
)
� n−1}

and

Θn = τ ∧ nT

n + 1
∧ τD(x,y)(x) ∧ τn(y).

Let Rn be defined as R using Θn in place of Θ . Then {Rn}n�1 is a uniformly integrable martin-
gale with ERn = 1 and

E{Rn logRn} � ρ(x, y)2

2

(
K(Dρ(x,y)

1 − e−2K(Dρ(x,y))T − 1
+ cD(φ)2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)

for n� 1. Consequently, (i) holds.

Proof. (i) follows from the first assertion and the martingale convergence theorem. Since before
time Θn the process η(t) is bounded, the martingale property and ERn = 1 is well-known. So,
it remains to prove the entropy upper bound. By the Itô formula we see that (cf. (2.3) and (2.4)
in [1])

dρ(Xt ,Yt ) � K(Dρ(x,y))ρ(Xt , Yt )dt −
√

ξ1(t)2 + ξ2(t)2 dt, t � Θn. (2.3)

Then

dρ(Xt ,Yt )
2 � 2K(Dρ(x,y))ρ(Xt , Yt )

2 dt − 4cD(φ)ρ(Xt , Yt )
2

φ(Yt )2
dt, t �Θn.

Note that (B̃t )t∈[0,Θn] is a d-dimensional Brownian motion under the probability Qn := RnP.
Combining this with (2.2) and using Itô’s formula along with the facts that the martingale part of
ρ(Xt ,Yt )

2 is zero and Nφ|∂D∩∂M � 0, we obtain

d

{
ρ(Xt ,Yt )

2

φ(Yt )4

}
� dMt − 4ρ(Xt ,Yt )

2

φ(Yt )6

{
cD(φ) + φ(Yt )Lφ(Yt ) − 5

∣∣∇φ(Yt )
∣∣2}dt

− 2K(Dρ(x,y))ρ(Xt , Yt )
2

φ(Yt )4
dt

� dMt − 2K(Dρ(x,y))ρ(Xt , Yt )
2

φ(Yt )4
dt, t �Θn,

where

dMt := −4ρ(Xt ,Yt )
2

φ(Yt )5

〈∇φ(Yt ),PXt ,Yt Φt dB̃t

〉
is a Qn-martingale for t � Θn. This implies

EQn

{
ρ(Xt∧Θn,Yt∧Θn)

2

φ(Yt∧Θn)
4

}
� ρ(x, y)2

φ(y)4
e2K(Dρ(x,y))t , t � 0.

Hence,
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E{Rn logRn} = 1

2
EQn

Θn∫
0

∣∣η(t)
∣∣2 dt = 1

4
EQn

Θn∫
0

{
ξ1(t)

2 + ξ2(t)
2}dt

� K(Dρ(x,y))
2ρ(x, y)2

(1 − e−2K(Dρ(x,y))T )2

T∫
0

e−2K(Dρ(x,y))t dt

+ cD(φ)2

T∫
0

EQn

ρ(Xt∧Θn,Yt∧Θn)
2

φ(Yt∧Θn)
4

dt

� K(Dρ(x,y))ρ(x, y)2

2(1 − e−2K(Dρ(x,y))T )
+ cD(φ)2(e2K(Dρ(x,y))T − 1)ρ(x, y)2

2K(Dρ(x,y))φ(y)4
, s > 0.

�
Lemma 2.2. We have τ � T ∧ τD(y) ∧ τD(x,y)(x), Q-a.s.

Proof. By (2.3) we have
Θ∫

0

{
ξ1(t) + ξ2(t)

}
dt = lim

n→∞

Θn∫
0

{
ξ1(t) + ξ2(t)

}
dt < ∞. (2.4)

Since under Q the process Yt is generated by L, as observed at the beginning of [7, Section 4]
we have

τD(y)∫
0

1

Φ(Yt )2
dt = ∞, Q-a.s.

Then (2.4) implies that Q-a.s.

τD(y) > τD(x,y)(x) ∧ τ ∧ T . (2.5)

Moreover, it follows from (2.3) that

ρ(Xt ,Yt ) � eK(Dρ(x,y))tρ(x, y) −
t∫

0

eK(Dρ(x,y))(t−s)ξ1(s)ds

� e−2K(Dρ(x,y))t − e−2K(Dρ(x,y))T

1 − e−2K(Dρ(x,y))T
eK(Dρ(x,y))tρ(x, y)

� ρ(x, y)1[0,T ](t), t ∈ [0,Θn].
So, τD(x,y) � τD(y) and T � τ . Combining these inequalities with (2.5) we complete the
proof. �
2.2. Proof of (2) implying (3)

We will present below a more general result, which works for sub-Markovian operators on
metric spaces. Let (E,ρ) be a metric space, and let P be a sub-Markovian operator on Bb(E).

