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1. Lecture 1

1.1. Some prerequisites for the whole lecture course. The following is assumed known.

1) Holomorphic functions in one variable.

2) Basics on topology: topological spaces, continuous maps.

3) basics on topological manifolds: definition.

4) Definition of a complex manifold.

1.2. Definition of a Riemann surface. Since this course is called “Riemann surfaces”, the

first and main definition of the course is the one of a Riemann surface.

Definition 1.1. A Riemann surface is a connected 1-dimensional complex manifold.

Convention. We will usually write RS for Riemann surface.

Let us clarify the meaning of Definition 1.1.

Let X be a 2-dimensional real topological manifold.

Definition 1.2. Let U ⊂ X be an open subset. Let V ⊂ C be an open subset of the set

of complex numbers (equipped with the standard Euclidean topology). Let ϕ : U → V be a

homeomorphism. Then ϕ : U → V is called a complex chart on X.

X
U

C

V

ϕ

Definition 1.3. Two complex charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are called holomorphically

compatible if

ϕ2 ◦ ϕ−1
1 |ϕ1(U1∩U2) : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is a holomorphic map. By abuse of notation we will often denote it by ϕ2 ◦ ϕ−1
1 .

1

http://en.wikipedia.org/wiki/Bernhard_Riemann
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X

U1 U2

V1

ϕ1(U1 ∩ U2)

V2

ϕ2(U1 ∩ U2)

ϕ1 ϕ2

ϕ2 ◦ ϕ−1
1

Exercise. ϕ2 ◦ ϕ−1
1 is then automatically biholomorphic.

Definition 1.4. A system of holomorphically compatible complex charts on X

A = {ϕi : Ui → Vi, i ∈ I}

such that
⋃
i∈I Ui = X is called a complex atlas on X.

Definition 1.5. Two atlases A1 and A2 on X are called holomorphically compatible if every

chart from A1 is holomorphically compatible with every chart from A2.

Exercise. Holomorphic equivalence is an equivalence relation.

Definition 1.6. A complex structure on X is an equivalence class of complex atlases.

Remark 1.7. In order to define a complex structure on X it is enough to give a complex

atlas on X. Then two complex structures are equal if and only if the corresponding atlases are

equivalent.

Definition 1.8. Let A be a complex atlas on X. Put

Amax = {complex charts on X holomorphically compatible with the charts from A}.

Then Amax is the maximal atlas holomorphically compatible with A.

Therefore, two atlases A and B are equivalent if and only if Amax = Bmax.
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Definition 1.9. A RS is a pair (X,Σ), where X is a connected 2-dimensional real topological

manifold and Σ is a complex structure on X.

Equivalently: a RS is a pair (X,A), where X is a connected 2-dimensional real topological

manifold and A is a complex atlas on X.

For those who remember the definition of a complex manifold is clear now that the last

definition is just the definition of a 1-dimensional complex manifold.

Convention. If (X,Σ) is a RS, then “a chart on X” means a chart in the maximal atlas on

X corresponding to Σ.

Examples 1.10 (of Riemann surfaces). 1) X = C, A = {C id−→ C}.

2) Any domain in U ⊂ C (open connected subset of C) , A = {U id−→ U}. More generally,

let X be a RS and let U ⊂ X be a domain. Then U is a RS as well. As an atlas one can

take the restrictions to U of the complex charts on X.

3) Riemann sphere Ĉ(= P1 = P1(C)). As a set Ĉ = C t {∞}, where ∞ is just a symbol.

The topology is defined as follows. U ⊂ Ĉ is open if and only if either ∞ 6∈ U and

U ⊂ C is open or ∞ ∈ U and C \ U is compact in C. This defines a compact Hausdorff

space homeomorphic to the two-dimensional sphere S2. Put U0 = C and U1 = Ĉ \ {0} =

V∗ t {∞}. Define ϕ0 : U0 → C = id : C→ C and define ϕ1 : U1 → C by

ϕ1(z) =


1
z
, z 6=∞;

0, otherwise.

Exercise. The complex charts ϕ0 and ϕ1 are holomorphically compatible and constitute

a complex atlas on Ĉ.

4) Complex tori.

Consider C as a 2-dimensional vector space over R. Let {ω1, ω2} be its basis over R.

Let Γ = Z · ω1 + Z · ω2 = {nω1 + mω2 | m,n ∈ Z} be the corresponding lattice. It is a

subgroup in the abelian group C. Consider the quotient homomorphism C π−→ C/Γ and

introduce on C/Γ the quotient topology, i. e., U ⊂ C/Γ is open if and only if π−1(U) is

open in C.

For every a ∈ C put Va = {a + t1ω1 + t2ω2 | t1, t2 ∈ (0, 1)}, i. e., the interior of the

parallelogram with vertices at a, a+ ω1, a+ ω2, a+ ω1 + ω2.
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a a+ ω1

a+ ω1 + ω2a+ ω2

Va are called standard parallelograms with respect to the lattice Γ.

Put Ua := π(Va). Note that π|Va : Va → Ua is bijective and moreover a homeomor-

phism. Put ϕa := (π|Va)−1 : Ua → Va. This gives a complex atlas on C/Γ.

Exercise. Check the details.

5) 1-dimensional complex submanifolds in a complex manifold.

1.3. Definition of a holomorphic function of a Riemann surface. Structure sheaf.

Definition 1.11 (Holomorphic functions). Let X be a RS. Let Y ⊂ X be an open subset.

Then a function Y
f−→ C is called holomorphic on Y is for every chart ϕ : U → V on X the

composition f ◦ ϕ−1 : ϕ(U ∩ Y )→ C is a holomorphic function.

Let OX(Y ) denote the set of all holomorphic functions on Y .

Exercise. OX(Y ) is a C-algebra.

Remark 1.12. For every open subset U ⊂ X we obtain a C-algebra OX(U) of holomorphic

functions on U . For every two open subsets U and W in X such that U ⊂ W , the restriction

map OX(W )→ OX(U), f 7→ f |U is a homomorphism of C-algebras. The collection of all these

data is denoted OX and is called the structure sheaf on X.

1.4. Riemann removable singularities theorem for Riemann surfaces.

Theorem 1.13 (Riemann removable singularities theorem). Let X be a RS. Let U ⊂ X be an

open subset. Let a ∈ U , let f ∈ OX(U \{a}) be bounded. Then there exists a unique f̄ ∈ OX(U)

such that f̄ |U\{a} = f .

Proof. Let ϕ : U ′ → V ′ be a chart around a. Then f ◦ϕ−1 is a holomorphic bounded function on

ϕ(U ′∩U) \ {ϕ(a)} ⊂ C. Therefore, there exists a unique holomorphic function F on ϕ(U ′∩U)

such that

F |ϕ(U ′∩U)\{ϕ(a)} = f ◦ ϕ−1.

Therefore, there is a unique holomorphic function g on U ∩U ′ such that g|U∩U ′\{a} = f |U∩U ′\{a}.

Hence ∃! f̄ ∈ OX(U) with f̄ |U\{a} = f . �
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1.5. Exercises.

Exercise 1. 1) Check that the complex charts on Ĉ introduced in the lecture are holomorphi-

cally compatible and constitute a complex atlas on Ĉ.

2) Prove that Ĉ is homeomorphic to the complex projective line P1 = P1(C).

Exercise 2. Let Γ = Zω1 + Zω2 be a lattice in C.

1) Fill in the gaps in the definition of the complex structure on C/Γ.

2) Let S1 denote the real 1-sphere. Show that C/Γ is homeomorphic to S1 × S1.

Hint: Let p1, p2 be the R-basis of Hom(C,R) dual to ω1, ω2. Consider the map C/Γ →

S1 × S1, [z] 7→ (exp(2πip1(z)), exp(2πip2(z))). Here [z] denotes the equivalence class of a

complex number z in C/Γ.

Exercise 3. In this exercise all subsets of complex manifolds are equipped with the induced

topology.

1) Show that the following subspaces of C2 or C3 are complex submanifolds, hence they are

Riemann surfaces. Describe the complex structures on each of them.

X1 = {(z1, z2) ∈ C2 | 17z1 + 27z2 = 0}, X2 = {(z1, z2) ∈ C2 | z1 − z2
2 = 0},

X3 = {(z1, z2) ∈ C2 | z1z2 − 1 = 0}, X4 = {(z0, z1, z2) ∈ C3 | z1 − z2
0 = 0, z2 − z3

0 = 0}.

2) Are the following subsets of C2 complex submanifolds?

X5 = {(z1, z2) ∈ C2 | z2
1 − z3

2 = 0}, X6 = {(z1, z2) ∈ C2 | z1z2 = 0}.

Can you equip these subspaces of C2 with a structure of a Riemann surface?

Hint: Have a look at the map C → C2, t 7→ (t3, t2). Study the connected components of

X6 \ {(0, 0)}.

Exercise 4. 1) Describe all holomorphic functions on Ĉ.

Hint: Use the compactness of Ĉ and your knowledge about bounded holomorphic functions on

the complex plane C.

2) Let Γ be a lattice in C. Can you describe all holomorphic functions on the torus C/Γ using

a similar reasoning as in part 1) of this exercise?
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2. Lecture 2

In the previous lecture we defined

• Riemann surfaces;

• for a RS X the sheaf OX of holomorphic functions on X (sheaf of C-algebras).

In other words, we defined the objects we are going to study.

In order to be able to “compare” the objects, one usually needs morphisms (maps) between

them.

Definition 2.1. 1) Let X and Y be RS. Then a map f : X → Y is called holomorphic if

for every charts ϕ : U → V on X and ψ : U ′ → V ′ on Y with f(U) ⊂ U ′ the composition

ψ ◦ f |U ◦ ϕ−1 : V → V ′ is a holomorphic map.

C C
ψ ◦ f |V ◦ ϕ−1

fU

ϕ

V

U ′

ψ

V ′

X Y

2) Equivalently, the map f is holomorphic if for every open U ⊂ Y and for every h ∈ OY (U)

the function f ∗h := h ◦ f : f−1(U)→ C belongs to OX(f−1U).

Exercise. Prove the equivalence of the statements of Definition 2.1.

Convention. Holomorphic maps of RS and morphisms of RS are just different names for the

same notion.

Remark 2.2. It follows that the composition of morphisms is a morphism as well. Therefore,

Riemann surfaces constitute a full subcategory in the category of complex manifolds.
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Theorem 2.3 (Identity theorem). Let X, Y be RS, let f1, f2 : X → Y be two morphisms.Let

A ⊂ X be a subset such that A contains a limit point a of itself. If f1|A = f2|A, then f1 = f2.

Proof. Let S ⊂ X be the set of points x ∈ X that have an open neighbourhood U 3 x such

that f1|U = f2|U . Then S is open by the construction. Note that S 6= ∅. Indeed, by the identity

theorem for C, a ∈ S. Our idea is to show that S is closed. Then by the connectedness of X

either S = X or S = ∅, hence S = X and f1 = f2.

So, let b be a limit point of S. Then by the continuity of f1 and f2 we conclude that f1(b) =

f2(b). By the identity theorem for C we conclude that f1 and f2 equal in a neighbourhood of

b, hence b ∈ S, which demonstrates that S is closed. �

Example 2.4 (Examples of morphism of RS). 1) The quotient map C → C/Γ, where Γ is a

lattice in C, is a holomorphic map.

2) Let Γ and Γ′ be two lattices in C. Let α ∈ C∗ and assume that α · Γ ⊂ Γ′. Then the map

C/Γ→ C/Γ′, [z] 7→ [αz],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if α · Γ = Γ′.

3) The map Ĉ→ Ĉ, given by

z 7→


1
z
, z 6∈ {0,∞},

0, z =∞,

∞, z = 0

is a holomorphic map from Ĉ to Ĉ.

4) Consider two submanifolds X3 and X2 of C2 from Exercise 3. The map

X3 → X2, (z1, z2) 7→ (z2
2 , z2)

is a morphism of RS.

Definition 2.5 (Meromorphic functions). 1) Let X be a RS. Let Y ⊂ X be an open subset.

A meromorphic function on Y is by definition a holomorphic function on Y \ P , where P ⊂ Y

is a subset of isolated points and and for every p ∈ P the limit lim
x→p
|f(x)| exists and equals ∞.

2) The points of P are called the poles of f .

3) MX(Y ) denotes the set of meromorphic functions on Y ⊂ X.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 8

Exercise. Let X be a Riemann surface and let Y be an open subset in X. Check that the set

MX(Y ) of meromorphic functions on Y has a natural structure of a C-algebra and OX(Y ) is

naturally included in MX(Y ) as a C-subalgebra. This also defines a structure of an OX(Y )-

module on MX(Y ).

Example 2.6. 1) Consider Y = C = Ĉ \ {∞} as an open subset of Ĉ and let f be the identity

function of C → C, z 7→ z. Then f is a holomorphic function on Y . Since lim
z→∞
|f(z)| =

lim
z→∞
|z| =∞, we conclude that idC can be seen as an element of MĈ(Ĉ).

2) Let f ∈ C[z] be a polynomial in one variable. One can consider it as a function on C. This

function is holomorphic. Using arguments similar to the previous ones, one concludes that

every polynomial in one variable f(z) ∈ C[z] can be seen as an element of MĈ(Ĉ).

Theorem 2.7. Let X be a RS. There is a 1 : 1 correspondence

MX(X)←→ {morphisms X → Ĉ not identically ∞}.

Proof. “→”. Let f ∈MX(X). Let P be the set of poles of f . Define f̂ : X → Ĉ by

f̂(z) =

f(z), z 6∈ P

∞, otherwise.

Then f̂ is a continuous map (notice that it is enough to check it at poles). So by Riemann

removable singularity theorem f̂ is holomorphic.

“←”. Consider g : X → Ĉ. If the set g−1(∞) contains a limit point, by identity theorem

g(z) =∞ for all x ∈ X, therefore g−1(∞) does not contain limit points and hence it is a subset

of isolated points. Denote f = g|X\g−1(∞) : X \ g−1(∞) → C. This is a holomorphic function

on X \ g−1(∞). For every p ∈ g−1(∞) one checks lim
z→p
|f(z)| =∞. This means f ∈MX(X).

One sees that the constructed maps are inverse to each other. �

Corollary 2.8. Non-trivial (non-zero) meromorphic functions may have only isolated zeroes

and poles.

Proof. Note that the poles of meromorphic function are isolated by definition.

Assume a is a non-isolated zero of f ∈MX(X), i. e., there exists a sequence ai with lim
i→∞

ai = a

such that f(ai) = 0, f(a) = 0. Then by the identity theorem f̂ = 0 as a morphism X → Ĉ.

Therefore, f = 0. �

Claim. MX(Y ) is a field.
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Proof. If f ∈ MX(Y ) such that f 6= 0, then
1

f
∈ MX(Y ) as well since the zeroes of f become

the poles of
1

f
. �

Example 2.9. As mentioned in Example 2.6, polynomials in one variable can be seen as

meromorphic functions on Ĉ. By the Claim above we conclude that every rational function in

one variable f(z)
g(z)

, f, g ∈ C[z], g 6≡ 0, can be seen as a meromorphic function on Ĉ as well. So

the field of the rational functions in one variable

C(z) :=

{
f(z)

g(z)
| f, g ∈ C[z] (polynomials in z), g 6≡ 0

}
is a subfield in MĈ(Ĉ).

