RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER
2103/2014.
A PRELIMINARY AND PROBABLY VERY RAW VERSION.

OLEKSANDR IENA

1. LECTURE 1

1.1. Some prerequisites for the whole lecture course. The following is assumed known.

1) Holomorphic functions in one variable.

)
2) Basics on topology: topological spaces, continuous maps.
3) basics on topological manifolds: definition.

)

4) Definition of a complex manifold.

1.2. Definition of a Riemann surface. Since this course is called “Riemann surfaces”, the

first and main definition of the course is the one of a Riemann surface.
Definition 1.1. A Riemann surface is a connected 1-dimensional complex manifold.
Convention. We will usually write RS for Riemann surface.

Let us clarify the meaning of Definition

Let X be a 2-dimensional real topological manifold.

Definition 1.2. Let U C X be an open subset. Let V' C C be an open subset of the set
of complex numbers (equipped with the standard Euclidean topology). Let ¢ : U — V be a

homeomorphism. Then ¢ : U — V is called a complex chart on X.

¢ -

Definition 1.3. Two complex charts oy : Uy — Vi and ¢y : Uy — V5 are called holomorphically

compatible if
P2 © 901_1‘W1(U10U2) : 901<U1 N U2) — 902(U1 M U2)

is a holomorphic map. By abuse of notation we will often denote it by s 0 (o7 .
1
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Exercise. ;0 ¢! is then automatically biholomorphic.

Definition 1.4. A system of holomorphically compatible complex charts on X
such that | J,.; U; = X is called a complex atlas on X.

i€l 7t

Definition 1.5. Two atlases 2; and 2 on X are called holomorphically compatible if every

chart from 2(; is holomorphically compatible with every chart from 2s.
Exercise. Holomorphic equivalence is an equivalence relation.
Definition 1.6. A complex structure on X is an equivalence class of complex atlases.

Remark 1.7. In order to define a complex structure on X it is enough to give a complex
atlas on X. Then two complex structures are equal if and only if the corresponding atlases are

equivalent.

Definition 1.8. Let 2 be a complex atlas on X. Put
Anaz = {complex charts on X holomorphically compatible with the charts from 2}.

Then 2, is the maximal atlas holomorphically compatible with 2A.

Therefore, two atlases 2l and 25 are equivalent if and only if A,,.. = Bae-
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Definition 1.9. A RS is a pair (X, X)), where X is a connected 2-dimensional real topological

manifold and ¥ is a complex structure on X.

Equivalently: a RS is a pair (X,2(), where X is a connected 2-dimensional real topological

manifold and 2 is a complex atlas on X.

For those who remember the definition of a complex manifold is clear now that the last

definition is just the definition of a 1-dimensional complex manifold.

Convention. If (X,Y) is a RS, then “a chart on X” means a chart in the maximal atlas on

X corresponding to X.

Examples 1.10 (of Riemann surfaces). 1) X=C,A={C SN C}.

2)

Any domain in U C C (open connected subset of C) , 2 = {U N }. More generally,
let X be a RS and let U C X be a domain. Then U is a RS as well. As an atlas one can
take the restrictions to U of the complex charts on X.

Riemann sphere C(= P; = Py(C)). As a set C = C L {oco}, where oo is just a symbol.
The topology is defined as follows. U C C is open if and only if either co ¢ U and
U C Cisopenor co € U and C\ U is compact in C. This defines a compact Hausdorff
space homeomorphic to the two-dimensional sphere S2. Put Uy = C and U; = C\ {0} =
V* U {oo}. Define ¢g : Uy — C =id : C — C and define ¢, : U; — C by

1 z# 00

p1(2) =
0, otherwise.

Exercise. The complex charts g and ¢, are holomorphically compatible and constitute

a complex atlas on C.

Complex tori.

Consider C as a 2-dimensional vector space over R. Let {wy,ws} be its basis over R.
Let ' =Z-wy +Z-wy = {nwy + mws | m,n € Z} be the corresponding lattice. It is a
subgroup in the abelian group C. Consider the quotient homomorphism C = C/I' and
introduce on C/T" the quotient topology, i. e., U C C/T is open if and only if 771(U) is
open in C.

For every a € C put V, = {a + tywy + tows | t1,t2 € (0,1)}, i. e., the interior of the

parallelogram with vertices at a, a + wy, a + wy, a + wy + wo.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 4

V, are called standard parallelograms with respect to the lattice I'.
Put U, := n(V,). Note that x|y, : V, — U, is bijective and moreover a homeomor-

phism. Put ¢, := (7|y,)"" : U, — V,. This gives a complex atlas on C/T".
Exercise. Check the details.
5) 1-dimensional complex submanifolds in a complex manifold.
1.3. Definition of a holomorphic function of a Riemann surface. Structure sheaf.

Definition 1.11 (Holomorphic functions). Let X be a RS. Let Y C X be an open subset.
Then a function Y 25 C is called holomorphic on Y is for every chart ¢ : U — V on X the
composition fo @™ : p(UNY) — C is a holomorphic function.

Let Ox(Y) denote the set of all holomorphic functions on Y.

Exercise. Ox(Y) is a C-algebra.

Remark 1.12. For every open subset U C X we obtain a C-algebra Ox(U) of holomorphic
functions on U. For every two open subsets U and W in X such that U C W, the restriction
map Ox (W) — Ox(U), f +— f|v is a homomorphism of C-algebras. The collection of all these

data is denoted Ox and is called the structure sheaf on X.
1.4. Riemann removable singularities theorem for Riemann surfaces.

Theorem 1.13 (Riemann removable singularities theorem). Let X be a RS. Let U C X be an
open subset. Leta € U, let f € Ox(U\{a}) be bounded. Then there exists a unique f € Ox(U)

such that flogay = [-

Proof. Let ¢ : U' — V' be a chart around a. Then fop~!is a holomorphic bounded function on
e(U'NU)\ {p(a)} C C. Therefore, there exists a unique holomorphic function F' on o(U'NU)
such that

Flownvngey = foe.
Therefore, there is a unique holomorphic function g on UNU’ such that g|yron (o} = flununfa-

Hence 3! f € Ox(U) with flin (e} = f- O
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1.5. Exercises.

Exercise 1. 1) Check that the complex charts on C introduced in the lecture are holomorphi-

cally compatible and constitute a complex atlas on C.

2) Prove that C is homeomorphic to the complex projective line P; = P, (C).

Exercise 2. Let I' = Zw; + Zw» be a lattice in C.

1) Fill in the gaps in the definition of the complex structure on C/T".

2) Let S' denote the real 1-sphere. Show that C/T" is homeomorphic to S* x S
Hint: Let py, ps be the R-basis of Hom(C,R) dual to wy, wy. Consider the map C/T' —
St x S [2] = (exp(2mip1(2)), exp(27ips(2))). Here 2] denotes the equivalence class of a

complex number z in C/T.
Exercise 3. In this exercise all subsets of complex manifolds are equipped with the induced

topology.

1) Show that the following subspaces of C? or C* are complex submanifolds, hence they are

Riemann surfaces. Describe the complex structures on each of them.
X1 ={(21,2) €C? | 1721 + 2720 =0}, Xy ={(21,2) € C*| 2y — 22 = 0},
Xs={(21,2) €EC* | 2120 — 1 =0}, Xy={(20,21,20) €C*| 21 — 22 =0, 20 — 25 = 0}.
2) Are the following subsets of C* complex submanifolds?
Xs={(21,2) €C?| 22 — 28 =0}, X¢={(21,22) € C*| 2120 = 0}.

Can you equip these subspaces of C? with a structure of a Riemann surface?

Hint: Have a look at the map C — C?, t — (t3,t?). Study the connected components of

X6\ {(0,0)}.

Exercise 4. 1) Describe all holomorphic functions on C.
Hint: Use the compactness of@ and your knowledge about bounded holomorphic functions on

the complex plane C.

2) Let I' be a lattice in C. Can you describe all holomorphic functions on the torus C/T" using

a similar reasoning as in part 1) of this exercise?
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2. LECTURE 2

In the previous lecture we defined
e Riemann surfaces;
e for a RS X the sheaf Ox of holomorphic functions on X (sheaf of C-algebras).
In other words, we defined the objects we are going to study.