δ(f )(x) = lim sup
|f (y) − f (x)|

ρ(x, y)
, x ∈ E, f ∈ Bb(E).
y→x
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If in particular E = M and f is differentiable at point x, then δ(f )(x) = |∇f |(x). So, (2) imply-
ing (3) is a direct consequence of the following result.

Proposition 2.3. Let x ∈ E be fixed. If there exists a positive continuous function Φ on E such
that the log-Harnack inequality

P logf (y) � log
{
Pf (x) + 1 − P 1(x)

} + Φ(y)ρ(x, y)2, f > 0, f ∈ Bb(E), (2.6)

holds for small ρ(x, y), then

δ(Pf )2(x) � 2Φ(x)
{
Pf 2(x) − (Pf )2(x)

}
, f ∈ Bb(E). (2.7)

Proof. Let f ∈ Bb(E). According to the proof of [8, Proposition 2.3], (2.6) for small ρ(x, y)

implies that Pf is continuous at x. Let {xn}n�1 be a sequence converging to x, and denote
εn = ρ(xn, x). For any positive constant c > 0, we apply (2.6) to cεnf + 1 in place of f , so that
for large enough n

P log(cεnf + 1)(xn)� log
{
P(cεnf + 1)(x) + 1 − P 1(x)

} + Φ(xn)ε
2
n.

Noting that for large n (or for small εn) we have

P log(cεnf + 1)(xn) = P

(
cεnf − 1

2
(cεn)

2f 2
)

(xn) + o
(
ε2
n

)
= cεnPf (x) + cε2

n

Pf (xn) − Pf (x)

ρ(xn, x)
− 1

2
(cεn)

2Pf 2(x) + o
(
ε2
n

)
,

log
{
P(cεnf + 1)(x) + 1 − P 1(x)

} = cεnPf (x) − 1

2
(cεn)

2(Pf )2(x) + o
(
ε2
n

)
.

We obtain

c lim sup
n→∞

Pf (xn) − Pf (x)

ρ(xn, x)
� c2

2

{
Pf 2(x) − (Pf )2(x)

} + Φ(x), c > 0.

Exchanging the positions of xn and x, we also have

c lim sup
n→∞

Pf (x) − Pf (xn)

ρ(xn, x)
� c2

2

{
Pf 2(x) − (Pf )2(x)

} + Φ(x), c > 0.

Therefore,

δ(Pf )(x) � c

2

{
Pf 2(x) − (Pf )2(x)

} + Φ(x)

c
, c > 0.

This implies (2.7) by minimizing the upper bound in c > 0. �
2.3. Proof of (3) implying (1)

The proof of RicZ � −K is more or less standard by using the Taylor expansions for small
T > 0. Let x ∈ M \∂M and D = B(x, r) ⊂ M \∂M for small r > 0 such that φ := r2 −ρ(x, ·)2 ∈
CD . It is easy to see that for f ∈ C∞

0 (M) and small t > 0,

|∇Ptf |2(x) = |∇f |2(x) + 2t〈∇f,∇Lf 〉 + o(t),

K(D)

−2K(D)t
+ cD(φ)2(e2K(D)t − 1)

4
= 1 + K(D) + o(1).
1 − e 2K(D)φ(x) 2t 2



M. Arnaudon et al. / Bull. Sci. math. 138 (2014) 643–655 653
Moreover (see [10, (3.6)]),

Ptf
2(x) − (Ptf )2(x) = 2t |∇f |2(x) + t2{2〈∇f,∇Lf 〉 + L|∇f |2}(x) + o(t).

Combining these with (2.7) we obtain

Γ2(f )(x) := 1

2
L|∇f |2(x) − 〈∇f,∇Lf 〉(x) � −K(D)|∇f |2(x) = −

(
sup

B(x,r)

K
)
|∇f |2(x).

Letting r ↓ 0, we arrive at Γ2(f )(x) � −K(x) for x ∈ M \ ∂M and f ∈ C∞
0 (M), which is

equivalent to (1.1).
Next, we assume that ∂M �= ∅ and intend to prove from (3) that the second fundamental form I

of ∂M is non-negative, i.e. ∂M is convex. When M is compact, the proof was done in [10] (see
the proof of Theorem 1.1 therein for (7) implying (1)). Below we show that the proof works for
general setting by using a localization argument with a stopping time.

Let x ∈ ∂M and r > 0. Define

σr = inf
{
s � 0: ρ(Xs, x) � r

}
,

where Xs is the L-reflecting diffusion process starting at point x. Let ls be the local time of
the process on ∂M . Then, according to [13, Lemmas 2.3 and 3.1], there exist two constants
C1,C2 > 0 such that

P(σr � t)� e−C1/t , t ∈ (0,1], (2.8)

and ∣∣∣∣Elt∧σr − 2
√

t√
π

∣∣∣∣� C2t, t ∈ [0,1], (2.9)

where (2.8) is also ensured by [2, Lemma 2.3] for ∂M = ∅. Let f ∈ C∞
0 (M) satisfy the Neumann

boundary condition. We aim to prove I(∇f,∇f )(x) � 0. To apply Theorem 1.1(3), we construct
D and φ ∈ CD as follows.