Exercise. Show that every meromorphic function on Ĉ is rational, i. e.,MĈ(Ĉ) coincides with

C(z).

Theorem (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X → Y be a

non-constant holomorphic map. Let a ∈ X, b := f(a) ∈ Y . Then there exists k > 1 such that

locally around a the morphism f looks as

z 7→ zk,

i. e., there exist a chart U
ϕ−→ V , a ∈ U , ϕ(a) = 0, and a chart U ′

ψ−→ V ′, b ∈ U ′, ψ(b) = 0,

such that f(U) ⊂ U ′ and ψ ◦ f |U ◦ ϕ−1(z) = zk.

a

b

C

a

b

C

zk

fU

ϕ

V0

U ′

ψ

V ′ 0

X Y
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2.1. Exercises.

Exercise 5 (Examples of morphisms of Riemann surfaces). Check using the definition of a

holomorphic map that the following maps between Riemann surfaces are holomorphic.

1) The quotient map C→ C/Γ, where Γ is a lattice in C, is a holomorphic map.

2) Let Γ and Γ′ be two lattices in C. Let α ∈ C∗ and assume that α · Γ ⊂ Γ′. Then the map

C/Γ→ C/Γ′, [z] 7→ [αz],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if α · Γ = Γ′.

3) The map Ĉ→ Ĉ, given by

z 7→


1
z
, z 6∈ {0,∞},

0, z =∞,

∞, z = 0

is a holomorphic map from Ĉ to Ĉ.

4) Consider two submanifolds X3 and X2 of C2 from Exercise 3. The map

X3 → X2, (z1, z2) 7→ (z2
2 , z2)

is a morphism of RS.

Exercise 6. Show that the set of meromorphic functions on Ĉ coincide with the set of rational

functions {
f(z)

g(z)
| f, g ∈ C[z] (polynomials in z), g 6≡ 0

}
.

Hint: One could follow the following steps. Let F , F 6≡ 0, be a meromorphic function on Ĉ.

• Note that F has only finitely many zeros and poles.

• There are two possibilities: ∞ is either a pole of F or not.

• If ∞ is not a pole of F , consider the poles a1, . . . , an of F . Consider the principal parts

hν of F at aν , ν = 1, . . . , n, and observe that F −
n∑
ν=1

hν is a holomorphic function on Ĉ.

So it must be constant and hence F is a rational function.

• If ∞ is a pole of F , consider the function 1
F

and show as above that it is rational.

Exercise 7. Let Γ be a lattice in C. Then a meromorphic function f ∈MC(C) is called doubly

periodic (or elliptic) with respect to Γ if f(z) = f(z + γ) for all z ∈ C and for all γ ∈ Γ.
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1) Show that there is a one-to-one correspondence between elliptic functions on C with respect

to Γ and meromorphic functions on C/Γ.

2) Show that there are only constant holomorphic doubly periodic functions.
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3. Lecture 3

In the previous lecture we stated the following theorem.

Theorem 3.1 (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X → Y be a

non-constant holomorphic map. Let a ∈ X, b := f(a) ∈ Y . Then there exists k > 1 such that

locally around a the morphism f looks as

z 7→ zk,

i. e., there exist a chart U
ϕ−→ V , a ∈ U , ϕ(a) = 0, and a chart U ′

ψ−→ V ′, b ∈ U ′, ψ(b) = 0,

such that f(U) ⊂ U ′ and ψ ◦ f |U ◦ ϕ−1(z) = zk.

a

b

C

a

b

C

zk

fU

ϕ

V0

U ′

ψ

V ′ 0

X Y

Proof. There exists a chart ψ : U ′ → V ′ around b such that ψ(b) = 0. Then f−1(U ′) is open

and contains a.

There exists a chart around a mapping a to 0. Intersecting with f−1(U ′) we obtain a chart

Ũ
ϕ̃−→ Ṽ such that f(Ũ) ⊂ U ′ and ϕ̃(a) = 0.

Consider F̃ := ψfϕ̃−1 : Ṽ → V ′. Since F̃ (0) = 0, one can write F̃ as F̃ (z) = zk · G̃(z),

G̃(z) 6= 0 in a neighbourhood W of 0. Since G̃(0) 6= 0, shrinking W if necessary we may assume

that there exists a holomorphic function H on W such that Hk(z) = G̃(z). Indeed, shrinking

W if necessary we may assume that there exists a branch of the complex logarithmic function

defined around G̃(W ). Then H(z) := exp( 1
k

ln G̃(z)) has the required property.
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We obtain F̃ (z) = zk · Hk(z) = (zH(z))k. Consider ξ : W → V ′, z 7→ zH(z). It is a

biholomorphic map between W (possibly after shrinking W ) and some neighbourhood of 0

in V ′. Consider ϕ : ϕ̃−1(W )
ϕ̃−→ W

ξ−→ V ′. Then ψfϕ−1(z) = ψfϕ̃−1ξ−1(z) = F̃ (ξ−1(z)) =

(ξ−1(z)H(ξ−1(z)))k = (ξ(ξ−1(z)))k = zk. �

Definition 3.2. The number k from the previous theorem is uniquely determined for a given

holomorphic map f and a given point a ∈ X. It is called the multiplicity of f at the point a

and will be denoted by multa f .

Exercise. Prove that multa f is well defined.

Remark 3.3 (Geometrical meaning of multa f). In every neighbourhood U0 of a there exist a

neighbourhood U 3 a and a neighbourhood W 3 b such that for every y ∈ W \ {b}

#f−1(y) ∩ U = k,

i. e., U contains exactly k preimages of y.

Remark 3.4 (Computation of multa f). Note that in order to compute the multiplicity of

a holomorphic map at a point it is enough just to go through the first part of the proof of

Theorem 3.1 and to find the decomposition F̃ (z) = zkG̃(z), G̃(0) 6= 0.

Exercise. Let f(z) ∈ C[z] be a polynomial of degree k. This gives the holomorphic map

f̂ : Ĉ −→ Ĉ, f(z) =

f(z), z ∈ C

∞, z =∞.

Show that f̂ has multiplicity k at ∞. What is the multiplicity of f̂ at 0?

Corollary 3.5. Every non-constant holomorphic map of RS f : X → Y is open.

Proof. f is locally z 7→ zk, which is open. Since being open is a local property, f is open. �

Corollary 3.6. Let f : X → Y be an injective morphism of RS. Then f : X → f(X) is

biholomorphic.

Proof. Injectivity implies that f is locally z 7→ z. Then the inverse of f is locally z 7→ z and

hence it is holomorphic. �

Theorem 3.7. Let X
f−→ Y be a non-constant morphism of RS. Let X be compact. Then f is

surjective and Y is compact as well.
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Proof. Since f(X) is open and compact it is open and closed. Therefore, f(X) = Y since Y is

connected. �

Exercise. Let Γ be a lattice in C. Show that every non-constant elliptic function with respect

to Γ attains every value b ∈ Ĉ.

Corollary 3.8. Let X be a compact RS. Then OX(X) = C.

Proof. Let f ∈ OX(X) and consider it as a holomorphic map X
f−→ C. If f is non-constant,

then C must be compact, which is wrong. So f is a constant function. �

Remark 3.9. As we saw in Exercise 6 this implies that every meromorphic function on Ĉ is

rational.

Definition 3.10 (Elliptic functions1). Let Γ be a lattice in C. Then a meromorphic function

f ∈ MC(C) is called doubly periodic (or elliptic) with respect to Γ if f(z) = f(z + γ) for all

z ∈ C and for all γ ∈ Γ.

Claim. There is a one-to-one correspondence between elliptic functions on C with respect to

Γ and meromorphic functions on C/Γ. In particular there are only constant doubly periodic

holomorphic functions on C.

Proof. Every elliptic function f : C → Ĉ uniquely factorizes through the canonical projection

C π−→ C/Γ and hence defines a holomorphic map C/Γ→ Ĉ.

C

C/Γ

Ĉ
f

//

π �� f̂

??

Every holomorphic map f̂ : C/Γ→ Ĉ defines f = f̂ ◦ π.

This gives the required one-to-one correspondence. �

Exercise. Try to invent a non-trivial elliptic function with respect to a given lattice.

Definition 3.11. Let X be a topological space. Then a path in X is a continuous map

γ : [0, 1] → X. The point γ(0) is called the initial point of γ, the point γ(1) is called the end

point of γ.

If γ(0) = γ(1), then γ is called a closed path.

1cf. Exercise 7
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Definition 3.12. A topological space X is called path-connected if every two points a, b ∈ X

can be connected by a path.

Reminder 3.13. Path connectedness implies connectedness.

Exercise. Riemann surfaces are path connected.

Definition 3.14. Two paths γ, δ from a to b are called homotopic if there exists a continuous

map

H : [0, 1]× [0, 1]→ X

such that

H(t, 0) = γ(t), H(t, 1) = δ(t) for all t ∈ [0, 1]

H(0, s) = a, H(1, s) = b for all s ∈ [0, 1].

One writes γ ∼ δ if γ and δ are homotopic.

Claim. Homotopy is an equivalence relation on the set of all paths from a to b.

Definition 3.15 (Composition). Let X be a topological space. Let γ be a path from a to b.

Let δ be a path from b to c. Define

(γ · δ)(t) =

γ(2t), t ∈ [0, 1
2
]

δ(2t− 1), t ∈ [1
2
, 1].

Definition 3.16 (Inverse curve). Let X be a topological space. Let γ be a path from a to b.

Define

γ−1(t) = γ(1− t), t ∈ [0, 1].

Claim. The composition of paths and the inverse path are compatible with the homotopy equiv-

alence, i. e., if γ ∼ γ′, δ ∼ δ′, and if γ · δ, γ′ · δ′ are well-defined, then

γ · δ ∼ γ′ · δ′, and γ−1 ∼ γ′−1.

Definition-Theorem 3.17 (Fundamental group). Let x0 ∈ X. Let π1(X, x0) denote the set

of the homotopy classes of of closed paths from x0 to x0. Let [γ] denote the homotopy class of

γ. Let [x0] denote the homotopy class of the constant path

[0, 1]→ X, t 7→ x0.

Then π1(X, x0) is a group with respect to the multiplication

[γ] · [δ] := [γ · δ],
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the constant class [x0] is the identity element with respect to this multiplication, for a class [γ]

its inverse is given by [γ]−1 = [γ−1].

π1(X, x0) is called the fundamental group of X with respect to the base point x0.

Proof. Exercise. �
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3.1. Exercises.

Exercise 8. 1) Let X
f−→ Y be a non-constant holomorphic map of Riemann surfaces and let

a ∈ X. Show that the multiplicity of f at a is uniquely determined, i. e., does not depend on

the choice of local charts.

2) Let f(z) ∈ C[z] be a polynomial of degree k. This gives a holomorphic map f̂ : Ĉ −→ Ĉ,

f̂(∞) =∞. Show that f̂ has multiplicity k at ∞. What is the multiplicity at 0?

3) Consider the holomorphic map f : C→ C, f(z) = zk, where k is a positive integer. Compute

multa f for an arbitrary a ∈ C.

4) Consider the holomorphic map f : C→ C, f(z) = (z− 1)3(z− 2)7. Compute multa f for an

arbitrary a ∈ C.

Exercise 9. Show that Riemann surfaces are path-connected.

Hint: For a point x0 of a Riemann surface X consider the set S of all points that can be

connected with x0 by a path. Show that S is non-empty, closed and open.

Exercise 10. 1) Let a and b be two points in a topological space X. Check that the homotopy

is an equivalence relation on the set of all curves from a to b.

2) Fill in the gaps and check the technical details in the definition of the fundamental group

from the lecture. You may consult the Algebraic topology book of Allen Hatcher [8].

Exercise 11. Compute the fundamental groups of Ĉ and of a complex torus C/Γ.
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4. Lecture 4

Claim. If a, b ∈ X are connected by a path δ : [0, 1]→ X, then the map

π1(X, a)→ π1(X, b), [γ] 7→ [δ−1 · γ · δ]

is an isomorphism of groups.

Proof. Exercise. �

Remark 4.1. Note that the isomorphism above depends on δ. It does not depend on δ if and

only if π1(X, a) is an abelian group.

Definition 4.2. A path-connected topological space X is called simply-connected if π1(X, a)

is trivial for some(equivalently: for every) a ∈ X. By abuse of notation we write π1(X, a) = 0

to say that π1(X, a) is trivial.

Remark 4.3. 1) The fundamental group is functorial. Namely, every continuous map f : X →

Y , induces a homomorphism of groups

f∗ : π1(X, x0)→ π1(Y, f(x0)), [γ] 7→ f∗([γ]) := [f ◦ γ]

such that for two continuous maps

X
f−→ Y

g−→ Z

it holds

(g ◦ f)∗ = g∗ ◦ f∗.

2) In particular this implies that homeomorphic path-connected topological spaces have iso-

morphic fundamental groups. Therefore, π1(X, a) (its isomorphism class to be more precise) is

a topological invariant.

Claim. Two non-homeomorphic compact RS have different fundamental groups.

Explanation. Compact RS are orientable compact 2-dimensional real manifolds, i. e, surfaces.

The latter are completely classified up to a homeomorphism.

Namely, for every non-negative integer p there is exactly one homeomorphism class.

For p = 0, X ∼= Ĉ ∼= S2, the corresponding fundamental group π(X) is trivial.

For p > 1, X is obtained as a result of gluing of a regular 4p-gon along its sides as shown in

the following picture.
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α1

β1

α−1
1

β−1
1

α2

β2

α−1
2

β−1
2

αp

βp

α−1
p

β−1
p

Each edge can be seen as a path on a plain. The initial and the end points are indicated by

arrows. For every i one glues together inverting the orientations the edges αi with the edges

α−1
i and the edges βi with the edges β−1

i .

This means that the initial point of the edge labeled by αi or βi is glued together with the

end point of the edge labeled α−1
i or β−1

i respectively.

Analogously, the end point of the edge labeled by αi or βi is glued together with the initial

point of the edge labeled α−1
i or β−1

i respectively.

The images of α1, . . . , αp, β1, . . . , βp in X are denoted by abuse of notations by the same

symbols. Then the path α−1
i is indeed the inverse path to αi and the path β−1

i is indeed the

inverse path to βi. Notice that each of these paths becomes a closed path at the same point

(the one obtained by gluing all the vertices of the 4p-gon).

The fundamental group of X is generated by

{[α1], . . . , [αp], [β1], . . . , [βp]}

with the only relation ∏
i

[αi][βi][αi]
−1[βi]

−1 = 1,

i. e.,

π1(X) ∼= 〈a1, . . . , ap, b1, . . . , bp |
∏
i

aibia
−1
i b−1

i = 1〉.

In this case X is homeomorphic to a pretzel with p holes
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or equivalently to a sphere with p handles.

�

Exercise. Compute π1(Ĉ), π1(C/Γ), where Γ ⊂ C is a lattice.

Definition 4.4. Let f : X → Y be a non-constant holomorphic map. Then x ∈ X is called a

ramification point of f if there is no neighborhood U of x such that f |U is injective.

One says that f is unramified if it has no ramification points.