In order to be able to “compare” the objects, one usually needs morphisms (maps) between

them.

Definition 2.1. 1) Let X and Y be RS. Then a map f : X — Y is called holomorphic if
for every charts ¢ : U — V on X and ¢ : U’ — V' on Y with f(U) C U’ the composition
Yo flpopt:V — V"is a holomorphic map.

2) Equivalently, the map f is holomorphic if for every open U C Y and for every h € Oy (U)
the function f*h:=ho f: f~Y(U) — C belongs to Ox(f1U).

Exercise. Prove the equivalence of the statements of Definition [2.1]

Convention. Holomorphic maps of RS and morphisms of RS are just different names for the

same notion.

Remark 2.2. It follows that the composition of morphisms is a morphism as well. Therefore,

Riemann surfaces constitute a full subcategory in the category of complex manifolds.
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Theorem 2.3 (Identity theorem). Let X, Y be RS, let fi, fo : X — Y be two morphisms.Let
A C X be a subset such that A contains a limit point a of itself. If fi|a = fa|a, then f1 = fo.

Proof. Let S C X be the set of points € X that have an open neighbourhood U > x such
that fi|y = f2|y. Then S is open by the construction. Note that S # ). Indeed, by the identity
theorem for C, a € S. Our idea is to show that S is closed. Then by the connectedness of X
either S = X or S =, hence S = X and f; = f.

So, let b be a limit point of S. Then by the continuity of f; and fy we conclude that f;(b) =
f2(b). By the identity theorem for C we conclude that f; and f, equal in a neighbourhood of
b, hence b € S, which demonstrates that S is closed. O

Example 2.4 (Examples of morphism of RS). 1) The quotient map C — C/T', where I is a

lattice in C, is a holomorphic map.
2) Let I" and I"” be two lattices in C. Let o € C* and assume that oo - I' C I". Then the map
C/T = C/T, [2] — |az],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if o - T' =T".
3) The map C — C, given by

2 € {0, 00},

2= 90,2z = o0,

00,z =10
is a holomorphic map from C to C.
4) Consider two submanifolds X3 and X, of C? from Exercise . The map

X3 = Xy, (21,22) — (23, 2)

is a morphism of RS.
Definition 2.5 (Meromorphic functions). 1) Let X be a RS. Let Y C X be an open subset.

A meromorphic function on Y is by definition a holomorphic function on Y\ P, where P C Y

is a subset of isolated points and and for every p € P the limit lim | f(x)| exists and equals co.
T—p
2) The points of P are called the poles of f.

3) Mx(Y') denotes the set of meromorphic functions on Y C X.
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Exercise. Let X be a Riemann surface and let Y be an open subset in X. Check that the set
Mx(Y) of meromorphic functions on Y has a natural structure of a C-algebra and Ox(Y) is
naturally included in Mx(Y) as a C-subalgebra. This also defines a structure of an Ox(Y)-
module on Mx(Y).

Example 2.6. 1) Consider Y = C = C\ {oo} as an open subset of C and let f be the identity
function of C — C, z — z. Then f is a holomorphic function on Y. Since lim |f(z)] =
Z—00

lim |z| = 0o, we conclude that id¢ can be seen as an element of M@(@).
Z—00

2) Let f € C|z] be a polynomial in one variable. One can consider it as a function on C. This
function is holomorphic. Using arguments similar to the previous ones, one concludes that

every polynomial in one variable f(z) € C[2] can be seen as an element of Mg(C).

Theorem 2.7. Let X be a RS. There is a 1 :1 correspondence

Mx(X) < {morphisms X — C not identically 0o}.
Proof. “=7. Let f € Mx(X). Let P be the set of poles of f. Define f: X —>Chy

. z2),2¢ P
PR LCEL

o0, otherwise.
Then f is a continuous map (notice that it is enough to check it at poles). So by Riemann
removable singularity theorem f is holomorphic.

“~7. Consider g : X — C. If the set g~ '(00) contains a limit point, by identity theorem
g(z) = oo for all x € X, therefore g~!(oc0) does not contain limit points and hence it is a subset
of isolated points. Denote f = g|x\4-1(00) : X \ g *(c0) — C. This is a holomorphic function
on X \ g~'(00). For every p € g~'(c0) one checks llg;) |f(2)] = oo. This means f € Mx(X).

One sees that the constructed maps are inverse to each other. ([l

Corollary 2.8. Non-trivial (non-zero) meromorphic functions may have only isolated zeroes

and poles.

Proof. Note that the poles of meromorphic function are isolated by definition.
Assume a is a non-isolated zero of f € Mx(X), i. e., there exists a sequence a; with lim a; = a
1— 00

such that f(a;) = 0, f(a) = 0. Then by the identity theorem f =0 as a morphism X — C.
Therefore, f = 0. U

Claim. Mx(Y) is a field.
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1
Proof. 1f f € Mx(Y) such that f # 0, then 7 € Mx(Y) as well since the zeroes of f become

the poles of l O
f

Example 2.9. As mentioned in Example polynomials in one variable can be seen as

meromorphic functions on C. By the Claim above we conclude that every rational function in

one variable %, f,g € C[z], g Z 0, can be seen as a meromorphic function on C as well. So

the field of the rational functions in one variable

= M z| (polynomials in z
0(:) = {251 1.9 € €L (potymomials in 2,9 # 0}

is a subfield in Mg (C).

Exercise. Show that every meromorphic function on C is rational, i. e., M@(@) coincides with

C(z).

Theorem (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X — Y be a
non-constant holomorphic map. Let a € X, b:= f(a) € Y. Then there exists k > 1 such that

locally around a the morphism f looks as

2 2F

i. e., there exist a chart U 5V, a € U, p(a) = 0, and a chart U’ LN V', belU, ¥(b) =0,
such that f(U) C U’ and 1o flyo @~ t(z) = 2*.

-

)




RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 10

2.1. Exercises.

Exercise 5 (Examples of morphisms of Riemann surfaces). Check using the definition of a

holomorphic map that the following maps between Riemann surfaces are holomorphic.

1) The quotient map C — C/T", where T' is a lattice in C, is a holomorphic map.

2) Let I" and I be two lattices in C. Let a € C* and assume that o - I' C I". Then the map
C/T = C/T, [z] = [az],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if o - T' =T".

3) The map C — C, given by
2 ¢{0,00},
2= 90,2 =00,
0,2 =0

is a holomorphic map from C to C.

4) Consider two submanifolds X3 and X, of C? from Exercise 3] The map
X3 = Xy, (21,22) = (22, 2)

is a morphism of RS.

Exercise 6. Show that the set of meromorphic functions on C coincide with the set of rational
functions
f(z)

{m | f, g € C[z] (polynomials in z), g # O} )

Hint: One could follow the following steps. Let F, F' #Z 0, be a meromorphic function on C.

e Note that F' has only finitely many zeros and poles.

e There are two possibilities: oo is either a pole of F' or not.

e If oo is not a pole of F, consider the poles ay,...,a, of F. Consider the principal parts
h, of F'at a,, v =1,...,n, and observe that F' — zn: h, is a holomorphic function on C.
So it must be constant and hence F' is a rational fyljrllction.

e If 0o is a pole of F, consider the function % and show as above that it is rational.

Exercise 7. Let I be a lattice in C. Then a meromorphic function f € M¢(C) is called doubly
periodic (or elliptic) with respect to I' if f(z) = f(z + ) for all z € C and for all v € I'.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 11

1) Show that there is a one-to-one correspondence between elliptic functions on C with respect

to I' and meromorphic functions on C/I.

2) Show that there are only constant holomorphic doubly periodic functions.
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3. LECTURE 3

In the previous lecture we stated the following theorem.

Theorem 3.1 (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X — Y be a
non-constant holomorphic map. Let a € X, b:= f(a) € Y. Then there exists k > 1 such that

locally around a the morphism f looks as
2 2k

i. e., there exist a chart U 5V, a € U, p(a) = 0, and a chart U’ 2, V', belU, ¥(b) =0,
such that f(U) CU" and o flyop=t(z) = 2"

- -

Proof. There exists a chart ¢ : U’ — V' around b such that 1(b) = 0. Then f~'(U’) is open

and contains a.