Firstly, let ϕ ∈ C∞
0 (∂M) such that ϕ(x) = 1 and suppϕ ⊂ ∂M ∩ B(x, r/2), where B(x, s) =

{z ∈ M: ρ(z, x) < s} for s > 0. Then letting φ0(expy[sN]) = ϕ(y) (where y ∈ ∂M , s � 0), we
extend ϕ to a smooth function in a neighborhood of ∂M , say ∂r0M := {z ∈ M: ρ(z, ∂M) < r0}
for some r0 ∈ (0, r) such that ρ(·, ∂M) is smooth on (∂r0M) ∩ B(x, r). Obviously, φ0 sat-
isfies the Neumann boundary condition. Finally, for h ∈ C∞([0,∞)) with h|[0,r0/4] = 1 and
h|[r0/2,∞) = 0, we take φ = φ0h(ρ(·, ∂M)) and D = {z ∈ M: φ(z) > 0}. Then φ(x) = 1,
φ|∂D\∂M = 0, Nφ|∂M = Nφ0|∂M = 0, and D ⊂ B(x, r).

Once D and φ ∈ CD are given, below we calculate both sides of the gradient inequality in (3)
respectively.

According to (2.8), for small t > 0 we have

Ptf
2(x) = Ef 2(Xt∧σr ) + o

(
t2) = f 2(x) +E

t∧σr∫
0

Lf 2(Xs)ds + o
(
t2)

= f 2(x) + 2E

t∧σr∫
0

(f Lf )(Xs)ds + 2E

t∧σr∫
0

|∇f |2(Xs)ds + o
(
t2). (2.10)

Noting that by the Neumann boundary condition

E
∣∣f (x) − f (Xs∧σr )

∣∣2 �
∥∥L

(
f (x) − f

)2∥∥ s, s � 0,
∞
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we have

E

t∧σr∫
0

(f Lf )(Xs)ds − f (x)E

t∧σr∫
0

Lf (Xs)ds

= E

t∧σr∫
0

Lf (x)
{
f (x) − f (Xs)

}
ds +E

t∧σr∫
0

(
Lf (Xs) − Lf (x)

)(
f (x) − f (Xs)

)
ds

� ‖Lf ‖∞E

t∧σr∫
0

s∫
0

du +E

t∫
0

√
E

∣∣Lf (Xs∧σr ) − Lf (x)
∣∣2 ·E∣∣f (x) − f (Xs∧σr )

∣∣2 ds

= o
(
t3/2). (2.11)

Moreover, by the Itô formula and the fact that N |∇f |2 = 2I(∇f,∇f ) holds on ∂M (see e.g. [10,
(3.8)]), we have

E|∇f |2(Xs∧σr ) = |∇f |2(x) +E

s∧σr∫
0

L|∇f |2(Xu)du + 2

s∧σr∫
0

I(∇f,∇f )(Xu)dlu

� |∇f |2(x) + 2I(r)Els∧σr + O(t),

where

I(r) := sup
{
I(∇f,∇f )(y): y ∈ ∂M ∩ B(x, r)

}
.

Combining this with (2.10), (2.11) and using (2.8) and (2.9), we obtain

Ptf
2(x) � f 2(x) + 2f (x)E

t∧σr∫
0

Lf (Xs)ds + Ct3/2I(r) + o
(
t3/2) (2.12)

for some constant C > 0 and small t > 0.
On the other hand, by (2.8) we have

(Ptf )2(x) =
(

f (x) +E

t∧σr∫
0

Lf (Xs)ds + o
(
t2))2

= f 2(x) + 2tf (x)E

t∧σr∫
0

Lf (Xs)ds + o
(
t2).

Combining this with (2.12) and noting that

K(D)

1 − e−2K(D)t
+ cD(φ)2(e2K(D)t − 1)

2K(D)φ(x)4
= 1

2t
+ O(1)

holds for small t > 0, we arrive at

{
Ptf

2 − (Ptf )2}(x)

(
K(D)

1 − e−2K(D)t
+ cD(φ)2(e2K(D)t − 1)

2K(D)φ(x)4

)
� |∇f |2(x) + CI(r)

√
t + o

(
t1/2)
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for small t > 0. Combining this with the gradient inequality in (3) and noting that

|∇Ptf |2(x) =
∣∣∣∣∣∇f (x) +

t∫
0

∇PsLf (x)ds

∣∣∣∣∣
2

= |∇f |2(x) + O(t),

we conclude that

I(r) � lim
t→0

1

C
√

t

{{
Ptf

2 − (Ptf )2}(x)

(
K(D)

1 − e−2K(D)t
+ cD(φ)2(e2K(D)t − 1)

2K(D)φ(x)4

)

− |∇Ptf |2(x)

}
� 0.

Therefore, I(∇f,∇f )(x) = limr→0 I(r) � 0.
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