Remark 4.5. Ramification points are those with multiplicities multx f > 1. This follows

immediately from Theorem 3.1.

Corollary 4.6. A non-constant holomorphic map of RS f : X → Y is unramified if and only

if it is a local homeomorphism.

Example 4.7. 1) C→ C, z 7→ zk. Here 0 is the only ramification point.

2) C exp−−→ C∗ is unramified.

3) The standard projection C→ C/Γ is unramified for every lattice Γ ⊂ C.

Theorem 4.8. Let f : X → Y be a non-constant holomorphic map of compact RS. Then for

every y ∈ Y its preimage f−1(y) is a finite set and the number

dy(f) :=
∑

x∈f−1(y)

multx f

does not depend on y.
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Corollary 4.9. If Y = Ĉ, then f : X → Ĉ is a meromorphic function and the number of

zeroes of f is equal to the number of poles of f (counted with multiplicities).

Definition 4.10. In the notations of Theorem 4.8 the number d(f) := dy(f) (for some/every

y ∈ X) is called the degree of f : X → Y .

Example 4.11. Consider the meromorphic function f(z) = (z−2)2

z3(z−3i)
on Ĉ. Let us compute the

number of zeroes of this function with multiplicities and thus the degree of the corresponding

holomorphic map Ĉ f̂−→ Ĉ.

Note that f̂−1(0) = {2,∞}. Since

f(z) = (z − 2)2 · 1

z3(z − 3i)

and since
1

z3(z − 3i)
does not vanish at z = 2, one concludes

mult2 f̂ = 2.

Since

f(z) =

(
1

z

)2

· (z − 2)2

z(z − 3i)

and
(z − 2)2

z(z − 3i)
does not vanish at ∞, we get

mult∞ f̂ = 2.

Therefore, d0(f̂) = mult2 f̂ + mult∞ f̂ = 2 + 2 = 4 and hence d(f̂) = 4.
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4.1. Exercises.

Exercise 12. Let p be a positive integer. Let P be a regular 4p-gon on a plane.

α1

β1

α−1
1

β−1
1

α2

β2

α−1
2

β−1
2

αp

βp

α−1
p

β−1
p

Consider the closed path

α1 · β1 · α−1
1 · β−1

1 · α2 · β2 · α−1
2 · β−1

2 · · · · · αp · βp · α−1
p · β−1

p .

Show that it is contractible, i. e., homotopic to a constant path.

Let X be the topological space obtained as a gluing of the edges of P as explained in the

lecture. Consider the corresponding quotient map P → X, which is continuous by the definition

of quotient topology. Conclude that the images of αi and βi in X are closed paths that satisfy

the relation
∏

i[αi][βi][αi]
−1[βi]

−1 = 1 mentioned in the lecture.

Exercise 13. Compute the degrees d(f̂), d(ĝ) of the holomorphic maps Ĉ→ Ĉ corresponding

to the following meromorphic functions on Ĉ:

f(z) =
(z − 17)2

z13 + 2
, g(z) =

(z − 1)3

z2 + 11
.

Exercise 14. As we already know every meromorphic function f on Ĉ is rational, i. e.,

f(z) =
P (z)

Q(z)
, P (z), Q(z) ∈ C[z], Q(z) 6= 0.

Show that the degree of the corresponding holomorphic map f̂ : Ĉ→ Ĉ equals

max{degP, degQ}.

Exercise 15. Find all ramification points of the morphisms f̂ and ĝ from Exercise 13.
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5. Lecture 5

Proof of Theorem 4.8. First of all notice that f−1(y) must be a discrete set because of the

Identity theorem (Theorem 2.3). Since X is compact, it must be finite (again by the Identity

theorem). Consider now the function

Y → Z, y 7→ dy(f).

We shall show that this function is locally constant. Since Y is connected, it would imply that

dy(f) is a constant function.

x1 U1W1

x2 U2W2

x3 U3W3

xn UnWn

Uy

Let y ∈ Y . Let f−1(y) = {x1, . . . , xn}. Put mi = multxi f . For every i = 1, . . . , n, let Ui be

an open neighbourhood of xi such that f |Ui : Ui → f(Ui) is of the form z 7→ zmi (in appropriate

charts). Shrinking Ui, we can assume that Ui ∩ Uj = ∅ for i 6= j.

Since X is compact, f is a closed map, i. e., the image of a closed set is closed. Therefore,

f(X \
n∐
i=1

Ui) is closed. Since y lies in its complement, which is open, there exists an open set

U , y ∈ U , such that U ⊂ Y \ f(X \
n∐
i=1

Ui). This implies that f−1(U) ⊂
n∐
i=1

Ui.

Put Wi = f−1(U) ∩ Ui, then f−1(U) =
n∐
i=1

Wi.

For every p ∈ U \ {y}, and for every x ∈ f−1(p) the multiplicity multx f equals 1. Therefore,

dp(f) =
∑

x∈f−1(p)

multx f =
n∑
i=1

#(f−1(p) ∩Wi) =
n∑
i=1

mi.

On the other hand dy(f) =
n∑
i=1

mi as well.

This shows that dp(f) is constant on U , so it is locally constant and hence constant, which

concludes the proof. �

Corollary 5.1. Let f ∈ M(C/Γ) be a non-constant meromorphic function on a torus. Then

f has at least 2 poles (counted with multiplicities).



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 24

Proof. Suppose f has less than 2 poles.

1) If f does not have poles at all, then f is a holomorphic function and hence by Corollary 3.8

f is constant, which is a contradiction.

2) If f has only one pole, then for the corresponding holomorphic map X
f̂−→ Ĉ the point

∞ ∈ Ĉ has only one preimage. Therefore, for an arbitrary point p ∈ Ĉ

#f̂−1(p) = #f̂−1(∞) = 1,

which means that f̂ : X → Ĉ is a bijection. Hence f̂ is an isomorphism of RS (cf. Corol-

lary 3.6 and Theorem 3.7). In particular X and Ĉ must be homeomorphic as topological

spaces, which is not true, since, for example, they have non-isomorphic fundamental

groups.

�

Remark 5.2. In fact, we showed even more. Namely, on every compact RS non-isomorphic to

Ĉ, non-constant meromorphic functions must have at least 2 poles.

5.1. Divisors. Let X be a compact RS.

Definition 5.3. Let Div(X) be the free abelian group generated by the points of X. It is

called the divisor group of X.

Elements of Div(X) are linear combinations∑
x∈X

nx · x, nx ∈ Z, finitely many nx 6= 0.

For a divisor

D =
∑
x∈X

nx · x

let D(x) := nx. This way, one can identify divisors with the functions X → Z with finite

support.

Let degD =
∑

x∈X nx be the degree of D.

Notice that

deg : DivX → Z, D 7→ degD

is a group homomorphism. Its kernel consists of all divisors of degree zero and is denoted by

Div0(X).
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Let f ∈MX(X). Identify f with the corresponding holomorphic map X → Ĉ and for p ∈ X

define

ordp f :=


multp f, if f(p) = 0

−multp f, if f(p) =∞

0, otherwise.

The number ordp f is called the order of p with respect to f .

So the points with positive order are zeros of f , the points with negative order are poles of

f , and the points with zero order are neither zeroes nor poles of f .

Definition 5.4. For a meromorphic function f ∈MX(X) put

(f) :=
∑
x∈X

(ordx f) · x ∈ DivX.

Divisors of this form are called principal divisors.

Remark 5.5. Notice that (f) keeps all the information about the zeroes and the poles of f .

Observation. (f · g) = (f) + (g), (1/f) = −(f).

Therefore, the set of the principal divisors is a subgroup in DivX, it is denoted by PDivX.

Since by Theorem 4.8 d0(f) = d∞(f), we conclude that deg(f) = 0 for every meromorphic

function f on X. Therefore, PDivX is a subgroup of Div0(X) and we have an inclusion of

groups

PDivX ⊂ Div0X ⊂ DivX.

The quotient group

Pic(X) := DivX/PDivX

is called the Picard group of X. Its elements are called divisor classes.

The group

Pic0(X) := Div0X/PDivX,

which is a subgroup of PicX, is called the restricted Picard group.

We say that two divisors D and D′ are linearly equivalent and write D ∼ D′ if D and D′

represent the same element in PicX, i. e., if D −D′ = (f) for some meromorphic function f .

Since PDivX lies in the kernel of the degree homomorphism, we get a factorization homo-

morphism

PicX → Z, [D] 7→ degD,

which is denoted (by abuse of notation) by deg as well.
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DivX

PicX

Z
deg

//

�� �� ∃! deg

??

Let D,D′ ∈ DivX. Then we say D > D′ or D′ 6 D if

D(x) > D′(x) for all x ∈ X.

Let D ∈ DivX, let U ⊂ X be open. Put

OD(U) := OX(D)(U) := {f ∈MX(U) | ordx f > −D(x) for all x ∈ U}.

Then OX(D) is a sheaf of OX-modules, i. e., OX(D)(U) is an OX(U) module for every open

U ⊂ X.

5.2. Exercises.

Exercise 16. 1) Let a be a complex number. Let f be a meromorphic function on Ĉ with the

only pole of multiplicity 1 at a. Show that

f(z) = µ+
λ

z − a
for some non-zero complex number λ and some µ ∈ C.

2) Construct a meromorphic function f on C with the only pole of multiplicity 1 at a ∈ C such

that f is not of the form

f(z) = µ+
λ

z − a
for some non-zero complex number λ and some µ ∈ C. Try to construct as many examples as

you can.

Exercise 17. Compute the principal divisors (f), (g) of the following meromorphic functions

on Ĉ (cf. Exercise 13):

f(z) =
(z − 17)2

z13 + 2
, g(z) =

(z − 1)3

z2 + 11
.

Exercise 18. Show that Pic0 Ĉ = 0 and Pic Ĉ ∼= Z.
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6. Lecture 6

Last time we defined for a divisor D on a compact Riemann surface X the sheaf OX(D). For

every open U ⊂ X we have

OX(D)(U) := {f ∈MX(U) | ordx f > −D(x) for all x ∈ U}.

As we have already mentioned last time, OX(D) is a sheaf of OX-modules, in particular this

means that OX(D)(U) is an OX(U) module for every open U ⊂ X.

Indeed, for f ∈ OX(D)(U) and u ∈ OX(U), it holds ordx(uf) = ordx u + ordx f . Since

ordx u > 0, one concludes that ordx(uf) > ordx f > −D(x), i. e., u · f ∈ OX(D)(U).

If V ⊂ U are two open sets, then there is a restriction homomorphism

OX(D)(U)→ OX(D)(V ), f 7→ f |V

compatible with the module structure, i. e.,

(u · f)|V = u|V · f |V , u ∈ OX(U), f ∈ OX(D)(U).

Remark 6.1. OX(0) = OX , i. e., OX(0)(U) = OX(U) for all open subsets U ⊂ X.

Proposition 6.2. Let D,D′ ∈ DivX. Assume D ∼ D′, then the sheaves of OX-modules

OX(D) and OX(D′) are isomorphic.

Remark 6.3. OX(D) ∼= OX(D) means that for every open U ⊂ X there exists an isomorphism

of OX(U)-modules

OX(D)(U)
η(U)−−→ OX(D′)(U)

compatible with the restriction maps, i. e., for an inclusion of open sets W ⊂ U ⊂ X

η(U)(s)|W = η(W )(s|W ) for every s ∈ OX(D)(U),

or, equivalently, there is the commutative diagram

OX(D)(U) OX(D′)(U)

OX(D)(W ) OX(D′)(W ),

η(U)
//

η(W )
//

ρUW
��

ρUW
��

where ρUW denotes the restriction map s 7→ s|W .

Proof of Proposition 6.2. D ∼ D′ means D −D′ = (s) for some s ∈ MX(X). Then for every

open U ⊂ X and f ∈ OX(D)(U) (i. e. ordx f > −D(x) for all x ∈ X) we conclude that

ordx(s|U · f) = ordx(s) + ordx f > ordx s−D(x) = ordx s− (D′ + (s))(x) = −D′(x)
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and hence the map

OX(D)(U)
η(U)−−→ OX(D′)(U), f 7→ s|U · f

is well defined. One sees that it is an homomorphism of OX(U)-modules and it possesses the

inverse map given by g 7→ s−1|U ·g. Therefore, η(U) is an isomorphism. The compatibility with

the restrictions follows as well. �

Remark 6.4. Even more is true. Let D,D′ ∈ DivX. Then the sheaves of OX-modules OX(D)

and OX(D′) are isomorphic if and only if D ∼ D′.

Exercise. Try to prove this. You could follow the following steps.

1) Notice that for small enough U ⊂ X the OX(U)-module OX(D)(U) is isomorphic to

OX(U).

2) Let R be an arbitrary C-algebra. Notice that defining a homomorphism of R-modules

R→ R is equivalent to choosing r ∈ R (the image of 1 ∈ R).

3) Using the previous observations show that every isomorphism η(U) : OX(D)(U) →

OX(D′)(U) is of the form f 7→ s · f , s ∈MX(U), for small enough U .

4) Analyze the situation and obtain the required statement.

Definition 6.5. Let D ∈ DivX. Then

L(D) := OX(D)(X) = {f ∈MX(X) | (f) > −D}

is called the Riemann-Roch space of D. It is a vector space over C.

Example 6.6. 1) Let D = a for some a ∈ X. Then

L(D) = {f ∈MX(X) | (f) > −a} =

{
f ∈MX(X)

∣∣∣∣f has at most 1 pole of multiplicity 1

and this pole can only be at a

}
.

2) Let D = n · a for some a ∈ X and a positive integer n. Then

L(D) = {f ∈MX(X) | (f) > −n·a} =

{
f ∈MX(X)

∣∣∣∣f has at most 1 pole of multiplicity at

most n and this pole can only be at a

}
.

3) Let D = −n · a for some a ∈ X and a positive integer n. Then

L(D) = {f ∈MX(X) | (f) > n·a} =

f ∈MX(X)

∣∣∣∣∣∣∣
f does not have any poles and must

have a zero of multiplicity at least n at

a

 .

Theorem 6.7. dimL(D) <∞ for all D ∈ DivX.

Notation. l(D) := dimC L(D).

http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Gustav_Roch
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Proof. Idea. We are going to follow the following steps.

1) l(D) = 0 for D with degD < 0, l(0) = 1.

2) For D′ = D+ a for some a ∈ X there is an inclusion of vector spaces L(D) ⊂ L(D′) and

dimL(D′)/L(D) 6 1.

3) Hence, by induction, dimL(D) <∞ for every divisor D.

Details.

1) Let degD < 0. Assume l(D) 6= 0, then L(D) 6= 0. Take some non-zero f ∈ L(D) ⊂

MX(X). Then (f) > −D and in particular deg f > deg(−D) = − degD > 0. This is a

contradiction.

Since L(0) = OX(X) = C, one gets l(0) = 1.

This gives a basis of the induction.

2) Let D ∈ DivX, let a ∈ X, let D′ = D + a. Then D′ > D and hence −D(x) > −D′(x)

and L(D) ⊂ L(D′).