There exists a chart around @ mapping a to 0. Intersecting with f~1(U’) we obtain a chart
U % V such that f(U) Cc U and 3(a) = 0.

Consider F := ¢ f@! : V — V'. Since F(0) = 0, one can write F as F(z) = ¥ - G(),
G(z) # 0 in a neighbourhood W of 0. Since G(0) # 0, shrinking W if necessary we may assume
that there exists a holomorphic function H on W such that H*(z) = G(z). Indeed, shrinking

W if necessary we may assume that there exists a branch of the complex logarithmic function

defined around G(W). Then H(z) := exp( In G(2)) has the required property.
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We obtain F(z) = 2% - H*(z) = (zH(2))*. Consider £ : W — V', z — zH(z). It is a
biholomorphic map between W (possibly after shrinking W) and some neighbourhood of 0
in V'. Consider ¢ : g~ (W) 5 W S V. Then Vi Nz) = fEleN(z) = F(E(2) =
(€M) H(EH(2))F = (€71 (=) = 2~ N
Definition 3.2. The number k from the previous theorem is uniquely determined for a given

holomorphic map f and a given point a € X. It is called the multiplicity of f at the point a
and will be denoted by mult, f.

Exercise. Prove that mult, f is well defined.

Remark 3.3 (Geometrical meaning of mult, f). In every neighbourhood Uy of a there exist a

neighbourhood U 3 a and a neighbourhood W 3 b such that for every y € W \ {b}

#f N y)NU =k,

i. e., U contains exactly k£ preimages of .

Remark 3.4 (Computation of mult, f). Note that in order to compute the multiplicity of
a holomorphic map at a point it is enough just to go through the first part of the proof of
Theorem [3.1 and to find the decomposition F(z) = 2*G(z), G(0) # 0.

Exercise. Let f(z) € C|z] be a polynomial of degree k. This gives the holomorphic map
S . f(z), zeC
f:C=C, f(2)= =)

00, Z = 00.

Show that f has multiplicity & at co. What is the multiplicity of f at 07
Corollary 3.5. FEvery non-constant holomorphic map of RS f : X — Y is open.

Proof. f is locally z — z*, which is open. Since being open is a local property, f is open. [

Corollary 3.6. Let f : X — Y be an injective morphism of RS. Then f : X — f(X) is

biholomorphic.

Proof. Injectivity implies that f is locally z — 2. Then the inverse of f is locally z — 2z and

hence it is holomorphic. O

Theorem 3.7. Let X L Y be a non-constant morphism of RS. Let X be compact. Then f is

surjective and Y is compact as well.
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Proof. Since f(X) is open and compact it is open and closed. Therefore, f(X) =Y since Y is

connected. O

Exercise. Let I' be a lattice in C. Show that every non-constant elliptic function with respect

to I' attains every value b € C.
Corollary 3.8. Let X be a compact RS. Then Ox(X) = C.

Proof. Let f € Ox(X) and consider it as a holomorphic map X ENNoRN; f is non-constant,

then C must be compact, which is wrong. So f is a constant function. O

Remark 3.9. As we saw in Exercise @ this implies that every meromorphic function on C is

rational.

Definition 3.10 (Elliptic functionsED. Let I' be a lattice in C. Then a meromorphic function
f € Mc(C) is called doubly periodic (or elliptic) with respect to I' if f(z) = f(z + ) for all
z€ Cand forall y €T

Claim. There is a one-to-one correspondence between elliptic functions on C with respect to
I' and meromorphic functions on C/U. In particular there are only constant doubly periodic

holomorphic functions on C.

Proof. Every elliptic function f : C — C uniquely factorizes through the canonical projection

C 5 C/T" and hence defines a holomorphic map C/T" — C.

c— 1 ¢
N
C/T

Every holomorphic map f : C/T’ — C defines f = f o .

This gives the required one-to-one correspondence. 0
Exercise. Try to invent a non-trivial elliptic function with respect to a given lattice.

Definition 3.11. Let X be a topological space. Then a path in X is a continuous map
v :10,1] = X. The point v(0) is called the initial point of v, the point (1) is called the end
point of ~.

If 4(0) = (1), then v is called a closed path.

Lof. Exercise



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 15

Definition 3.12. A topological space X is called path-connected if every two points a,b € X

can be connected by a path.
Reminder 3.13. Path connectedness implies connectedness.
Exercise. Riemann surfaces are path connected.

Definition 3.14. Two paths v, § from a to b are called homotopic if there exists a continuous
map
H:[0,1] x[0,1] = X
such that
H(t,0) =~(t), H(t,1)=0(t) forallte]0,1]
H(0,s)=a, H(l,s)=0b forallse]0,1].

One writes v ~ ¢ if v and § are homotopic.
Claim. Homotopy is an equivalence relation on the set of all paths from a to b.

Definition 3.15 (Composition). Let X be a topological space. Let v be a path from a to b.
Let 0 be a path from b to c¢. Define

2t), 0,3
= e
52t —1), teli 1]

Definition 3.16 (Inverse curve). Let X be a topological space. Let v be a path from a to b.
Define

vt =41 -1t), telo1].
Claim. The composition of paths and the inverse path are compatible with the homotopy equiv-
alence, i. e., if y~~', d ~ &, and if v- 9, v - & are well-defined, then

v~y and 4Tt~

Definition-Theorem 3.17 (Fundamental group). Let zp € X. Let m1(X, x¢) denote the set
of the homotopy classes of of closed paths from x4 to x¢. Let [y] denote the homotopy class of

7. Let [xo] denote the homotopy class of the constant path
0,1] = X, t~— x.

Then (X, xg) is a group with respect to the multiplication



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 16

the constant class [x¢] is the identity element with respect to this multiplication, for a class [7]
its inverse is given by [y]™! = [y7!].

(X, o) is called the fundamental group of X with respect to the base point .

Proof. Exercise. O
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3.1. Exercises.

Exercise 8. 1) Let X 4+ ¥ be a non-constant holomorphic map of Riemann surfaces and let
a € X. Show that the multiplicity of f at a is uniquely determined, i. e., does not depend on

the choice of local charts.

2) Let f(z) € C[z] be a polynomial of degree k. This gives a holomorphic map f:C—=C,
f (00) = oo. Show that f has multiplicity & at co. What is the multiplicity at 07

3) Consider the holomorphic map f : C — C, f(z) = 2*, where k is a positive integer. Compute

mult, f for an arbitrary a € C.

4) Consider the holomorphic map f: C — C, f(z) = (z — 1)*}(z — 2)". Compute mult, f for an

arbitrary a € C.

Exercise 9. Show that Riemann surfaces are path-connected.
Hint: For a point xy of a Riemann surface X consider the set S of all points that can be

connected with xo by a path. Show that S is non-empty, closed and open.

Exercise 10. 1) Let a and b be two points in a topological space X. Check that the homotopy

is an equivalence relation on the set of all curves from a to b.

2) Fill in the gaps and check the technical details in the definition of the fundamental group
from the lecture. You may consult the Algebraic topology book of Allen Hatcher [§].

Exercise 11. Compute the fundamental groups of C and of a complex torus C/T.
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4. LECTURE 4
Claim. If a,b € X are connected by a path 6 : [0,1] — X, then the map
m(X,a) = m(X,0), [yl [0y 4]
s an isomorphism of groups.

Proof. Exercise. 0

Remark 4.1. Note that the isomorphism above depends on 4. It does not depend on 9§ if and

only if m1(X, a) is an abelian group.

Definition 4.2. A path-connected topological space X is called simply-connected if (X, a)
is trivial for some(equivalently: for every) a € X. By abuse of notation we write m(X,a) =0

to say that m (X, a) is trivial.

Remark 4.3. 1) The fundamental group is functorial. Namely, every continuous map f : X —

Y, induces a homomorphism of groups

formi(X,wo) = m(Y, fwo)), [l full¥]) == [f 0]

such that for two continuous maps

it holds
(gOf)*:g*Of*.

2) In particular this implies that homeomorphic path-connected topological spaces have iso-
morphic fundamental groups. Therefore, 71(X, a) (its isomorphism class to be more precise) is

a topological invariant.
Claim. Two non-homeomorphic compact RS have different fundamental groups.