Choose a chart ϕ : U → V around a such that ϕ(a) = 0. For every f ∈ L(D′) put

fϕ := f |U◦ϕ−1. Then fϕ is a meromorphic function on V . Consider its Laurent expansion

at 0. Since f ∈ L(D′), fϕ may have at 0 a pole of order at most D′(a) = 1+D(a) = 1+d,

where d = D(a).

So

fϕ(z) = a−d−1(f) · z−d−1 + a−d · z−d + · · · =
∞∑

i=−d−1

ai(f) · zi, ai(f) ∈ C

around 0.

Now consider the map L(D′)
ξ−→ C, f 7→ a−d−1(f). It is a linear map. Its ker-

nel coincides with L(D). So L(D′)/L(D) = L(D′)/ ker ξ ∼= Im ξ ⊂ C and hence

dimC L(D′)/L(D) > 1.

3) Notice that every divisor D′ can be written as D′ = D+a for some a ∈ X and D ∈ DivX.

Moreover degD < degD′. This provides the step of the induction.

This concludes the proof. �

Example 6.8. 1) Let p, q ∈ X, p 6= q.

(a) If D = p, then l(D) 6 2 because D = 0 + p and l(0) = 1.

(b) If D = −p, then l(D) = 0.

(c) If D = p− q, then l(D) 6 1 because D = (−q) + p and l(−q) = 0.

2) Let X = C/Γ be a complex torus. Then l(p) = 1 for every p ∈ X.

3) Let X = Ĉ. Then l(p) = 2 for every p ∈ X.
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6.1. Exercises.

Exercise 19. Let D be a divisor on a compact Riemann surface. Let

L(D) = {f ∈MX(X) | (f) > −D}

be its Riemann-Roch space. In the lecture we proved that L(D) is a finite dimensional vector

space over C. Assume that degD > 0 and using our proof obtain the following estimation for

the dimension l(D) of L(D):

l(D) 6 degD + 1.

Exercise 20. Let X = Ĉ.

1) Compute the Riemann-Roch space LĈ(D) for

D = n · p, p = 0, n ∈ Z.

2) Notice that Exercise 18 says that two divisors on Ĉ are linearly equivalent if and only if they

have the same degree, in particular for every divisor D on Ĉ and every p ∈ Ĉ

D ∼ degD · p.

In the lecture we showed that two linearly equivalent divisors have isomorphic Riemann-Roch

spaces. Using this and your computations from part 1) of this exercise compute the Riemann-

Roch spaces L(D) for the following divisors.

D = p, p = 5 + 2i;

D = p− q, p = 3, q = 4− i;

D = 2p+ 3q − 18r, p = 6− 2i, q = 47i, r = 356− 3i;

D = 2 · x1 + 8 · x2 − 6 · x3 − 3 · x4, x1 = 11i, x2 = (2− i), x3 = 44, x4 =∞.

3) Check which of the following divisors on Ĉ are linearly equivalent and describe the isomor-

phisms of the corresponding Riemann-Roch spaces for the pairs of linearly equivalent divisors.

D1 = 3 · (5 + 8i) + 27 · (1− i)− 6 · (8i), D2 = 5 · (i), D3 = 7 · (28 + 3i)− 1 · (i)− 1 · (48),

D4 = 4 · (18) + 20 · (33i), D5 = 3 · (16 + 11i).

Exercise 21. Consider the complex torus X = C/Γ, Γ = Z + Z · 3i. Compute L(D) for

D = p, p = [4 + 5i] ∈ X;

D = p− q, p = [8], q = [2i].
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7. Lecture 7

Stalks of the structure sheaf. Let a ∈ X. Consider the set of pairs

{(U, f) | U ⊂ X open, a ∈ U, f ∈ OX(U)}.

One defines the relation

(U, f) ∼ (V, g)
df⇐⇒ ∃ open W ⊂ U ∩ V , a ∈ W such that f |W = g|W .

Claim. “∼” is an equivalence relation.

Proof. Exercise. �

Definition 7.1. The set of the equivalence classes is denoted by OX,a and is called the stalk

of the structure sheaf OX at the point a.

We write [(U, f)] of [U, f ] for the equivalence class of (U, f). By abuse of notation one

also writes fa, which means the equivalence class of a holomorphic function f defined in some

neighbourhood of a. This equivalence class is called the germ of (U, f) (or simply the germ of

f) at a.

Claim. OX,a is a C-algebra with operations defined by

fa + ga = (f + g)a, fa · ga = (fg)a, λ · fa = (λf).

Proof. Exercise. �

Claim (Model example). OC,a ∼= C{z − a} ∼= C{z} (convergent power series).

Proof. Define

OC,a 7→ C{z − a}, [U, f ] 7→ Taylor expansion of f at a: f(z) =
∑
i>0

ci(z − a)i.

This gives the required isomorphism. �

Since every RS is locally isomorphic to C, we conclude that OX,a ∼= C{z} for every a ∈ X.

Indeed, fix a chart ϕ : U → V around a ∈ X. Then

OX,a → OC,ϕ(a), fa 7→ (f ◦ ϕ−1)ϕ(a)

gives an isomorphism of C-algebras OX,a ∼= OC,ϕ(a)
∼= C{z}.

Consider the evaluation homomorphism

ev : OX,a → C, fa 7→ f(a).
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Its kernel is an ideal mX,a ⊂ OX,a given by

mX,a = {[U, f ] ∈ OX,a | f(a) = 0}.

Since OX,a/mX,a
∼= C and C is a field we conclude that mX,a is a maximal ideal of OX,a.

Claim. mX,a is the only maximal ideal of OX,a. One says that OX,a is the local algebra (or the

local ring) of X at a.

Remark 7.2. Recall that a ring with only one maximal ideal is called local.

Under the isomorphism OX,a ∼= C{z} the ideal mX,a corresponds to the ideal in C{z} consist-

ing of all convergent power series with trivial free term, i. e., the principal ideal 〈z〉 generated

by z.

Remark 7.3. Notice that C{z} is a principal domain,i. e., all ideals are principal, i. e., gener-

ated by a single element. Moreover, every ideal of C{z} is of the form 〈zm〉 for some m > 0.

Proof. Exercise. �

Let m2
X,a be the ideal generated by the products s1 · s2, s1, s2 ∈ mX,a. It corresponds to

the principal ideal 〈z2〉. Clearly m2
X,a ⊂ mX,a. Consider the quotient OX,a-module and the

corresponding quotient C{z}-module 〈z〉/〈z2〉. Then

mX,a/m
2
X,a
∼= 〈z〉/〈z2〉 ∼= C · [z],

where [z] denotes the class of z in 〈z〉/〈z2〉.

We see that though mX,a and m2
X,a are infinite dimensional vector spaces over C, their quotient

mX,a/m
2
X,a is a 1-one dimensional vector space over C.

Definition 7.4. The vector space mX,a/m
2
X,a is called the cotangent space of X at a and will

be denoted in this lecture by CTaX.

Its dual space

(mX,a/m
2
X,a)

∗ = HomC(mX,a/m
2
X,a,C)

is called the tangent space of X at a and is denoted by TaX.

Definition 7.5. Let [U, f ] ∈ OX,a. Put daf := [f − f(a)] ∈ CTaX.

For every open U ⊂ X this defines the map

df : U →
⊔
a∈U

CTaX, a 7→ daf.
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Definition 7.6. Let ϕ : U → V be a chart of a Riemann surface X. Let a ∈ U . We call ϕ a

local coordinate at a if ϕ(a) = 0.

We will often denote local coordinates by Latin letters, say z : U → V ⊂ C.

Let z : U → V ⊂ C be a local coordinate at a ∈ U . Then daz is a non-zero element in

CTaX. Therefore, it can be taken as a basis of CTaX.

In particular one should be able to write df(x) = g(x) · dz(x) for some function g : U → C.

Let us study this in more details.

Consider the composition F = f ◦ z−1. It is a holomorphic function in a neighbourhood V

of 0 ∈ C. For b ∈ U , take the Taylor expansion of F at z(b) ∈ V .

F (t) =
∑
i>0

ci(t− z(b))i.

Then

f(x) = f ◦ z−1 ◦ z(x) = F (z(x)) =
∑
i>0

(z(x)− z(b))i

and hence

daf = [f − f(a)] = [
∑
i>1

ci(z − z(b))i] = [c1(z − z(b)) + (z − z(b))2
∑
i>2

ci(z − z(b))i−2] =

[c1(z − z(b))] = c1[z − z(b)] = F ′(z(b)) · dbz.

Definition 7.7. Let z : U → V be a local coordinate at a ∈ U . Let f ∈ OX(U). Put as above

F = f ◦ z−1 and define
∂f

∂z
(b) := F ′(z(b)) =

∂F

∂t
(z(b)).

In these notations dbf = ∂f
∂z

(b) · dbz and finally

(1) df =
∂f

∂z
· dz,

a formula which looks familiar.
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Exercises.

Exercise 22. Let a be a point of a Riemann surface X. Show that the stalk OX,a is a C-algebra

with the operations defined in the lecture:

fa + ga := (f + g)a, fa · ga := (fg)a, λ · fa := (λf)a, fa, ga ∈ OX,a, λ ∈ C.

In particular check that the definitions given in the lecture are well-defined, i. e., do not depend

on the choice of representatives.

Exercise 23. Consider the following holomorphic functions on C.

f1(z) = (z − 3)(z + 5i)6 + 11, f2(z) = exp(z), f3(z) = sin(z2).

For a = 0, 3,−5i, find a generator of the cotangent space CTaC and express dafi, i = 1, 2, 3,

in terms of this generator.

Exercise 24. Consider the Riemann sphere Ĉ and let z0 = ϕ0 and z1 = ϕ1 be its standard

charts. Consider the meromorphic function

f(z) =
z(z + 1)

(z − 1)(z − 2)3
∈MĈ(Ĉ)

as a holomorphic function on Ĉ \ {1, 2}.

Compute

∂f

∂z0

(0),
∂f

∂z1

(∞),
∂f

∂z0

(−1),
∂f

∂z1

(−1),
∂f

∂z0

(3),
∂f

∂z1

(3).

For a = 0,∞,−1, 3 express if possible daf in terms of daz0 and daz1.
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8. Lecture 8

Sheaf of differential forms. Let U ⊂ X be an open subset of a RS X. We have just seen

that every f ∈ OX(U) gives us a map

df : U →
⊔
a∈U

CTaX, a 7→ daf.

Moreover, we computed that for a local coordinate z : W → C, W ⊂ U it holds df |W = ∂f
∂z
· dz.

Let now ω : U →
⊔
a∈U CTaX be an arbitrary map such that ω(a) ∈ CTaX. Then, as

above, for a local coordinate z : W → C, W ⊂ U , we conclude that

ω|W = g · dz

for some function g : W → C.

Definition 8.1. Let ω be as above. If g is a holomorphic function for every local coordinate

z : W → C, then ω is called a holomorphic differential form on U .

Equivalently, ω is a holomorphic differential form if U can be covered by open sets Ui with

local coordinates zi : Ui → C such that after representing the restrictions of ω as ω|Ui = fi ·dzi,

the functions fi : Ui → C are holomorphic.

The set of all holomorphic differential forms on U is denoted by ΩX(U). It is naturally

an OX(U)-module. This defines a sheaf of OX-modules. The sheaf ΩX is called the sheaf of

differential forms on X.

Example 8.2. As we saw above, df is a holomorphic differential form on U for every f ∈

OX(U).

Remark 8.3. For every open set U ⊂ X the map

OX(U)→ ΩX(U), f 7→ df

is a linear map of C-vector spaces, which gives a morphism of sheaves of C-vector spaces

OX → ΩX .

Example 8.4. Let us compute ΩĈ(Ĉ). Let ω ∈ ΩĈ(Ĉ). Let z0 : U0 → C∗ and z1 : U1 → C∗ be

the standard charts of Ĉ. Then ω|U0 = f0dz0 and ω|U1 = f1dz1 for some holomorphic functions

f0 and f1 on U0 and U1 respectively. It should also hold f0dz0|U0∩U1 = f1dz1|U0∩U1 . Since

z0 = 1/z1 on U0 ∩U1 = C∗, using (1) one gets dz0 = (−1/z2
1)dz1, hence f0(1/z1) · (−1/z2

1)dz1 =

f1(z1)dz1, and therefore f0(1/z1) = −z2
1f1(z1). Comparing the Laurent expansions of these two

holomorphic functions on C∗, one immediately concludes that f0 = 0, f1 = 0, which means

ΩĈ(Ĉ) = 0.
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Definition 8.5. Let U be an open subset of a Riemann surface X. A meromorphic differential

form on U is an element ω ∈ ΩX(U \ S) for some discrete set S such that for every chart

U ′
z−→ V ′ with U ′ ⊂ U the local expressions ω|U ′\S = fdz are given by meromorphic functions

f ∈MX(U ′).

Let KX(U) denote the set of all meromorphic differential forms on U .

Remark 8.6. KX(U) is naturally an MX(U)-module: for f ∈MX(U) and for ω ∈ KX(U)

(f · ω)(x) = f(x) · ω(x).

Moreover, KX is a sheaf of MX-modules. In particular, KX is a sheaf of OX-modules.

Analogously to the case of holomorphic differential forms, there is the homomorphism of

sheaves of vector spaces over C (note that it is not a homomorphism of OX-modules!)

MX
d−→ KX .

Namely, for every open U ⊂ X there is the linear map of vector spaces

MX(U)→ KX(U), f 7→ df

and the commutative diagram

OX(U) MX(U)

ΩX(U) KX(U),

� � //

� � //

d
��

d
��

f f

df df.

� //

� //

_

��

_

��

Definition 8.7. Let ω ∈ KX(U) for some open U ⊂ X. Let a ∈ U , let z : U ′ → V ′ be a local

coordinate at a. Write ω|U ′ = fdz for some f ∈MX(U ′). Define now the order of ω at a by

orda ω := orda f.

Claim. orda ω does not depend on the choice of z.

Proof. Exercise. �

Definition 8.8. Let X be a compact RS. Let ω ∈ KX(X). Define the divisor associated to ω

by

(ω) :=
∑
x∈X

ordx ω · x ∈ DivX.

Example 8.9. Let X = Ĉ. We know already (cf. Example 8.4) that there are no non-trivial

holomorphic differential forms on Ĉ.
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Let us mimic the reasoning from Example 8.4 in order to find a non-trivial meromorphic

differential form on Ĉ.

Let ω ∈ KĈ(Ĉ). Let z0 : U0 → C∗ and z1 : U1 → C∗ be the standard charts of Ĉ. Then

ω|U0 = f0dz0 and ω|U1 = f1dz1 for some meromorphic functions f0 and f1 on U0 and U1

respectively. It should also hold f0dz0|U0∩U1 = f1dz1|U0∩U1 . Since z0 = 1/z1 on U0 ∩ U1 = C∗,

using (1) one gets dz0 = (−1/z2
1)dz1, hence f0(1/z1) · (−1/z2

1)dz1 = f1(z1)dz1, and therefore

f0(1/z1) = −z2
1f1(z1). Take f0(z0) = 1. Then 1 = −z2

1f1(z1), i. e., f1(z1) = −1/z2
1 . Thus we

have just found a non-trivial meromorphic differential form ω on Ĉ. This form coincides with

dz0 on U0 and equals − 1
z21
dz1 on U1.

Since orda ω = orda 1 = 0 for a ∈ C and ord∞ ω = ord∞(− 1
z21

) = −2, we conclude that

(ω) = −2 · ∞.

In particular deg(ω) = −2.

Exercise. Find a non-trivial meromorphic differential form ω′ on Ĉ different from the one

presented in Example 8.9. Compute the corresponding divisor (ω′) ∈ Div Ĉ and its degree

deg(ω′).

Proposition 8.10. Let ω0 ∈ KX(X), ω0 6≡ 0. Then KX(X) = {f · ω0 | f ∈MX(X)}, i. e.,

MX(X)→ KX(X), f 7→ f · ω0

is an isomorphism of C-vector spaces.

Proof. Let ω ∈ KX(X) be an arbitrary meromorphic differential form on X. Let
⋃
Ui = X be

a covering of X by charts zi : Ui → Vi such that ω0|Ui is given by fidzi and ω|Ui is given by

gidzi for some meromorphic functions fi and gi on Ui.

Note that fi 6≡ 0 for every i. Otherwise, by an argument similar to the one from the proof of

Theorem 2.3(identity theorem), ω0 ≡ 0. Consider hi = gi/fi ∈MX(Ui). Then for Gji = zj◦z−1
i

(a holomorphic function defined on zi(Ui ∩ Uj)) we have zj = Gji(zi) and hence

dzj = G′ji(zi)dzi =
∂Gji

∂zi
dzi.

So on Ui ∩ Uj we obtain

ω0|Ui∩Uj = fjdzj = fj ·
∂Gji

∂zi
dzi = fidzi, ω|Ui∩Uj = gjdzj = gj ·

∂Gji

∂zi
dzi = gidzi.

Therefore,

fi = fj ·
∂Gji

∂zi
, gi = gj ·

∂Gji

∂zi
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and finally

hi|Ui∩Uj = gi/fi =
gj · ∂Gji∂zi

fj · ∂Gji∂zi

= fj/gj = hj|Ui∩Uj .

This means that there exists h ∈MX(X) such that h|Ui = hi.

We conclude that gi = hifi = hfi for every i. This means ω = h · ω0.

X

Ui Uj

Vj

zi(Ui ∩ Uj)

Vj

zj(Ui ∩ Uj)

zi zj

Gji := zj ◦ z−1
i

This concludes the proof. �
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Exercises.

Exercise 25. Let X = C/Γ be a complex torus.

1) Find a non-trivial holomorphic differential form ω0 on X. Compute the corresponding divisor

(ω0).

2) Let ω be an arbitrary holomorphic differential form on X. Then ω = fω0 for some mero-

morphic function f . Conclude that f must be holomorphic.

3) Conclude that ΩX(X) = C · ω0, i. e., vector space generated by ω0.

Exercise 26. 1) Find a non-trivial meromorphic differential form ω′ on Ĉ different from the

one presented in the lecture. Compute the corresponding divisor (ω′) ∈ Div Ĉ and its degree

deg(ω′).

2) Let ω be an arbitrary meromorphic differential form on X. What is the degree of the

corresponding divisor (ω)?

Exercise 27. Prove that the definition of the order of a meromorphic differential form at a

point is independent of the choice of a local chart.

Namely, for a given open subset U of a Riemann surface X, for a point a ∈ U , and for

ω ∈ KX(U), assume that for two charts z : U1 → V1 ⊂ C and w : U2 → V2 ⊂ C such that a is

contained U1 and U2 it holds

ω|U1 = f · dz for some f ∈MX(U1), ω|U2 = g · dw for some g ∈MX(U2).

Prove that orda f = orda g.
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9. Lecture 9

Definition 9.1. Let D ∈ DivX. Let U ⊂ X be an open subset. Define

ΩX(D)(U) := {ω ∈ KX(U) | orda ω > −D(a) for all a ∈ U}.

Then ΩX(D)(U) is an OX(U)-module, in particular ΩX(D)(X) = {ω ∈ KX(X) | (ω) > −D}

is a C-vector space.

Moreover, ΩX(D) is a sheaf of OX-modules.

Definition 9.2. Let ω0 ∈ KX(X), ω0 6= 0. Then the divisor K = (ω0) is called the canonical

divisor on X.

Remark 9.3. On a compact Riemann surface there always exists a non-zero meromorphic

differential form.

Note however that this fact is not at all trivial!

Remark 9.4. Note that K is not uniquely determined, it depends on ω0. However, its divisor

class

[K] ∈ PicX = DivX/PDivX

does not depend on the choice of ω0.

Proposition 9.5. There is an isomorphism of OX-modules OX(D)→ ΩX(D−K) defined for

every open U ⊂ X by

OX(D)(U)→ ΩX(D −K)(U), f 7→ f · ω0.

Equivalently: OX(K +D) ∼= ΩX(D),

OX(K +D)(U)→ ΩX(D)(U), f 7→ f · ω0.

Corollary 9.6. ΩX(D)(X) ∼= OX(K +D)(X) = L(K +D), in particular

dimC ΩX(D)(X) <∞

for every divisor D ∈ DivX.

Definition 9.7. The dimension of L(K) ∼= ΩX(0)(X) = ΩX(X) is called the genus of X and

is denoted by

g = gX := dimC ΩX(X).

Example 9.8. 1) Since by Example 8.4 ΩĈ(Ĉ) = 0, one concludes that gĈ = 0.

2) By Exercise 25 gC/Γ = 1 for every complex torus C/Γ.
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Theorem 9.9 (Riemann-Roch).

l(D)− l(K −D) = degD + 1− g.

Equivalently,

l(D)− dim ΩX(−D)(X) = degD + 1− g.

Proof. No proof. �

Example 9.10. 1) Let D = 0. Then Theorem 9.9 reads as l(0)− l(K) = deg 0 + 1− g, hence

g = l(K), i. e., we get back the definition of the genus.

2) Let D = K. Then l(K)− l(0) = degK + 1− g and therefore

degK = 2g − 2.

3) If degD > 2g−1, then deg(K−D) = degK−degD = 2g−2−degD < 0, thus l(K−D) = 0

and finally

l(D) = degD + 1− g.

One can summarize this as follows.
l(D) = 0, if degD < 0;

l(D) > degD + 1− g, if 0 6 degD < 2g − 1;

l(D) = degD + 1− g, if degD > 2g − 1.

Corollary 9.11. On every compact RS X there exists a non-constant meromorphic function

f ∈MX(X).

Proof. Let p ∈ X be an arbitrary point, take D = (g + 1) · p. Then l(D) > g + 1 + 1− g = 2.

This means that the dimension of the Riemann-Roch space L(D) is at least 2. Therefore, this

space must contain a non-constant meromorphic function. �

Observation. Take f ∈ L(D) as above. The only point that could be a pole of this meromor-

phic function is p. Its multiplicity is at most g + 1, therefore the degree of the corresponding

holomorphic non-constant map X
f̂−→ Ĉ is at most g + 1.

Corollary 9.12. Every compact RS of genus 0 is isomorphic to Ĉ

Proof. As above one gets a holomorphic map X
f̂−→ Ĉ of degree 1, which must be an isomorphism

(cf. Theorem 3.7 and Corollary 3.6). �
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Theorem 9.13 (Riemann-Hurwitz formula). Let f : X → Y be a non-constant holomorphic

map of compact RS. Then

2gX − 2 = d(f)(2gY − 2) +
∑
x∈X

(multx f − 1)

Remark 9.14. Note that multx f > 1 only for finitely many points of X (ramification points,

cf. Definition 4.4).

Some facts about coverings.

Definition 9.15. A continuous map of topological spacesX
f−→ Y is called a covering if for every

y ∈ Y there exists an open neighbourhood U of y such that f−1(U) =
⊔
i Vi and f |Vi : Vi → Ui

is a homeomorphism.

Observation. If Y is a RS and X
f−→ Y is a covering, then there is a unique complex structure

on X such that f is a holomorphic map.

Proof. Exercise. �

So every covering of a RS is then a locally biholomorphic map.

Remark 9.16. Not every local biholomorphism is a covering. For example, take X = B(0, 1) =

{z ∈ C | |z| < 1}, Y = C. Then the natural inclusion X ⊂ Y is locally biholomorphic but not

a covering.

Claim. Every locally biholomorphjic map of compact RS is a covering.

Proof. Use an argument similar to the one from the proof of Theorem 4.8. �

Definition 9.17. Let X̃
f−→ X be a covering of RS. Then it is called a universalcovering if X̃

is simply connected, i. e., if π1(X̃) = 0.

Proposition 9.18. 1) A universal covering exists for every RS.

2)(Universal propery): X̃
f−→ X is a universal covering if and only if for every covering Y

g−→ X

and every choice of points x0 ∈ X, y0 ∈ g−1(x0), x̃0 ∈ f−1(x0) there exists a unique holomorphic

map X̃
h−→ Y with h(x̃0) = y0 such that g ◦ h = f .

Y X

X̃

g
//

f
��{{

h

, y0 x0

x̃0

� g
//

_
f

��{{

h
7

Proof. Topology. �

http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Adolf_Hurwitz
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Morphisms of complex tori. Let X = C/Γ and Y = C/Γ′ be two complex tori. Ouraim is

to describe all holomorphic maps X → Y .

Reminder 9.19. Remind (cf. Example 2.4) that for α ∈ C∗ such that αΓ ⊂ Γ′ one obtains a

holomorphic map

X → Y, [z] 7→ [α · z].

Let X
f−→ Y be an arbitrary non-constant holomorphic map. Then by Riemann-Hurwitz

formula (Theorem 9.13), one concludes that f has no ramification points. So it must be a

covering.

Note that the canonical maps C π−→ C/Γ, z 7→ [z], and C π′−→ C/Γ′, z 7→ [z] are coverings and

even universal coverings. Then by the universal property of universal coverings there exists a

holomorphic map F : C→ C such that π′ ◦ F = f ◦ π.

X Y

C C

� f
//

_

π

��

_

π′

��

� F
//
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Exercises.

Exercise 28. Using your computations from Exercise 25 compute the genus of a complex torus

X = C/Γ using two different methods.

(1) Compute the degree of the canonical divisor and use the the Riemann-Roch formula.

(2) Compute explicitly ΩX(X) and its dimension (cf. Exercise 31).

Exercise 29. 1) Let X ⊂ P2 be the subspace

X2 = {〈z0, z1, z2〉 ∈ P2 | z2
0 + z2

1 + z2
2 = 0}.

Show that X2 is a submanifold of P2, i. e., a Riemann surface. Consider the map

X2
f−→ Ĉ, 〈z0, z1, z2〉 7→

z1

z2

,

where a
0

is assumed to be∞. Show that this is a holomorphic map of RS. Apply the Riemann-

Hurwitz formula and compute the genus of X2. Conclude that X2 is isomorphic to the Riemann

sphere.

Hint: Compute the number of preimages of f−1(p) for every p ∈ Ĉ. Using that there can

be only finitely many ramification points, find the ramification points and obtain the value of

d(f).

2) Generalize the computations to the case of

Xd = {〈z0, z1, z2〉 ∈ P2 | zd0 + zd1 + zd2 = 0}, d ∈ N.

What is the genus of Xd?

Exercise 30. (1) Let Γ ⊂ C be a lattice and let C π−→ C/Γ, z 7→ [z] be the quotient map. As

already mentioned in Exercise 8, it is a holomorphic map of Riemann surfaces. Show that π is

a universal covering.

(2) Let Γ = Z+Z·τ , τ ∈ C, be a lattice in C. Let n be a natural number and let Γ′ = Z+Z·(nτ).

Put X = C/Γ and X ′ = C/Γ′ and consider the map

X → X ′, [z] 7→ [nz].

By Exercise 8 it is a holomorphic map of Riemann surfaces. Prove that it is a covering. What

is the number of points in the fibres?

(3) Show that the map C exp−−→ C∗ is a covering.
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10. Lecture 10

Last time we found that every holomorphic map X
f−→ Y of complex tori X = C/Γ and

Y = C/Γ′ can be lifted to a holomorphic map of the corresponding universal coverings, i. e.,

there exists a holomorphic map F : C → C such that π′ ◦ F = f ◦ π, which means that the

following diagram commutes:

X Y.

C C

� f
//

_

π

��

_

π′

��

� F
//

(2)

Consider now for a fixed γ ∈ Γ the function Φγ(z) = F (z+γ)−F (z). From the commutativity

of diagram (2) we get that Φγ(z) ∈ Γ′ for every z ∈ C. Since Φγ is continuous, there exists

γ′ ∈ Γ′ such that Φγ(z) = γ′ for all z ∈ C. Hence Φ′γ(z) = 0 and thus F ′(z+γ)−F ′(z) = 0. This

means that F ′ is a doubly periodic (elliptic) holomorphic function on C, therefore it must be

constant, i. e., there exists a ∈ C such that F ′(z) = a for all z ∈ C. This implies F (z) = az+ b

for some a, b ∈ C. Therefore, f([z]) = [az]+ [b]. This can only be well-defined if for every γ ∈ Γ

it holds f([z + γ]) = f([z]), which implies aΓ ⊂ Γ′.

On the other hand one sees that for every choice of a, b ∈ C such that aΓ ⊂ Γ′ the map

X → Y, [z] 7→ [az] + [b]

is holomorphic. It can be represented as a composition of

X → Y, [z] 7→ [az]

with the automorphism of Y = C/Γ′

Y → Y, [z] 7→ [z] + [b].

We obtained the following.

Proposition 10.1. Every holomorphic map of complex tori C/Γ → C/Γ′ can be represented

as a composition of a holomorphic map

C/Γ→ C/Γ′, [z] 7→ [az], a ∈ C, aΓ ⊂ Γ′,

and an isomorphism

C/Γ′ → C/Γ′, [z] 7→ [z] + [b], b ∈ C.
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Isomorphism classes of complex tori. Let Γ = Zω1 + Zω2 be a lattice in C. Let Γ′ =

Z + Z · ω2

ω1
. Then ω1Γ′ = Γ and

C/Γ′ → C/Γ, [z] 7→ [ωz]

is an isomorphisms of complex tori.

So, while studying the isomorphism classes of complex tori, it is enough to consider only the

lattices

Z + Z · τ, Im τ 6= 0.

Moreover, if Im τ < 0, then Im τ−1 > 0 and τ(Z+Zτ−1) = (Z+Zτ), i. e., the lattices Z+Zτ−1

and Z + Zτ define isomorphic tori. Therefore, it is enough to consider only lattices

Z + Z · τ, Im τ > 0.

Notation. Let H denote the upper half-plane H := {τ ∈ C | Im τ > 0}.

For τ ∈ H denote Γ(τ) := Z + Z · τ .

Let now Γ1 = Γ(τ1) = Z + Z · τ1, Γ2 = Γ(τ2) = Z + Z · τ2. Assume they define isomorphic

tori C/Γ1
∼= C/Γ2. Then the isomorphism is given by [z] 7→ [az] + [b]. Since the translation

[z] 7→ [z] + [b] is an isomorphism, the map [z] 7→ [az] must be an isomorphism as well. So it

must hold aΓ1 = Γ2 (cf. Example 2.4).

In particular it means that a · τ1 and a · 1 belong to Γ2. Write

aτ1 = ατ2 + β, a = γτ2 + δ, α, β, δ, γ ∈ Z.