FExplanation. Compact RS are orientable compact 2-dimensional real manifolds, i. e, surfaces.
The latter are completely classified up to a homeomorphism.

Namely, for every non-negative integer p there is exactly one homeomorphism class.

For p =0, X = C =~ S?, the corresponding fundamental group 7(X) is trivial.

For p > 1, X is obtained as a result of gluing of a regular 4p-gon along its sides as shown in

the following picture.
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Qp

Each edge can be seen as a path on a plain. The initial and the end points are indicated by
arrows. For every ¢ one glues together inverting the orientations the edges «; with the edges
a; ! and the edges 3; with the edges 3; .

This means that the initial point of the edge labeled by «; or f; is glued together with the
end point of the edge labeled a; ' or 8; " respectively.

Analogously, the end point of the edge labeled by «; or §; is glued together with the initial
point of the edge labeled ;' or 3; ! respectively.

The images of ai,...,qp, B1,...,8, in X are denoted by abuse of notations by the same
symbols. Then the path o lis indeed the inverse path to a; and the path B ! is indeed the
inverse path to ;. Notice that each of these paths becomes a closed path at the same point
(the one obtained by gluing all the vertices of the 4p-gon).

The fundamental group of X is generated by

{[al]’ T [ap]7 [51]7 B [ﬁp]}

with the only relation

[Tl Bilea) 18] =1,

%

7T1(X) & <a1, C.. ,(Ip,bl, C.. ,bp | Haibiai_lbi_l — 1>

In this case X is homeomorphic to a pretzel with p holes
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or equivalently to a sphere with p handles.

Exercise. Compute m1(C), 7,(C/T'), where I C C is a lattice.

Definition 4.4. Let f : X — Y be a non-constant holomorphic map. Then z € X is called a
ramification point of f if there is no neighborhood U of = such that f|y is injective.

One says that f is unramified if it has no ramification points.

Remark 4.5. Ramification points are those with multiplicities mult, f > 1. This follows

immediately from Theorem [3.1]

Corollary 4.6. A non-constant holomorphic map of RS f: X — Y is unramified if and only

iof it is a local homeomorphism.

Example 4.7. 1) C — C, z + z*. Here 0 is the only ramification point.

2) C 22 C* is unramified.

3) The standard projection C — C/T" is unramified for every lattice I' C C.

Theorem 4.8. Let f: X — Y be a non-constant holomorphic map of compact RS. Then for
every y € Y its preimage f~(y) is a finite set and the number

dy(f) ==Y mult, f

zef~(y)

does not depend on y.
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Corollary 4.9. IfY = (@, then f : X — Cisa meromorphic function and the number of

zeroes of f is equal to the number of poles of f (counted with multiplicities).

Definition 4.10. In the notations of Theorem [4.8 the number d(f) := d,(f) (for some/every
y € X) is called the degree of f: X — Y.

(2=2)°

Z—s O C. Let us compute the

Example 4.11. Consider the meromorphic function f(z) =
number of zeroes of this function with multiplicities and thus the degree of the corresponding
holomorphic map N

Note that f~1(0) = {2, c0}. Since

1
—(y—92. -~
f) = (=2 g
1
and since ———— does not vanish at z = 2, one concludes
23(z — 3i)
mult2 f = 2.
Since ,
1 (z —2)?
(z) = (;) " 2(z — 30)
(z —2)
and ———— does not vanish at co, we get
z(z — 3i)
mult, f = 2.

4.

Therefore, do(f) = multy f + mults, f = 2+ 2 = 4 and hence d(f)
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4.1. Exercises.

Exercise 12. Let p be a positive integer. Let P be a regular 4p-gon on a plane.
Qp

Consider the closed path
al./81.a;l.ﬁfl.a2.52.a2_1./82_1.....ap./@p.a;l.ﬂp_l'

Show that it is contractible, i. e., homotopic to a constant path.

Let X be the topological space obtained as a gluing of the edges of P as explained in the
lecture. Consider the corresponding quotient map P — X, which is continuous by the definition
of quotient topology. Conclude that the images of ;; and ; in X are closed paths that satisfy
the relation [],[as][8i][cu] ' [B:] ™! = 1 mentioned in the lecture.

Exercise 13. Compute the degrees d( f ), d(g) of the holomorphic maps C — C corresponding

to the following meromorphic functions on C:

(z —17)?
213+ 2

(z—1)°

, g(z) =

Exercise 14. As we already know every meromorphic function f on Cis rational, i. e.,
P(z)
Q(z)’

Show that the degree of the corresponding holomorphic map f . C—C equals

f(z) = P(2),Q(z) € Clz], Q(z) #0.

max{deg P, deg Q}.

Exercise 15. Find all ramification points of the morphisms f and ¢ from Exercise .
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5. LECTURE 5

Proof of Theorem[/.8 First of all notice that f~!(y) must be a discrete set because of the
Identity theorem (Theorem . Since X is compact, it must be finite (again by the Identity

theorem). Consider now the function
Y = Z, y~—dy(f).

We shall show that this function is locally constant. Since Y is connected, it would imply that

d,(f) is a constant function.

Un

Us

Uz

Ui

XOIOI0I0

Let y € Y. Let f~Y(y) = {x1,...,2,}. Put m; = mult,, f. For every i = 1,...,n, let U; be

an open neighbourhood of z; such that f|y, : U; — f(U;) is of the form z — 2™ (in appropriate
charts). Shrinking U;, we can assume that U; N U; = 0 for i # j.
Since X is compact, f is a closed map, i. e., the image of a closed set is closed. Therefore,

F(X\ ] U;) is closed. Since y lies in its complement, which is open, there exists an open set
i=1

U,y e U,such that U C Y\ f(X \ [[U;). This implies that f~1(U) c [[ U;.
=1 i=1

Put W; = f~Y(U)NU,, then f~Y(U) =[] W,.
i=1
For every p € U\ {y}, and for every z € f~!(p) the multiplicity mult, f equals 1. Therefore,

dp(f) = 22 multy f =37 #(f7(p) NWi) = 3 mi.
zef=(p) i=1 i=1
On the other hand d,(f) = > m; as well.
i=1

This shows that d,(f) is constant on U , so it is locally constant and hence constant, which

concludes the proof. O

Corollary 5.1. Let f € M(C/T') be a non-constant meromorphic function on a torus. Then
f has at least 2 poles (counted with multiplicities).
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Proof. Suppose f has less than 2 poles.
1) If f does not have poles at all, then f is a holomorphic function and hence by Corollary

f is constant, which is a contradiction.
2) If f has only one pole, then for the corresponding holomorphic map X Iy € the point

o0 € C has only one preimage. Therefore, for an arbitrary point p € C

~

#17Hp) =#f(00) = 1,

which means that f X 5 Cisa bijection. Hence f is an isomorphism of RS (cf. Corol-
lary and Theorem . In particular X and C must be homeomorphic as topological
spaces, which is not true, since, for example, they have non-isomorphic fundamental
groups.

O

Remark 5.2. In fact, we showed even more. Namely, on every compact RS non-isomorphic to

C, non-constant meromorphic functions must have at least 2 poles.
5.1. Divisors. Let X be a compact RS.

Definition 5.3. Let Div(X) be the free abelian group generated by the points of X. It is
called the divisor group of X.

Elements of Div(X) are linear combinations

Z Ng -, ng € 7Z, finitely many n, # 0.

rzeX

For a divisor
D= E Ng * T

let D(x) := n,. This way, one can identify divisors with the functions X — Z with finite
support.
Let deg D = ) .\ n, be the degree of D.
Notice that
deg : DivX — Z, D+ degD
is a group homomorphism. Its kernel consists of all divisors of degree zero and is denoted by

Div’(X).
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Let f € Mx(X). Identify f with the corresponding holomorphic map X — Cand for p € X
define
mult, f, if f(p) =0
ord, f := ¢ —mult, f, if f(p) = oo

0, otherwise.
The number ord,, f is called the order of p with respect to f.
So the points with positive order are zeros of f, the points with negative order are poles of

f, and the points with zero order are neither zeroes nor poles of f.