In other words

a ·

τ1

1

 =

α β

γ δ

 ·
τ2

1

 .

Analogously, since the equality aΓ1 = Γ2 is equivalent to a−1Γ2 = Γ1, one concludes that

a−1 ·

τ2

1

 =

α′ β′

γ′ δ′

 ·
τ1

1


for some integer matrix

α′ β′

γ′ δ′

.
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One hasτ1

1

 = a−1a

τ1

1

 = a−1 ·

α β

γ δ

 ·
τ2

1

 =

α β

γ δ

 · [a−1 ·

τ2

1

]

 =

α β

γ δ

 ·
α′ β′

γ′ δ′

 ·
τ1

1

 =

c11 c12

c21 c22

τ1

1

 =

c11τ1 + c12

c21τ1 + c22

 ,

where c11 c12

c21 c22

 =

α β

γ δ

 ·
α′ β′

γ′ δ′

 .

Therefore, from the equalities τ1 = c11τ1 + c12 and 1 = c21τ1 + c22 we getc11 c12

c21 c22

 =

1 0

0 1

 ,

which means that

α β

γ δ

 and

α′ β′

γ′ δ′

 are invertible to each other integer matrices. There-

fore, their determinants equal either 1 or −1.

Since τ1 =
aτ1

a
=
ατ2 + β

γτ2 + δ
, we obtain

τ1 =
ατ2 + β

γτ2 + δ
=

(ατ2 + β)(γτ̄2 + δ)

|γτ2 + δ|2
=

αγ|τ2|2 + βδ + αδτ2 − βγτ̄2

|γτ2 + δ|2
.

Hence

(3) Im τ1 =
1

|γτ2 + δ|2
· (αδ − βγ) Im τ2

Since Im τ1 > 0 and Im τ2 > 0, one concludes that αδ − βγ = det

α β

γ δ

 > 0 and hence

det
(
α β
γ δ

)
= 1. We have shown that

(
α β
γ δ

)
∈ SL2(Z).

So, if Γ1 and Γ2 define isomorphic tori, then τ1 =
ατ2 + β

γτ2 + δ
for
(
α β
γ δ

)
∈ SL2(Z).

On the other hand, if τ1 =
ατ2 + β

γτ2 + δ
for
(
α β
γ δ

)
∈ SL2(Z), then aΓ1 = Γ2 for a = γτ2 + δ. We

obtained the following result.

Theorem 10.2. Two lattices Γ(τ1) and Γ(τ2), τ1, τ2 ∈ H, define isomorphic complex tori if and

only if

τ1 =
ατ2 + β

γτ2 + δ
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for
(
α β
γ δ

)
∈ SL2(Z).

In other words, if one defines an action of SL2(Z) on H by

(
α β
γ δ

)
· τ =

ατ + β

γτ + δ
,

the set of its orbits H/ SL2(Z) can be seen as the set of all isomorphism classes of complex tori.

Consider now the quotient map

X π−→ H/ SL2(Z), τ 7→ orbit of τ .

Introduce on H/ SL2(Z) the quotient topology, i. e., call the set U ⊂ H/ SL2(Z) open if and

only if π−1U ⊂ H is open.

Exercise. π is a local homeomorphism outside of the orbits of the points i, ρ ∈ H, ρ =

exp(2π
3
· i) = −1

2
+
√

3
2
i. This allows us to introduce a structure of a Riemann surface on

(H/ SL2(Z)) \ {π(i), π(ρ)},

i. e., on the quotient space without the two points π(i) and π(ρ).

Remark 10.3. Notice that the restriction of π to every neighbourhood of i or ρ is never

injective. This shows that π can not be a local homeomorphism around these points.

Let us visualize the space H/ SL2(Z). Let

R = {z ∈ C | |z| > 1, |Re z| < 1

2
}

and take

F = R ∪ {z | Re z = −1

2
, |z| > 1} ∪ {z | |z| = 1,−1

2
6 Re z 6 0}.

−1 1

ρ

−1
2

1
2

i

R
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Exercise. Then the restriction of π to F is a bijection, i. e., F can be seen as the set of all

isomorphism classes of complex tori.

Automorphism of complex tori. Let us study the automorphism of complex tori. By

Proposition 10.1 it is enough to study the automorphisms C/Γ f−→ C/Γ such that f([0]) = 0.

So let Aut0(C/Γ) denote the subgroup in the group of all automorphisms of C/Γ consisting of

the automorphisms C/Γ f−→ C/Γ such that f([0]) = [0]. Then, as already mentioned,

Aut0(C/Γ) = {C/Γ→ C/Γ, [z] 7→ [az] | a ∈ C, a · Γ = Γ}.

An automorphism from Aut0(C/Γ(τ)), τ ∈ H, is given by a matrix
(
α β
γ δ

)
∈ SL2(Z) such that

τ = ατ+β
γτ+δ

. Namely, the automorphism is given by the rule

[z] 7→ [az], a = γτ + δ.

Notice that (3) implies in this case |a| = 1.

If γ = 0, then this provides two different automorphisms of C/Γ(τ): the identity [z] 7→ [z]

and [z] 7→ −[z].

Analyzing the case of γ 6= 0 one can obtain the following statement.

Claim. Let τ ∈ F . If τ 6= i and τ 6= ρ, then

Aut0(C/Γ(τ)) = {± idC/Γ(τ)} ∼= Z/2Z.

It holds also

Aut0(C/Γ(i)) ∼= Z/4Z, Aut0(C/Γ(ρ)) ∼= Z/6Z.

Proof. Exercise. �
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Exercises.

Exercise 31. In the lecture we realized the group SL2(Z) as the group of transformations of

the upper half-plane H of the form

τ 7→ aτ + b

cτ + d
, ( a bc d ) ∈ SL2(Z).

(1) Show that this group is generated by the transformations

τ 7→ τ + 1 and τ 7→ −1

τ
.

(2) Let R = {z ∈ C | |z| > 1,Re(z) < 1
2
} and let

F = R ∪ {z ∈ C | Re(z) = −1

2
, |z| > 1} ∪ {z ∈ C | |z| = 1,−1

2
6 Re(z) 6 0}.

Prove that the restriction of the projection map

π : H→ H/ SL2(Z)

to F is a bijection.

(3) What is the image of the region R under the generators of SL2(Z) from the first part of this

exercise?

Exercise 32. Let π : H→ H/ SL2(Z) be the projection map as in the previous exercise.

(1) Let ρ = −1
2

+
√

3
2

= e
2π
3
i. Show that π is a local homeomorphism outside of the orbits of i

and ρ.

(2) Show that for every τ ∈ H from the orbit of i or ρ every open neigbourhood of τ contains

different points with the same image under π.

(3) In the situation of (2), how many different points with the same image can you find for

τ = i and for τ = ρ?

Exercise 33. Let Γ be a lattice in C and let C/Γ be the corresponding complex torus. In the

lecture we showed that the automorphisms of X must be of the form

[z] 7→ [az] + [b], a, b ∈ C, a · Γ = Γ.

Let Aut0(C/Γ) denote the subgroup in the group of all automorphisms of C/Γ consisting of the

automorphisms C/Γ f−→ C/Γ such that f([0]) = [0], i. e.,

Aut0(C/Γ) = {C/Γ→ C/Γ, [z] 7→ [az] | a ∈ C, a · Γ = Γ}.

(0) Show that a · Γ = Γ implies |a| = 1.
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(1) Compute Aut0(C/Γ(i)), where Γ(i) = Z + Z · i.

(2) Compute Aut0(C/Γ(ρ)), where Γ(ρ) = Z + Z · ρ, ρ = e
2
3
πi = −1

2
+
√

3
2
i.

(3) Compute Aut0(C/Γ(τ)), where Γ(τ) = Z + Z · τ , for τ = 2i and τ = 1
2

+ i.

(4) Try to compute Aut0(C/Γ(τ)), for an arbitrary τ ∈ F .
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11. Lecture 11

Meromorphic functions on complex tori. Consider the Riemann-Roch formula from The-

orem 9.9 for a complex torus X = C/Γ. We know that g = gX = 1, hence 2g − 1 = 1 and thus

for every divisor D on X with degD > 0 it holds degD > 2g − 1 and we obtain

l(D) = degD + 1− g = degD.

In particular for D = n · [0] we obtain

(4) l(D) =

1, if n = 0;

n, if n > 1.

This gives l(2 · [0]) = 2, i. e., there exists a non-constant meromorphic function on X with the

only pole at [0] or multiplicity 2.

Reminder 11.1. Recall that meromorphic functions on C/Γ are in one-to-one correspondence

with doubly periodic (elliptic) meromorphic functions on C with respect to Γ (Theorem 2.7).

So there must exist an elliptic function on C with respect to Γ with poles of order 2 at the

points of Γ.

A näıve attempt to construct such a function could be to consider the sum∑
γ∈Γ

1

(z − γ)2
,

but this sum is infinite and is not convergent in any reasonable sense. However one can slightly

modify this idea in order to get the required function. Put

℘(z) =
1

z2
+
∑

06=γ∈Γ

(
1

(z − γ)2
− 1

γ2
).

This infinite sum is summable (read about this!) and defines an elliptic function on C with

respect to Γ with poles of order 2 at the points of Γ. Of course, this function depends on a

given Γ = Zω1 + Zω2 or Γ = Z + Zτ , so to indicate this dependence one uses the notations

℘(z) = ℘(z; Γ) = ℘(z;ω1, ω2) = ℘(z; τ).

Definition 11.2. ℘ is called the Weierstraß ℘-function.

The derivative of the Weierstraß ℘-function

℘′(z) = −
∑
γ∈Γ

2

(z − γ)3

http://en.wikipedia.org/wiki/Karl_Weierstrass
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has clearly poles of order 3 at the points of Γ, so it defines a meromorphic function on C/Γ

with the only pole of multiplicity 3 at [0]. Note that ℘(z) and ℘′(z) are linearly independent.

Therefore, (4) implies

L([0]) = C · 1, L(2 · [0]) = C · 1 + C · ℘(z), L(3 · [0]) = C · 1 + C · ℘(z) + C · ℘′(z),

where we use the same notations for elliptic functions and the corresponding meromorphic

functions on C/Γ.

Combining ℘(z) and ℘′(z) with each other one easily produces examples of meromorphic

functions from L(n · [0]) for every n ∈ N. For example ℘2(z) ∈ L(4 · [0]), ℘(z)℘′(z) ∈ L(5 · [0]).

Of course, one can also take higher derivatives, then ℘′′(z) ∈ L(4 · [0]), etc.

Combining ℘(z) and ℘′(z) and using (4) one easily computes L(4 · [0]) and L(5 · [0]).

Exercise. L(4 · [0]) = C · 1 + C · ℘(z) + C · ℘′(z) + C · ℘2(z), L(5 · [0]) = C · 1 + C · ℘(z) + C ·

℘′(z) + C · ℘2(z) + C · ℘(z)℘′(z).

Let now n = 6. Then l(6 · [0]) = 6. However the functions

1, ℘, wp′, ℘2, ℘℘′, ℘3, (℘′)2

all belong to L(6 · [0]). Therefore they must be linearly dependent. This means that there must

exist a polynomial in two variables f(x, y) ∈ C[x, y], with monomials 1, x, y, x2, xy, x3, y2 such

that

f(℘, ℘′) = 0.

Let us find this polynomial.

Algebraic relation between ℘ and ℘′.

Claim. The Weierstraß ℘-function can be given as

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2(n+1) · z2n,

where the coefficients

Gm =
∑

06=γ∈Gamma

γ−m, m > 3.

are called the Eisenstein series.

Proof. Exercise. �

http://en.wikipedia.org/wiki/Gotthold_Eisenstein
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One computes

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + . . . ,

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 + . . . ,

(℘′(z))2 =
4

z6
− 24G4

1

z2

− 80G6 + . . . ,

℘3(z)3 =
1

z6
+ 9G4

1

z2

+ 15G6 + . . . .

Therefore,

(℘′(z))2 − 4℘3(z) = −60G4
1

z2
− 140G6 + . . . ,

(℘′(z))2 − 4℘3(z) + 60G4℘(z) = −140G6 + . . . ,

which means that (℘′(z))2 − 4℘3(z) + 60G4℘(z) is holomorphic, thus it must be constant, i. e.,

(℘′(z))2 − 4℘3(z) + 60G4℘(z) = −140G6.

We obtained the following statement.

Proposition 11.3. Let g2 = 60G4, g3 = 140G6. Put

f(x, y) = y2 − 4x3 + g2x+ g3.

Then f(℘, ℘′) = 0.

Our next aim is to determine the fieldMX(X) of meromorphic functions on a complex torus

X.

Identify MX(X) with the field of elliptic functions on C with respect to Γ.

Let f(z) be an elliptic function, then

f(z) =
1

2
(f(z) + f(−z)) +

1

2
(f(z)− f(−z)).

Put g(z) = 1
2
(f(z)+f(−z)) and h(z) = 1

2
(f(z)−f(−z)), then f(z) = g(z)+h(z), g(−z) = g(z)

and h(−z) = −h(z), i. e., g is even and h is odd. This proves the following.

Claim. Every elliptic function on C can be represented as a sum of an even elliptic function

f with an odd elliptic function h.
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Even elliptic functions. Our first observation is that ℘(z) is even.

Theorem 11.4. Let f(z) be an even elliptic function. Then there exists a rational function in

one variable Φ(t) ∈ C(t) such that f = Φ(℘). Moreover, if the poles of f are contained in Γ,

then Φ can be taken polynomial.

Proof. Assume that the poles of f are contained in Γ. Consider the Laurent expansion of f at

0. Since f is even, we get

f =
∑
i>−n

a2iz
2i.

Hence the poles of f must have an even order. Consider the principal part of f at 0:

a−2nz
−2n + · · ·+ a−1z

−2.

Note that the Laurent expansion of ℘(z) at zero is

1

z2
+ b2z

2 + b4z
4 + . . . .

Its principal part is 1
z2

. One concludes that the principal part of ℘l(z) is of the form

1

z2l
+ linear combination of

1

z2ν
with ν < l.

Then f − a−2n℘
n(z) has poles of smaller multiplicity that f . So, by induction one gets that

for some coefficients λi ∈ C the function f −
∑n

i>1 λi℘
i is holomorphic, hence constant, say λ0.

Then

f =
n∑
i>0

λi℘
i = Φ(℘), Φ(t) =

n∑
i>0

λit
i.

Let now f be an arbitrary even elliptic function. Modulo Γ it can have only finitely many poles

outside Γ. Let p1, . . . , pr be the corresponding representatives of all poles not belonging to Γ.

Then ℘(z)− ℘(pi) has a zero at p1. Let νi be the multiplicity of the pole pi of f . Then

h(z) = f ·
r∏
i=1

(℘(z)− ℘(pi))
νi

does not have any poles outside of Γ and therefore there exists a polynomial Ψ(t) ∈ C[t] such

that Ψ(℘) = h(z). Then

f =
h(z)∏r

i=1(℘(z)− ℘(pi))νi
=

Ψ(℘)∏r
i=1(℘(z)− ℘(pi))νi

,

i. e., f = Φ(℘) for

Φ(t) =
Ψ(t)∏r

i=1(t− ℘(pi))νi
∈ C(t).

This concludes the proof. �
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Exercises.

Exercise 34. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

(1) Notice that the elliptic functions ℘′′(z) and ℘′′′′(z) are even with poles in Γ. Represent them

as polynomials in ℘.

(2) Notice that the elliptic function ℘′(z) ·℘′′′(z) is even with poles in Γ. Represent this function

as a polynomial in ℘.

Exercise 35. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

(1) Notice that ℘′(z) considered as a meromorphic function on C/Γ has only pole at [0] of

multiplicity 3. How many zeroes could ℘′(z) have? Using that ℘′ is elliptic and odd, show that

the points [ω1

2
], [ω2

2
], [ω1+ω2

2
] are zeroes of ℘′(z). Are there any other zeroes of ℘′(z)?

(2) Show that ℘(z) = ℘(w) if and only if either z = w mod Γ or z = −w mod Γ.

Hint: For a fixed w consider h(z) = ℘(z)− ℘(w) and study its set of zeroes using that ℘(z) is

an even function.

Exercise 36. Notice that ℘′′′(z)/℘′(z) is an even elliptic function. Write it as a rational

function in ℘. Describe the set of its poles.
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12. Lecture 12

Last time we described even elliptic functions.

Odd elliptic functions. Notice that ℘′(z) is odd. Let f be an arbitrary odd elliptic function.

Then f
℘′

is an even elliptic function, hence there exists Φ(t) ∈ C(t) such that f = ℘′ · Φ(℘).

Finally we get

Theorem 12.1. Let X = C/Γ be a complex torus. Let ℘(z) = ℘(z; Γ) be the corresponding

Weierstraß ℘-function. Then MC/Γ(C/Γ) = C(℘) + ℘′(z)C(℘)

Remark 12.2. Notice that the proof of Theorem 12.1 is constructive

Corollary 12.3. MC/Γ(C/Γ) ∼= C(x)[y]/(y2 − 4x3 + g2x + g3), where g2 = 60
∑

06=γ∈Γ
1
γ4

,

g3 = 140
∑

06=γ∈Γ
1
γ6

Proof. Define a surjective homomorphism

C(x)[y]→MC/Γ(C/Γ), x 7→ ℘(z), 7→ ℘′(z).

Then by Proposition 11.3 y2 − 4x3 + g2x+ g3 lies in the kernel and we obtain a surjection

C(x)[y](y2 − 4x3 + g2x+ g3)→MC/Γ(C/Γ).

Since f is irreducible polynomial over C(x), we conclude that C(x)[y](y2 − 4x3 + g2x + g3) is

a field. Since non-zero field homomorphisms are injective, we conclude that MC/Γ(C/Γ) ∼=

C(x)[y]/(y2 − 4x3 + g2x+ g3). This concludes the proof. �

Complex tori as smooth projective algebraic plane curves. Recall that the projective

plane

P2 = {〈x0, x1, x2〉 | (x0, x1, x2) ∈ C3 \ {0}},

has a natural structure of a complex manifold.

Definition 12.4. A plane projective curve C is the set of zeroes of a homogeneous polynomial

f ∈ C[z0, z1, z2]

C = Z(f) = {〈x0, x1, x2 ∈ P2 | f(x0, x1, x2) = 0〉}.

C is called smooth is it is a complex submanifold of P2 (in this case it is a Riemann surface).

Claim. C = Z(f) ⊂ P2 is smooth if and only if

Z(
∂f

∂z0

,
∂f

∂z1

,
∂f

∂z2

) = {〈x0, x1, x2〉 ∈ P2 |
∂f

∂zi
(x0, x1, x2) = 0, i = 0, 1, 2}

is empty, i. e., the partial derivatives of f do not have common zeroes in P2.
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Proof. Exercise. �

Theorem 12.5. Every complex torus C/Γ is isomorphic to a smooth projective plane cubic

curve. More precisely, C/Γ ∼= Z(f), where

f = z0z
2
2 − 4z3

1 + g2z
2
0z1 + g3z

3
0 , g2 = 60

∑
06=γ∈Γ

1

γ4
, g3 = 140

∑
06=γ∈Γ

1

γ6
.

The isomorphism is given by the map

C/Γ ϕ−→ P2, [z] 7→

〈1, ℘(z), ℘′(z)〉, [z] 6= [0];

〈0, 0, 1〉, [z] = [0].

Proof(Sketch). Let C = Z(f). From the discussion above it is clear that ϕ(C/Γ) ⊂ C.

I. Bijectivity of ϕ : C/Γ→ C.

I.1. Injectivity.

Lemma 12.6. 1) ℘(z) = ℘(w) if and only if z = w mod Γ or z = −w mod Γ.

2) ℘′(z) = 0 if and only if 2z ∈ Γ, i. e., there are three different mod Γ zeroes ω1

2
, ω2

2
, ω1+ω2

2
.

0 ω1

ω1 + ω2ω2

ω1

2

ω2

2

ω1+ω2

2

So if z, w 6∈ Γ such that ϕ(z) = ϕ(w), then ℘(z) = ℘(w), ℘′(z) = ℘′(w). So either w = z

mod Γ (and hence [z] = [w]) or z = −w mod Γ and ℘′(z) = ℘′(−w) = −℘′(w) = −℘′(z). In

the second case 2℘′(z) = 0, thus ℘′(z) = 0. Then by Lemma 12.6 2z ∈ Γ and finally z = w

mod Γ. Since ϕ([z]) 6= 〈0, 0, 1〉 for all [z] 6= [0], we conclude that ϕ is injective.

Remark 12.7. In particular ℘ takes different values at ω1

2
, ω2

2
, ω1+ω2

2
(i. e., at zeroes of ℘′). Put

h(x) = 4x3 − g2x − g3. Then since ℘′(z)2 = h(℘(z)), we conclude that ℘(ω1

2
), ℘(ω2

2
), ℘(ω1+ω2

2
)

are 3 different zeroes of h, thus

h(x) = 4
(
x− ℘

(ω1

2

))
·
(
x− ℘

(ω2

2

))
·
(
x− ℘

(
ω1 + ω2

2

))
.

I.2 Surjectivity. It is clear that 〈0, 0, 1〉 ∈ ϕ(C/Γ).

Take an arbitrary 〈1, a, b〉 ∈ C. Since ℘ takes all values,there exists z ∈ C with ℘(z) = a.

Since b2 = ℘′(z)2 = h(℘(z)) = h(a) we conclude ℘′(z) = ±b. If ℘′(z) = b, then ϕ([z]) = 〈1, a, b〉.

If ℘′(z) = −b, then ϕ([−z]) = 〈1, ℘(−z), ℘′(−z)〉 = 〈1, ℘(z),−℘′(z)〉 = 〈1, a, b〉.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 59

II. C is a smooth curve in P2 (i. e., submanifold). Indeed. Suppose the contrary. Then

there exists s = 〈s0, s1, s2〉 ∈ P2 such that

∂f

∂z0

(s) =
∂f

∂z1

(s) =
∂f

∂z2

(s) = 0.

One computes that this implies that

∆ = g3
2 − 27g2

3 = 0.

On the other hand one notes that ∆ is the discriminant of h(x) = 4x3 − g2x − g3. Since the

latter has 3 zeroes, we get ∆ 6= 0 and thus a contradiction. Therefore C is smooth.

III. From the definition of ϕ it follows that it is continuous. Clearly ϕ is holomorphic on

C/Γ \ {[0]}. By Theorem 1.13 ϕ is a holomorphic map to P2. Its image C is a submanifold, so

ϕ : C/Γ→ C is a holomorphic map of Riemann sirfaces. Since it is bijective, we conclude that

ϕ is an isomorphism, which concludes the proof. �

Definition 12.8. Smooth projective plane cubic curves are called elliptic curves. So complex

tori are elliptic curves.

j-invariant. We defined for τ ∈ H g2 = g2(τ), g3 = g3(τ). Thus one can consider g2 and g3 as

functions on H. These functions are holomorphic on H. One can show that for ( a bc d ) ∈ SL2(C)

g2

(
aτ + b

cτ + d

)
= (cτ + d)4 · g2(τ), g3

(
aτ + b

cτ + d

)
= (cτ + d)6 · g3(τ).

One says in this situation that g2 is a modular form of weight 4 and g3 is a modular form of

weight 6.

Then ∆ = g3
2 − 27g2

3 has the property

∆

(
aτ + b

cτ + d

)
= (cτ + d)12 ·∆(τ)

and one says that ∆ is a modular form of weight 12. We showed above that ∆ = g3
2−27g2

3 6= 0,

so one obtains the following holomorphic function on H:

j(τ) =
g3

2(τ)

∆(τ)
.

Then

j

(
aτ + b

cτ + d

)
= j(τ),

so j is invariant under the action of SL2(Z) on H.

Definition 12.9. The holomorphic function j : H→ C is called j-invariant.
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Therefore, there exists a unique factorization through H π−→ H/ SL2(Z), which by abuse of

notation is denoted by j as well.

H C

H/ SL2(Z)

j
//

π ��

∃!
��

Theorem 12.10. The map

H/ SL2(Z)
j−→ C, [τ ] 7→ j(τ)

is a bijection, i. e., two complex tori C/Γ(τ) and C/Γ(τ ′) are isomorphic if and only if j(τ) =

j(τ ′).

Proof. No proof. A proof can be found for example in [5]. �
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Exercises.

Exercise 37. In the lecture we showed that

MC/Γ(C/Γ) ∼= C(x)[y]/(y2 − 4x3 + g2x+ g3).

Find the inverse of y3 in C(x)[y]/(y2 − 4x3 + g2x + g3). Use it to express (1/℘′(z))3 as a

polynomial in ℘′ with coefficients in C(℘).

Exercise 38. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

Notice that the elliptic functions ℘′′′(z) and ℘(5)(z) are odd. Represent them as ℘′ · Ψ(℘) for

some Ψ(t) ∈ C(t).

Exercise 39. In the lecture we defined j-invariant

j(τ) =
g3

2(τ)

∆(τ)
, ∆(τ) = g3

2(τ)− 27g2
3.

Try to compute the following values of j-invariant:

j

(
1

2
+ i

√
3

2

)
= 0, j(i) = 1.

In other words show that

g2

(
1

2
+ i

√
3

2

)
= 0, g3(i) = 0.
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13. Lecture 13

Integration of differential forms. Let U ⊂ X be an open subset of a Riemann surface X.

Let ω ∈ ΩX(U).

Let γ : [a, b]→ U be a smooth (i. e., piece-wise differentiable) path. This means that for every

chart ϕi : Ui → Vi, Ui ⊂ U , the functions ϕi ◦ γ : γ−1(Ui)→ Vi are piece-wise differentiable.

I. Assume there exists a chart ϕ : W → V , W ⊂ U such that γ([a, b]) ⊂ W . Write

ω|W = f · dϕ for f ∈ OX(W ) and define∫
γ

ω :=

b∫
a

f(γ(t)) · (ϕ(γ(t)))′dt

Claim. This definition does not depend on the choice of ϕ.

Proof. Exercise. �

II. One can always choose a partition of the interval [a, b], i. e.,

a = a0 < a1 < · · · < am = b

such that for γi := γ|[ai−1,ai] : [ai−1, ai] → X there exists a chart ϕi : Ui → Vi of X with

γi([ai−1, ai]) ⊂ Ui. Define now ∫
γ

ω :=
m∑
i=1

∫
γi

ω.

Claim. This definition does not depend on the choice of the partition.

Proof. Exercise. �

So, for every open subset U ⊂ X, for every ω ∈ ΩX(U), and for every smooth path γ :

[a, b]→ U , we get ∫
γ

ω ∈ C.

Remark 13.1. Analogously, for an open set U ⊂ X, for ω ∈ KX(U), and and for a smooth

path γ : [a, b]→ U such that γ([a, b]) does not contain poles of ω, one gets
∫
γ

ω as well. Indeed,

just replace U by U ′ = U \ {poles of ω}. Then ω ∈ ΩX(U ′) and γ([a, b]) ⊂ U ′.

Properties. I. Reparameterisation invariance. Let [a′, b′]
α−→ [a, b] be a smooth map such

that α(a′) = a, α(b′) = b. Let γ : [a, b]→ X be a smooth path. Then γ ◦ α : [a′, b′] is a smooth

path as well and ∫
γ

ω =

∫
γ◦α

ω.
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II. Linearity.
∫
γ

(λω1 + µω2) = λ
∫
γ

ω1 + µ
∫
γ

ω2 for differential forms ω1, ω2 around γ and for

λ, µ ∈ C.

III. Let γ : [a, b]→ X be a smooth path, let U be a neighbourhood of γ([a, b]), let f ∈ OX(U).

Then ∫
γ

df = f(γ(b))− f(γ(a)).

IV. Let {γi}n1 be a partition of a smooth path γ, i. e, γ = γ1γ2 . . . γn. Then∫
γ

ω =
n∑
i=1

∫
γi

ω.

V. Let γ−1 be the inverse path to a smooth path γ. Then∫
γ−1

ω = −
∫
γ

ω.

Remark 13.2. Every continuous path can be approximated by smooth paths. This allows to

define integrals of differential forms over arbitrary continuous paths.

Theorem 13.3. Let X be a Riemann surface. Let ω ∈ ΩX(X). Let γ ∼ δ be two homotopic

paths. Then ∫
γ

ω =

∫
δ

ω.

Proof (hint). This is a consequence of the Stokes’ theorem. �

Corollary 13.4. Let X be a RS, let x0 ∈ X. Consider the fundamental group π1(X, x0). Let

ω ∈ ΩX(X), then

π1(X, x0)→ C, [γ] 7→
∫
γ

ω

is a well-defined group homomorphism.

Proof. The map is well-defined by the previous theorem. Let γ, δ be two closed paths at x0.

By property (IV) of integrals it holds∫
γ·δ

ω =

∫
γ

ω +

∫
δ

ω.

Thus the map [γ] 7→
∫
γ

ω is a group homomorphism for every ω ∈ ΩX(X). �

http://en.wikipedia.org/wiki/Stokes'_theorem
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Definition 13.5. The number
∫
γ

ω is called period of γ with respect to ω. The homomorphism∫
−

ω : π1(X, x0)→ C, [γ] 7→
∫
γ

ω,

is called the period homomorphism.

Exercise. Compute the periods of the generators of π1(C/Γ) with respect to some generator

ω of ΩC/Γ(C/Γ).

Definition 13.6. Let ω ∈ KX(U) for some open subset U of a RS X. Let a ∈ U . Let

z : U ′ → V be a local coordinate at a. Let ω|U ′ = fdz for some f ∈MX(U ′). Define

resa ω := resz(a) f,

this number is called the residue of ω at a.

Reminder 13.7. Let U ⊂ C be open, let b ∈ U , f ∈ OX(U \ {b}), and let

f(z) =
∑
i

ci(z − b)i

be its Laurent power series at b. Then

resb f = c−1.

Equivalently

resb f =
1

2πi

∮
b

fdz.

Remark 13.8. It makes no sense to define residues of meromorphic functions on RS because

it would depend on the choice of local coordinates.

Claim. resa ω defined as in Definition 13.6 does not depend on the choice of a local coordinate.