Definition 5.4. For a meromorphic function f € My (X) put

(f) == (ord, f) -z € Div X.

zeX

Divisors of this form are called principal divisors.

Remark 5.5. Notice that (f) keeps all the information about the zeroes and the poles of f.

Observation. (f-g) = (f) +(9), (1/f) = =(f)-

Therefore, the set of the principal divisors is a subgroup in Div X, it is denoted by PDiv X.
Since by Theorem do(f) = doo(f), we conclude that deg(f) = 0 for every meromorphic
function f on X. Therefore, PDiv X is a subgroup of Div'(X) and we have an inclusion of
groups

PDiv X C Div’ X C DivX.
The quotient group
Pic(X) := Div X/ PDiv X
is called the Picard group of X. Its elements are called divisor classes.
The group
Pic’(X) := Div’ X/ PDiv X,
which is a subgroup of Pic X, is called the restricted Picard group.

We say that two divisors D and D’ are linearly equivalent and write D ~ D’ if D and D’
represent the same element in Pic X, i. e., if D — D’ = (f) for some meromorphic function f.

Since PDiv X lies in the kernel of the degree homomorphism, we get a factorization homo-
morphism

PicX — Z, [D]+~ degD,

which is denoted (by abuse of notation) by deg as well.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 26

Div X —> Z

NS

Pic X
Let D, D' € Div X. Then we say D > D" or D' < D if

D(z) = D'(x) for all z € X.
Let D € Div X, let U C X be open. Put
Op(U) :=0x(D)U) :={f e Mx(U) |ord, f = —D(x) for all z € U}.

Then Ox(D) is a sheaf of Ox-modules; i. e., Ox(D)(U) is an Ox(U) module for every open
UcCX.

5.2. Exercises.

Exercise 16. 1) Let a be a complex number. Let f be a meromorphic function on C with the

only pole of multiplicity 1 at a. Show that
A

zZ—a

f(z)=p+

for some non-zero complex number A and some p € C.

2) Construct a meromorphic function f on C with the only pole of multiplicity 1 at a € C such

that f is not of the form

f(z) =p+

for some non-zero complex number A and some u € C. Try to construct as many examples as

Z—a

you can.

Exercise 17. Compute the principal divisors (f), (g) of the following meromorphic functions

on C (cf. Exercise :

(z —17)2
Z13 42

(z - 1)°

224117

f(z) = 9(2) =

Exercise 18. Show that Pic° C = 0 and PicC >~ Z.
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6. LECTURE 6

Last time we defined for a divisor D on a compact Riemann surface X the sheaf Ox (D). For

every open U C X we have
Ox(D)(U) ={feMx(U) |ord, f > —D(x) for all z € U}.

As we have already mentioned last time, Ox (D) is a sheaf of Ox-modules, in particular this
means that Ox(D)(U) is an Ox(U) module for every open U C X.

Indeed, for f € Ox(D)(U) and v € Ox(U), it holds ord,(uf) = ord, u + ord, f. Since
ord, u > 0, one concludes that ord,(uf) > ord, f > —D(z), 1. e., u- f € Ox(D)(U).

If V C U are two open sets, then there is a restriction homomorphism
Ox(D)(U) = Ox(D)(V), [ flv
compatible with the module structure, i. e.,
(w- Plv =ulv- flv, weOx(U),feOx(D)U)
Remark 6.1. Ox(0) = Ox, i. e., Ox(0)(U) = Ox(U) for all open subsets U C X.

Proposition 6.2. Let D, D" € DivX. Assume D ~ D', then the sheaves of Ox-modules
Ox (D) and Ox(D') are isomorphic.

Remark 6.3. Ox (D) = Ox (D) means that for every open U C X there exists an isomorphism
of Ox(U)-modules
U
Ox(D)(U) "2 Ox(D)(V)

compatible with the restriction maps, i. e., for an inclusion of open sets W C U C X
nU)(s)lw =n(W)(slw) for every s € Ox(D)(U),

or, equivalently, there is the commutative diagram

ox(D)U) 1 0y (D) (V)

[ pow » [ pow
Ox(D)(W) —— Ox(D")(W),

where pyw denotes the restriction map s — s|W.

Proof of Proposition[6.9. D ~ D’ means D — D’ = (s) for some s € Mx(X). Then for every
open U C X and f € Ox(D)(U) (i. e. ord, f = —D(z) for all x € X) we conclude that

ord,(s|y - f) = ord,(s) + ord, f > ord, s — D(z) = ord, s — (D' + (s))(x) = —D'(x)
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and hence the map
Ox(D)(U) % Ox (D)), f = slu - f
is well defined. One sees that it is an homomorphism of Ox (U)-modules and it possesses the
inverse map given by g — s |7+ g. Therefore, n(U) is an isomorphism. The compatibility with

the restrictions follows as well. O

Remark 6.4. Even more is true. Let D, D" € Div X. Then the sheaves of Ox-modules Ox (D)
and Ox(D') are isomorphic if and only if D ~ D’.

Exercise. Try to prove this. You could follow the following steps.

1) Notice that for small enough U C X the Ox(U)-module Ox(D)(U) is isomorphic to
Ox(U).

2) Let R be an arbitrary C-algebra. Notice that defining a homomorphism of R-modules
R — R is equivalent to choosing r € R (the image of 1 € R).

3) Using the previous observations show that every isomorphism n(U) : Ox(D)(U) —
Ox(D")(U) is of the form f+— s- f, s € Mx(U), for small enough U.

4) Analyze the situation and obtain the required statement.

Definition 6.5. Let D € Div X. Then
L(D):=Ox(D)(X) ={f e Mx(X) [ (f) =2 -D}
is called the Riemann-Roch space of D. It is a vector space over C.

Example 6.6. 1) Let D = a for some a € X. Then

f has at most 1 pole of multiplicity 1
£D) = (7 € Mx () (1) > —a) = { € M0 b

and this pole can only be at a

2) Let D = n - a for some a € X and a positive integer n. Then
f has at most 1 pole of multiplicity at
£D) = {f € Mx(0)| (1) > -} = { F € () }

most n and this pole can only be at a

3) Let D = —n - a for some a € X and a positive integer n. Then
f does not have any poles and must
L(D)=A{f e Mx(X)|(f) =na} =1 f€ Mx(X)have a zero of multiplicity at least n at
a

Theorem 6.7. dim £(D) < oo for all D € Div X.

Notation. I(D) := dim¢ £L(D).


http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Gustav_Roch
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Proof. Idea. We are going to follow the following steps.
1) (D) =0 for D with deg D < 0, 1(0) = 1.
2) For D' = D + a for some a € X there is an inclusion of vector spaces £(D) C L£(D’) and
dim £(D")/L(D) < 1.
3) Hence, by induction, dim £(D) < oo for every divisor D.

Details.

1) Let deg D < 0. Assume (D) # 0, then £(D) # 0. Take some non-zero f € L£(D) C
Mx(X). Then (f) > —D and in particular deg f > deg(—D) = —deg D > 0. This is a
contradiction.

Since £(0) = Ox(X) = C, one gets [(0) = 1.

This gives a basis of the induction.

2) Let D € DivX,let a € X, let D' =D+ a. Then D' > D and hence —D(x) > —D'(x)
and L(D) C L(D').

Choose a chart ¢ : U — V around a such that ¢(a) = 0. For every f € L(D’) put
fo = fluop™t. Then f, is a meromorphic function on V. Consider its Laurent expansion
at 0. Since f € L(D'), f, may have at 0 a pole of order at most D'(a) = 1+ D(a) = 1+d,
where d = D(a).

So
foz)=aan(f)- 2" raqg- 24 = Z ai(f)-2', a(f)eC
i=—d—1
around 0.

Now consider the map £(D’) AN C, fw— a_q1(f). It is a linear map. Its ker-
nel coincides with £(D). So L(D')/L(D) = L(D')/ker{ = Im¢ C C and hence
dim¢ £L(D")/L(D) > 1.

3) Notice that every divisor D’ can be written as D' = D+a for some a € X and D € DivX.
Moreover deg D < deg D’. This provides the step of the induction.

This concludes the proof. U

Example 6.8. 1) Let p,g e X, p #q.
(a) If D = p, then [(D) < 2 because D = 0+ p and [(0) = 1.
(b) If D = —p, then [(D) = 0.
(¢) If D=p—gq,then (D) <1 because D = (—q) + p and I(—¢q) = 0.
2) Let X = C/T be a complex torus. Then [(p) =1 for every p € X.
3) Let X = C. Then I(p) = 2 for every p € X.
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6.1. Exercises.

Exercise 19. Let D be a divisor on a compact Riemann surface. Let
LD) ={f e Mx(X)|(f) = -D}

be its Riemann-Roch space. In the lecture we proved that £(D) is a finite dimensional vector
space over C. Assume that deg D > 0 and using our proof obtain the following estimation for
the dimension /(D) of £(D):

[(D) < degD + 1.

Exercise 20. Let X = C.
1) Compute the Riemann-Roch space Lx(D) for
D=n-p, p=0, neoZL.
2) Notice that Exercise [1§[says that two divisors on C are linearly equivalent if and only if they
have the same degree, in particular for every divisor D on C and every p € C
D ~degD - p.

In the lecture we showed that two linearly equivalent divisors have isomorphic Riemann-Roch
spaces. Using this and your computations from part 1) of this exercise compute the Riemann-

Roch spaces £(D) for the following divisors.
D=p, p=5+2;
D=p—q p=3q9=4-74
D=2p+3¢q—18r, p=6—2i,q=47i,r = 356 — 31;

D=2-21+8 29—6-23—3 x4, w1 =11i, x9=(2—1), x3=144, x4=00.

3) Check which of the following divisors on C are linearly equivalent and describe the isomor-

phisms of the corresponding Riemann-Roch spaces for the pairs of linearly equivalent divisors.
Dy =3-(5+8i)+27-(1—4)—6-(8), Do=5-(i), D3=7-(284+3i)—1-(i) —1-(48),
Dy=4-(18)+20-(33i1), Ds;=3-(16+ 111).
Exercise 21. Consider the complex torus X = C/T', I' = Z + Z - 3i. Compute L(D) for
D=p, p=[4+5ie€X;

D=p—gq, p=I[8,q=2]
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7. LECTURE 7
Stalks of the structure sheaf. Let a € X. Consider the set of pairs
{(U,f)|U C X open,a €U, f e Ox(U)}.
One defines the relation

(U, f) ~ (V,g) <L Jopen W C UNV, a € W such that fly = glw-.

114 ”»
~Y

Claim. 18 an equivalence relation.

Proof. Exercise. O

Definition 7.1. The set of the equivalence classes is denoted by Oy, and is called the stalk
of the structure sheaf Ox at the point a.

We write [(U, f)] of [U, f] for the equivalence class of (U, f). By abuse of notation one
also writes f,, which means the equivalence class of a holomorphic function f defined in some

neighbourhood of a. This equivalence class is called the germ of (U, f) (or simply the germ of
f) at a.

Claim. Ox, is a C-algebra with operations defined by

fot 9a=(f+9ar fa 9a=(f9)a; A-fa=(A]).
Proof. Exercise. O
Claim (Model example). Oc, = C{z — a} = C{z} (convergent power series).

Proof. Define

Oco— C{z —a}, |[U,f]+— Taylor expansion of f at a: f(z) = ch(z —a).

120

This gives the required isomorphism. O

Since every RS is locally isomorphic to C, we conclude that Ox, = C{z} for every a € X.
Indeed, fix a chart ¢ : U — V around a € X. Then

OX,a — O(C,Lp(a)u fll = (f © 90_1>4P(a)

gives an isomorphism of C-algebras Ox , = Oc (o) = C{z}.

Consider the evaluation homomorphism

ev:O0xa—C, for f(a).
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Its kernel is an ideal mx , C Ox, given by

mxq = {[U, f] € Oxa | f(a) =0}

Since Ox ,/mx,, = C and C is a field we conclude that mx , is a maximal ideal of Ox .

Claim. my, is the only mazimal ideal of Ox,. One says that Ox,, is the local algebra (or the

local Ting) of X at a.
Remark 7.2. Recall that a ring with only one maximal ideal is called local.

Under the isomorphism Oy, = C{z} the ideal my , corresponds to the ideal in C{z} consist-
ing of all convergent power series with trivial free term, i. e., the principal ideal (z) generated

by z.

Remark 7.3. Notice that C{z} is a principal domain,i. e., all ideals are principal, i. e., gener-

ated by a single element. Moreover, every ideal of C{z} is of the form (z™) for some m > 0.

Proof. Exercise. O

Let m%m be the ideal generated by the products s; - s9, 51,52 € mx,. It corresponds to
the principal ideal (2?). Clearly m%, C my,. Consider the quotient Ox ,-module and the

corresponding quotient C{z}-module (z)/(2%). Then
mxa/my, = (2)/(z%) = C-[2],

where [z] denotes the class of 2z in (2)/(z?).
We see that though mx , and mg(va are infinite dimensional vector spaces over C, their quotient

my ./ m}a is a 1-one dimensional vector space over C.

Definition 7.4. The vector space mx , /mgm is called the cotangent space of X at a and will
be denoted in this lecture by CT, X.
Its dual space
(myq/m%,)" = Home(my,q/my . C)

is called the tangent space of X at a and is denoted by T, X.
Definition 7.5. Let [U, f] € Ox . Put d,f == [f — f(a)] € CT, X.

For every open U C X this defines the map

df :U— | |CT.X, awd.f.

acU
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Definition 7.6. Let ¢ : U — V be a chart of a Riemann surface X. Let a € U. We call ¢ a
local coordinate at a if ¢(a) = 0.

We will often denote local coordinates by Latin letters, say z : U — V C C.

Let z : U — V C C be a local coordinate at a € U. Then d,z is a non-zero element in
CT, X. Therefore, it can be taken as a basis of CT, X.

In particular one should be able to write df (z) = g(z) - dz(x) for some function g : U — C.
Let us study this in more details.

Consider the composition F' = f o z71. It is a holomorphic function in a neighbourhood V'
of 0 € C. For b € U, take the Taylor expansion of F' at z(b) € V.

F(t)=> ci(t — z(b)"
i>0

Then

and hence

dof = [f = F(@) = [Y iz = 2(0))] = [en(z = 2(0)) + (= = 2(0))* Y _ sz — 2(b))?) =

i1 =2

[e1(z = 2(0))] = eaz = 2(b)] = F'(2(D)) - dyz.

Definition 7.7. Let z : U — V be a local coordinate at a € U. Let f € Ox(U). Put as above

F = foz! and define
of .., _oF
5. () = F/((0) = - (=(0)).

In these notations d,f = %(b) - dpz and finally

(1) df — g_f e,

a formula which looks familiar.
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Exercises.

Exercise 22. Let a be a point of a Riemann surface X. Show that the stalk Ox , is a C-algebra

with the operations defined in the lecture:

fa+ga = (f+g)aa fa'ga = (fg)m >\'fa = ()‘f)aa f(l?.gaGOX,a))\e(C'

In particular check that the definitions given in the lecture are well-defined, i. e., do not depend

on the choice of representatives.

Exercise 23. Consider the following holomorphic functions on C.

fi(2) = (2 =3)(z +5)° + 11, fo(2) = exp(z), f3(z) =sin(z?).

For a = 0,3, —51, find a generator of the cotangent space CT, C and express d,f;, 1 = 1,2, 3,

in terms of this generator.

Exercise 24. Consider the Riemann sphere C and let zy = o and 23 = ¢ be its standard

charts. Consider the meromorphic function

o 2(2+1) e
as a holomorphic function on C \ {1,2}.
Compute
of af af of af af
g <l Gy, Yy, 2L 3.
820 0 ’ 821 (OO ’ 8zo ’ 821( ’ 820 (3 ’ 821 (3>

For a = 0,00, —1, 3 express if possible d, f in terms of d,zy and d, 2.
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8. LECTURE 8

Sheaf of differential forms. Let U C X be an open subset of a RS X. We have just seen
that every f € Ox(U) gives us a map
df U= | |CT.X, awrda.f.
acU
Moreover, we computed that for a local coordinate z : W — C, W C U it holds df |y = % dz.
Let now w : U — | ],y CTo X be an arbitrary map such that w(a) € CT,X. Then, as

above, for a local coordinate z : W — C, W C U, we conclude that
wlw =g -dz
for some function g : W — C.