Theorem 13.9 (Residue theorem). Let X be a compact RS, let ω ∈ KX(X). Then∑
x∈X

resx ω = 0.

Proof (hint). Follows from the Stokes’ theorem. �

Example 13.10. Let f ∈MX(X). Put ω = df
f

. The residue theorem reads then as∑
p∈X

resp
df

f
= 0.

http://en.wikipedia.org/wiki/Pierre_Alphonse_Laurent
http://en.wikipedia.org/wiki/Stokes'_theorem
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For every p ∈ X choose a local coordinate z at p and write f locally around p as f = zkf̃ ,

where f̃ is a holomorphic function around p such that f̃(p) 6= p and k = ordp f . Then

df = (kzk−1f̃ + zk
∂f̃

∂z
)dz

and therefore
df

f
=

(
k

z
+

∂f̃
∂z

f̃

)
dz.

This means resp
df
f

= k = ordp f , so the residue theorem reads as∑
p∈X

ordp f = 0,

which we already know.

Theorem 13.11. Let S ⊂ X be a finite set. Let for a ∈ S Ua be an open neighbourhood such

that Ua ∩ Ub = for a 6= b. Let ωa ∈ KX(Ua) such that ωa ∈ OX(Ux \ {a}). Let
∑
a∈S

resa ωa = 0.

Then there exists ω ∈ KX(X) such that S is its set of poles and ω|Ua − ωa ∈ ΩX(Ua).

Proof. Without. �

Remark 13.12. This means that the the condition
∑

x∈X resx ω = 0 from the residue theorem

is the only restriction for the existence of meromorphic differential forms.

Corollary 13.13. On every compact Riemann surface X there exists a non-constant mero-

morphic function f ∈MX(X).

Proof. For every two different points p1, p2 ∈ X there exist differential forms ω1, ω2 ∈ KX(X)

such that p1 is the only pole of ω1 with ordp1 ω1 = −2, p2 is the only pole of ω2, ordp2 ω2 = −2.

Then ω1 = f · ω2 for some f ∈MX(X). One sees that f should be non-constant. �
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Exercises.

Exercise 40. Consider the lattice Γ = Z · 5 + Z · (2 + 3i). Let X = C/Γ be the corresponding

complex torus. Consider the path γ : [0, 1]→ X, γ(t) = [(12 + 9i) · t]. Let ω be the standard

generator of ΩX(X), i. e., for every chart ϕ : U → V it holds ω|U = dϕ. Compute∫
γ

ω.

Exercise 41. Let Γ = Zγ1 +Zγ2 be a lattice in C. Let X = C/Γ be the corresponding complex

torus.

Define δ1 : [0, 1] → X by δ1(t) = [t · γ1] and δ2 : [0, 1] → X by δ2(t) = [t · γ2]. Notice that δ1

and δ2 are smooth closed paths at the point [0] ∈ X. Moreover, they generate the fundamental

group of X.

Let ω be the standard generator of ΩX(X), i. e., for every chart ϕ : U → V it holds ω|U = dϕ.

Compute the integrals ∫
δ1

ω and

∫
δ2

ω.

Exercise 42. Let D =
r∑
i=1

ai · xi be a principal divisor on a complex torus X = C/Γ, i. e.,

D = (f) for some meromorphic function f ∈MX(X). Show that

r∑
i=1

ai · xi = 0

as an element of X = C/Γ.

Hint: Let π : C → X be the canonical projection. Consider F (z) = f ◦ π(z). Choose a

fundamental parallelogram V in C such that there are no poles or zeros of F on its boundary

∂V . Consider the integral ∫
∂V

z ·
F ′(z)

F (z)
dz

and apply the standard residue theorem.

Theorem. For a meromorphic function g on an open set V ⊂ C which possesses a continuous

extension to the closure of V one has

1

2πi

∫
∂V

g(z)dz =
∑
a∈V

resa g.
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14. Lecture 14

Definition 14.1. Let X be a compact RS, let

α1, . . . , αp, β1, . . . , βp

be some representatives of generators of the fundamental group π1(X) of X (cf. Lecture 4).

Let ω ∈ ΩX(X), define Ai(ω) =
∫
αi

ω, Bi(ω) =
∫
βi

ω. We obtain the linear maps

ΩX(X)
A−→ Cp, ω 7→ (A1(ω), A2(ω), . . . , Ap(ω)),

ΩX(X)
B−→ Cp, ω 7→ (B1(ω), B2(ω), . . . , Bp(ω)).

Theorem 14.2. A and B are isomorphisms of vector spaces.

Proof. No proof. A proof can be deduced from the theory of harmonic functions. �

Corollary 14.3. Let ω ∈ ΩX(X). Then

ω = 0 ⇔ Ai(ω) = 0 ∀i ⇔ Bi(ω) = 0 ∀i.

Definition 14.4. Fix a basis of ΩX(X), say {ω1, . . . , ωg} (assume g > 1). Then for every

closed curve α in X at x0 ∈ X the vector

(

∫
α

ω1, . . . ,

∫
α

ωg) ∈ Cg

is called a period of X with respect to {ω1, . . . , ωg}.

Denote by L = L(ω1, . . . , ωg) ⊂ Cg the set of all periods of X with respect to {ω1, . . . , ωg}.

Since ∫
α

ω +

∫
β

ω =

∫
α·β

ω,

we see that L is subgroup of Cg.

Consider an arbitrary period (
∫
α

ω1, . . . ,
∫
α

ωg). Since [α1], . . . , [αg], [β1], . . . , [βg] generate the

fundamental group, [α] can be expressed as a product of their powers. Then

(

∫
α

ω1, . . . ,

∫
α

ωg)

is a linear combination of

(

∫
αi

ω1, . . . ,

∫
αi

ωg), i = 1, . . . , g, and (

∫
βj

ω1, . . . ,

∫
βj

ωg), j = 1, . . . , g,
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with integer coefficients. In other words,

(

∫
α

ω1, . . . ,

∫
α

ωg)

is a linear combination with integer coefficients of the rows of the period matrix

A1(ω1) . . . A1(ωg)
...

. . .
...

Ag(ω1) . . . Ag(ωg)

B1(ω1) . . . B1(ωg)
...

. . .
...

Bg(ω1) . . . Bg(ωg)


.

So the rows of the period matrix generate L as an abelian group.

One sees that the rank (over C) of the period matrix is g. Moreover, one can show that its

rows are linearly independent over R. This means that L is a free abelian subgroup of Cg of

rank 2g, i. e., a lattice in Cg.

Definition 14.5. Define the Jacobian of X by

Jac(X) := Cg/L.

One introduces a complex structure on Jac(X) as for one-dimensional complex tori (page 4).

Then Jac(X) is a complex manifold of dimension g.

Exercise. Jac(C/Γ) ∼= C/Γ.

Fix a point q ∈ X of a compact Riemann surface X. For a point x ∈ X take some path γx

from q from x and consider x∫
q

ω1,

x∫
q

ω2, . . . ,

x∫
q

ωg

 :=

∫
γx

ω1, . . . ,

∫
γx

ωg

 .

It is an element in Cg. Of course it depends on the choice of γx. However if δx is another path

connecting q and x, for every ω ∈ ΩX(X)∫
γx

ω −
∫
δx

ω =

∫
γx

ω +

∫
δ−1
x

ω =

∫
γx·δ−1

x

ω,

where αx = γx · δ−1
x is a closed path at q. Therefore,∫

γx

ω1, . . . ,

∫
γx

ωg

−
∫
δx

ω1, . . . ,

∫
δx

ωg

 =

∫
αx

ω1, . . . ,

∫
αx

ωg

 ∈ L.
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Thus the map

λq : X → Jac(X) = Cg/L, x 7→ [

∫
αx

ω1, . . . ,

∫
αx

ωg

]

is well-defined.

Moreover, it is holomorphic.

Exercise. Show that λq is holomorphic.

Since Jac(X) has a natural structure of an abelian group, one can extend λq by linearity to

a homomorphism

Λq : DivX → JacX,
∑
x∈X

ax · x 7→
∑
x∈X

ax · λq(x).

Remark 14.6. Λq depends on the choice of q ∈ X.

Consider its restriction to the subgroup Div0X ⊂ DivX.

Claim.

Λq|Div0X : Div0X → JacX

does not depend on the choice of q.

Proof. Since every D ∈ Div0X is a sum of divisors of the form a − b, a, b ∈ X, a 6= b, it is

enough to check the statement for D = a− b, a 6= b. Then

Λq(D) = [(

∫ a

q

ω1, . . . ,

∫ a

q

ωg)]− [(

∫ b

q

ω1, . . . ,

∫ b

q

ωg)] =

[(

∫ a

q

ω1 −
∫ b

q

ω1, . . . ,

∫ a

q

ωg −
∫ b

q

ωg)] = [(

∫ a

b

ω1, . . . ,

∫ a

b

ωg)],

i. e., does not depend on q. �

Definition 14.7. Define Λ := Λq|Div0X for some (every) q ∈ X.

We obtained a homomorphism Λ : Div0X → JacX. Recall that for f ∈ MX(X), (f) ∈

Div0X. Notice that (f) = (g) for f, g ∈ MX(X) implies that f
g
∈ OX(X) = C. Hence, to

know the divisor of f ∈ MX(X) is the same as to know f up to a multiplication by a scalar.

So, to describe MX(X) is the same as to describe PDivX ⊂ Div0X.

Theorem 14.8. I. (Abel) PDivX = Ker Λ, i. e., a divisor D ∈ Div0X is a divisor of some

meromorphic function f ∈MX(X) (D = (f)) if and only if Λ(X) = 0. In particular Pic0X =

Div0X/PDivX can be seen as a subgroup of JacX by means of the induced embedding

Pic0X → JacX, [D] 7→ Λ(D).

http://en.wikipedia.org/wiki/Niels_Henrik_Abel
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II. (Jacobi) Λ is surjective, in particular

Pic0X → JacX, [D] 7→ Λ(D).

is an isomorphism of abelian groups.

Proof. No proof. �

Corollary 14.9. λq : X → JacX is injective for every q ∈ X

Proof. Suppose that λq is not injective. Then there exist a, b ∈ X, a 6= b, with λq(a) = λq(b).

Then for D = a − b, Λ(D) = λq(a) − λq(b) = 0, hence there exists f ∈ MX(X) such that

D = (f). Then f has degree 1 as a map of Riemann surfaces X
f̂−→ Ĉ. Therefore X ∼= Ĉ, which

is a contradiction because we assumed gX > 1. �

Corollary 14.10. If gX = 1, then λq : X → JacX = C/L is an isomorphism, i. e., complex

tori are the only compact Riemann surfaces of genus 1.

Proof. λq is a holomorphic injective map of Riemann surfaces X → C/L, hence surjective, and

hence an isomorphism. �

Corollary 14.11 (Abel-Jacobi theorem for complex tori). Let X = C/Γ be a complex torus.

(0) Then JacX can be identified with X itself.

(1) Let D =
∑
i

ai · [xi] ∈ DivX be a divisor on X, ai ∈ Z, xi ∈ C. Let DC =
∑
i

aixi ∈ C.

Then under the identification JacX = X, the map Λ : Div0X → JacX = X is given by

D 7→ [DC] = DC + Γ ∈ X = C/Γ.

Hence

Pic0X → X, [D] 7→ [DC],

is an isomorphism of abelian groups.

(2) In other words, for D ∈ Div0X there exists f ∈ MX(X) with D = (f) if and only if

DC ∈ Γ.

Proof. Exercise. �

http://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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Some final remarks. Let X be a compact Riemann surface of genus gX > 1. Then JacX

can be embedded into Pn for some n. Then the chain of the embeddings

X ⊂ JacX ⊂ Pn

gives an embedding of X into Pn as a submanifold.

Remark 14.12. Note that not every higher dimensional torus can be embedded into Pn.

However this is the case for the tori defined by eriod lattices.

Definition 14.13. A projective variety is a zero set of homogeneous polynomials f1, . . . , fm ∈

C[x0, . . . , xn]

Z(f1, . . . , fm) = {〈x0, . . . , xn〉 ∈ Pn | fi(x0, . . . , xn) = 0 ∀i = 1, . . . ,m}.

Theorem 14.14 (Chow). Compact complex submanifolds of Pn are projective varieties.

Corollary 14.15. Every compact Riemann surface can be realized as a projective variety, i. e.,

a projective algebraic curve.

Remark 14.16. Let C = Z(f) ⊂ P2 be a smooth plane algebraic curve, deg f = d. Then its

genus is

gC =
(d− 1)(d− 2)

2
.

In particular, gC = 0 for d = 1 and d = 2, gC = 1 for d = 3, gC = 3 for d = 4, gC = 6 for d = 5,

so one sees that not all compact Riemann surfaces can be realized as plane algebraic curves

(for example Riemann surfaces of genus 2).

Dimension of the moduli space. In our course we showed that the space of isomorphism

classes (so called moduli space) of compact Riemann surfaces of genus

• g = 0 consists of one point;

• g = 1 has dimension 1 and can be identified with C (using j-invariant).

One can show that for g > 2, the spaceMg of the isomorphism classes of compact Riemann

surfaces of genus g has dimension 3g − 3.

http://en.wikipedia.org/wiki/W._L._Chow
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Exercises.

Exercise 43. (1) Let Γ be a lattice in C and let X = C/Γ be the corresponding complex

torus. Fix some generators α1 and β1 of the fundamental group of X, fix a basis of ΩX(X), and

compute the corresponding period matrix. You could use some of your results from Exercise 41.

(2) Let Γ be a lattice in C and let X = C/Γ be the corresponding complex torus. Show that

Jac(X) ∼= X.

Exercise 44. Let X be a compact Riemann surface of genus g > 1. Let {ω1, . . . , ωg} be a

basis of ΩX(X). Let L ⊂ Cg be the corresponding lattice of periods. For a fixed point q ∈ X

we constructed the map

λq : X → Jac(X) = Cg/L, x 7→ [(

x∫
q

ω1, . . . ,

x∫
q

ωg)].

Prove that λq is a holomorphic map.

Hint: Notice that it is enough to understand the following.

(1) Let w be a point in C. Let f be a holomorphic function in some open neighbourhood W of

w. Then in every open ball U around w, U ⊂ W , for every point x ∈ U , and for every path γx

that connects w and x, the integral ∫
γx

fdz

depends only on x and not on the choice of γx, hence the notation
x∫
w

fdz :=
∫
γx

fdz makes sense.

(2) Moreover, there exists an open ball U around w where f has a primitive function, i. e., a

holomorphic function F such that F ′(z) = f(z). Then
x∫
w

fdz =
x∫
w

F ′(z)dz = F (x)− F (w) and

hence the function

U 3 x 7→
x∫

w

fdz

is holomorphic.

Exercise 45. Let X = C/Γ be a complex torus, Γ = Z · ω1 + Z · ω2. Let D1 =
[
ω1

2

]
+
[
ω2

2

]
−[

ω1+ω2

2

]
, D2 =

[
ω1

2

]
+
[
ω2

2

]
− 2 ·

[
ω1+ω2

2

]
, D3 =

[
ω1

2

]
+
[
ω2

2

]
− 2 ·

[
ω1+ω2

4

]
.

Check whether D1, D2, D3 are principal divisors.
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