Definition 8.1. Let w be as above. If g is a holomorphic function for every local coordinate
z: W — C, then w is called a holomorphic differential form on U.

Equivalently, w is a holomorphic differential form if U can be covered by open sets U; with
local coordinates z; : U; — C such that after representing the restrictions of w as w|y, = fi - dz;,
the functions f; : U; — C are holomorphic.

The set of all holomorphic differential forms on U is denoted by Qx(U). It is naturally
an Ox(U)-module. This defines a sheaf of Ox-modules. The sheaf Qx is called the sheaf of

differential forms on X.

Example 8.2. As we saw above, df is a holomorphic differential form on U for every f €

Ox(U).
Remark 8.3. For every open set U C X the map
Ox(U) = Qx(U), frdf

is a linear map of C-vector spaces, which gives a morphism of sheaves of C-vector spaces
OX — Qx.

N ~

Example 8.4. Let us compute Qx(C). Let w € Qx(C). Let 29 : Uy — C* and 21 : Uy — C* be
the standard charts of C. Then wly, = fodzo and w|y, = fidz for some holomorphic functions
fo and f; on Uy and Uj respectively. It should also hold fodzo|vynv, = fidzi|vynw,- Since
20 =1/z on UyNU; = C*, using (1)) one gets dzg = (—1/2%)dz, hence fo(1/z1) - (—1/2%)dz =
fi1(21)dz, and therefore fo(1/21) = —2? f1(21). Comparing the Laurent expansions of these two

holomorphic functions on C*, one immediately concludes that fo = 0, fi = 0, which means

N

Qx(C) = 0.
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Definition 8.5. Let U be an open subset of a Riemann surface X. A meromorphic differential
form on U is an element w € Qx (U \ S) for some discrete set S such that for every chart

U' = V' with U’ C U the local expressions w|png = fdz are given by meromorphic functions
feMxU).

Let Kx(U) denote the set of all meromorphic differential forms on U.

Remark 8.6. Kx(U) is naturally an M x(U)-module: for f € Mx(U) and for w € Kx(U)

Moreover, Ky is a sheaf of M x-modules. In particular, Ky is a sheaf of Ox-modules.
Analogously to the case of holomorphic differential forms, there is the homomorphism of

sheaves of vector spaces over C (note that it is not a homomorphism of Ox-modules!)
d
MX — ’Cx.
Namely, for every open U C X there is the linear map of vector spaces
Mx(U) = Kx(U), frdf

and the commutative diagram

Ox(U) ———— Mx(U) f

¥ o i

Qx(U)—— Kx(U), df df.

Definition 8.7. Let w € Kx(U) for some open U C X. Let a € U, let z : U’ — V' be a local
coordinate at a. Write w|y» = fdz for some f € Mx(U’). Define now the order of w at a by

ord, w := ord, f.
Claim. ord,w does not depend on the choice of z.
Proof. Exercise. O

Definition 8.8. Let X be a compact RS. Let w € Kx(X). Define the divisor associated to w
by
(w) == Zordxw -z € Div X.

rzeX

Example 8.9. Let X = C. We know already (cf. Example that there are no non-trivial

holomorphic differential forms on C.
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Let us mimic the reasoning from Example [8.4] in order to find a non-trivial meromorphic
differential form on C.

Let w € /C@(@). Let 2y : Uy — C* and 2 : U; — C* be the standard charts of C. Then
wlo, = fodzp and w|y, = fidz for some meromorphic functions fo and f; on Uy and U,
respectively. It should also hold fodzo|v,n, = fidzi|venw,- Since zg = 1/2; on Uy N U; = C*,
using one gets dzg = (—1/23)dz1, hence fo(1/21) - (=1/23)dz; = fi(z1)dz1, and therefore
fo(1/z1) = —22f1(21). Take fo(z0) = 1. Then 1 = —z7fi(z1), i. e, fi(z1) = —1/2%. Thus we
have just found a non-trivial meromorphic differential form w on C. This form coincides with
dzo on Uy and equals —%dzl on Uj.

Since ord, w = ord, 1 =0 for a € C and ord, w = ordoo(—z%) = —2, we conclude that
1
(W) =—2"00.
In particular deg(w) = —2.

Exercise. Find a non-trivial meromorphic differential form w’ on C different from the one
presented in Example . Compute the corresponding divisor (w') € DivC and its degree
deg(w').

Proposition 8.10. Let wy € Kx(X), wo Z0. Then Kx(X) ={f wo | f € Mx(X)}, i. e,
Mx(X) = Kx(X), f—f-wo

is an isomorphism of C-vector spaces.

Proof. Let w € Kx(X) be an arbitrary meromorphic differential form on X. Let | JU; = X be

a covering of X by charts z; : U; — V; such that wy|y, is given by fidz; and w|y, is given by

gidz; for some meromorphic functions f; and g; on U;.

Note that f; # 0 for every 7. Otherwise, by an argument similar to the one from the proof of
Theorem (identity theorem), wy = 0. Consider h; = g;/f; € Mx(U;). Then for G;; = z;0z2; !

(a holomorphic function defined on z;(U; N U;)) we have z; = G;(2;) and hence

So on U; N U; we obtain
wolu,nu; = fidz; = fj - a—;d?«’i = fidz, wlv,ru; = g5dz = g; - a_;dzi = gidz;.
Therefore,
0G ;; oG ;
fi=1;- ’ gi:gj'—]

8Zi ’ 822
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and finally
G j;
95" e
hi|UmUj =gi/fi = W = fj/gj = hj|UimUj-
J 0z

This means that there exists h € Mx(X) such that h|y, = h;.

We conclude that g; = h; f; = hf; for every i. This means w = h - wy.

This concludes the proof.

38
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Exercises.

Exercise 25. Let X = C/I" be a complex torus.
1) Find a non-trivial holomorphic differential form wy on X. Compute the corresponding divisor

(u}o).

2) Let w be an arbitrary holomorphic differential form on X. Then w = fwy for some mero-

morphic function f. Conclude that f must be holomorphic.

3) Conclude that Qx(X) = C - wy, i. e., vector space generated by wy.

Exercise 26. 1) Find a non-trivial meromorphic differential form «’ on C different from the
one presented in the lecture. Compute the corresponding divisor (w') € DivC and its degree

deg(w'’).

2) Let w be an arbitrary meromorphic differential form on X. What is the degree of the

corresponding divisor (w)?

Exercise 27. Prove that the definition of the order of a meromorphic differential form at a
point is independent of the choice of a local chart.

Namely, for a given open subset U of a Riemann surface X, for a point a € U, and for
w € Kx(U), assume that for two charts z : Uy — V; € C and w : Uy — V5 C C such that a is
contained U; and Uj it holds

wly, = f - dz for some f € Mx(Uy), w|y, =g-dw for some g € Mx(Us).

Prove that ord, f = ord, g.
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9. LECTURE 9
Definition 9.1. Let D € Div X. Let U C X be an open subset. Define
Qx(D)(U) :=={w e Kx((U) | ordyw = —D(a) for all a € U}.

Then Qx(D)(U) is an Ox(U)-module, in particular Qx(D)(X) = {w € Kx(X) | (w) > =D}
is a C-vector space.

Moreover, Qx (D) is a sheaf of Ox-modules.

Definition 9.2. Let wy € Kx(X), wy # 0. Then the divisor K = (wy) is called the canonical

divisor on X.

Remark 9.3. On a compact Riemann surface there always exists a non-zero meromorphic
differential form.

Note however that this fact is not at all triviall

Remark 9.4. Note that K is not uniquely determined, it depends on wy. However, its divisor

class
[K] € Pic X = Div X/ PDiv X

does not depend on the choice of wy.

Proposition 9.5. There is an isomorphism of Ox-modules Ox (D) — Qx(D — K) defined for
every open U C X by

Ox(D)U) = Qx(D—-K){U), f— f-wo.
Equivalently: Ox (K + D) = Qx (D),
Ox(K+ D)(U) = Qx(D)(U), [+ f-wo.
Corollary 9.6. Qx(D)(X) = Ox(K + D)(X) = L(K + D), in particular
dime Qx(D)(X) < 00
for every divisor D € Div X.

Definition 9.7. The dimension of L(K) = Qx(0)(X) = Qx(X) is called the genus of X and
is denoted by
g = gx := dim¢ Qx(X).

Example 9.8. 1) Since by Example Q@(@) = 0, one concludes that g = 0.

2) By Exercise [25 gc;r = 1 for every complex torus C/T.
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Theorem 9.9 (Riemann-Roch).
I(D)—Il(K —D)=degD+1—g.
Equivalently,
(D) —dimQx(—D)(X)=degD +1—g.

Proof. No proof. 0

Example 9.10. 1) Let D = 0. Then Theorem 9.9 reads as [(0) — {(K) = deg 0+ 1 — g, hence
g =Il(K), i. e., we get back the definition of the genus.

2) Let D = K. Then [(K) —[(0) = deg K + 1 — g and therefore

deg K = 2g — 2.

3) Ifdeg D > 2g—1, then deg(K — D) = deg K —deg D = 2g—2—deg D < 0, thus [(K—D) =0
and finally
(D) =degD+1—g.

One can summarize this as follows.

(D) =0, if deg D < 0;

I(D)>degD+1—g, if0<degD <2g—1;

I(D)=degD+1—g, ifdegD >2g—1.
Corollary 9.11. On every compact RS X there exists a non-constant meromorphic function

fe Mx(X).

Proof. Let p € X be an arbitrary point, take D = (¢ + 1) -p. Then (D) > g+ 1+1—g = 2.
This means that the dimension of the Riemann-Roch space L£(D) is at least 2. Therefore, this

space must contain a non-constant meromorphic function. U

Observation. Take f € L(D) as above. The only point that could be a pole of this meromor-
phic function is p. Its multiplicity is at most g + 1, therefore the degree of the corresponding

holomorphic non-constant map X Iy € is at most g+ 1.
Corollary 9.12. FEvery compact RS of genus 0 is isomorphic to C

Proof. As above one gets a holomorphic map X Iy Cof degree 1, which must be an isomorphism

(cf. Theorem and Corollary [3.6). U
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Theorem 9.13 (Riemann-Hurwitz formula). Let f : X — Y be a non-constant holomorphic

map of compact RS. Then

2gx — 2 =d(f)(29y —2) + > _(mult, f — 1)

zeX

Remark 9.14. Note that mult, f > 1 only for finitely many points of X (ramification points,

cf. Definition [£.4).

Some facts about coverings.

Definition 9.15. A continuous map of topological spaces X Iy vis called a covering if for every
y € Y there exists an open neighbourhood U of y such that f~'(U) = ||, Vi and f|y, : Vi = U;

is a homeomorphism.

Observation. IfY is a RS and X Iy isa covering, then there is a unique complex structure

on X such that f is a holomorphic map.

Proof. Exercise. (l

So every covering of a RS is then a locally biholomorphic map.

Remark 9.16. Not every local biholomorphism is a covering. For example, take X = B(0,1) =
{z € C||z| <1}, Y =C. Then the natural inclusion X C Y is locally biholomorphic but not

a covering.
Claim. FEvery locally biholomorphjic map of compact RS is a covering.
Proof. Use an argument similar to the one from the proof of Theorem [4.8| O

Definition 9.17. Let X % X be a covering of RS. Then it is called a universalcovering if X

is simply connected, i. e., if m(X) = 0.
Proposition 9.18. 1) A universal covering exists for every RS.

2)(Universal propery): X L X is a universal covering if and only if for every coveringY 2 X
and every choice of points xo € X, yo € g ' (x0), To € f (o) there exists a unique holomorphic
map X LY with h(Zo) = yo such that goh = f.

Zo

X
h h
e
g g
Y — X Yo —— To

Y

Proof. Topology. O


http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Adolf_Hurwitz
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Morphisms of complex tori. Let X = C/T" and Y = C/I"” be two complex tori. Ouraim is

to describe all holomorphic maps X — Y.

Reminder 9.19. Remind (cf. Example that for « € C* such that al' C I one obtains a
holomorphic map

X =Y, [z]e—]a-z].

Let X & Y be an arbitrary non-constant holomorphic map. Then by Riemann-Hurwitz
formula (Theorem , one concludes that f has no ramification points. So it must be a
covering.

Note that the canonical maps C = C/T, z + [2], and C = C JT’, z — [z] are coverings and
even universal coverings. Then by the universal property of universal coverings there exists a

holomorphic map F' : C — C such that 7' o F = fo.

F
—
s
f
—

< — )
“<<ﬂ—|ﬁ
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Exercises.

Exercise 28. Using your computations from Exercise 25| compute the genus of a complex torus

X = C/T using two different methods.

(1) Compute the degree of the canonical divisor and use the the Riemann-Roch formula.

(2) Compute explicitly Qx(X) and its dimension (cf. Exercise 31).

Exercise 29. 1) Let X C P, be the subspace
Xy = {{z0,21,2) €Po | 25 + 2} + 25 = 0}.

Show that X5 is a submanifold of Py, i. e., a Riemann surface. Consider the map

fo A <1
X2 — (Ca <20721)Z2> = 2_7
2

where § is assumed to be co. Show that this is a holomorphic map of RS. Apply the Riemann-
Hurwitz formula and compute the genus of X,. Conclude that X5 is isomorphic to the Riemann
sphere.

Hint: Compute the number of preimages of f~(p) for every p € C. Using that there can

be only finitely many ramification points, find the ramification points and obtain the value of

d(f).
2) Generalize the computations to the case of
Xa = {(20, 21, 22) € Py | 23+zf+z§l =0}, deN.

What is the genus of X7

Exercise 30. (1) Let I' C C be a lattice and let C = C/T', z + [2] be the quotient map. As
already mentioned in Exercise 8, it is a holomorphic map of Riemann surfaces. Show that 7 is

a universal covering.

(2) Let I' = Z+Z-7, 7 € C, be alattice in C. Let n be a natural number and let IV = Z+Z-(nT).
Put X = C/I" and X’ = C/I" and consider the map

X = X', [zl — [nz].

By Exercise 8 it is a holomorphic map of Riemann surfaces. Prove that it is a covering. What

is the number of points in the fibres?

(3) Show that the map C =2 C* is a covering.
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10. LECTURE 10
Last time we found that every holomorphic map X Iy of complex tori X = C/T" and
Y = C/T” can be lifted to a holomorphic map of the corresponding universal coverings, i. e.,

there exists a holomorphic map F : C — C such that 7’ o F' = f o w, which means that the

following diagram commutes:
C C
(2) |- E

Consider now for a fixed v € T the function ®.,(z) = F(2+7)—F(2). From the commutativity
of diagram we get that ®,(z) € IV for every z € C. Since @, is continuous, there exists
7" € I such that ®,(z) = +' for all z € C. Hence @/ (z) = 0 and thus F’(z+7)—F'(z) = 0. This
means that F” is a doubly periodic (elliptic) holomorphic function on C, therefore it must be
constant, i. e., there exists a € C such that F’(z) = a for all z € C. This implies F\(z) = az+b
for some a,b € C. Therefore, f([z]) = [az]+ [b]. This can only be well-defined if for every v € I’
it holds f([z +~]) = f([z]), which implies aI' C T".

On the other hand one sees that for every choice of a,b € C such that aI’ C I the map

X =Y, [z]— [az] + [D]
is holomorphic. It can be represented as a composition of
X =Y, [z]+[az]
with the automorphism of Y = C/T”
Y =Y, [z]— [z]+])].
We obtained the following.

Proposition 10.1. Every holomorphic map of complex tori C/T" — C/T” can be represented

as a composition of a holomorphic map
C/T - C/T", [z]—az], a€C, al'CT,

and an isomorphism

C/T' = C/T', [ [z]+[0], beC.



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 46

Isomorphism classes of complex tori. Let [' = Zw; + Zw, be a lattice in C. Let I =

7+ 7 - z—f Then w; IV =T and
C/T" - CJT, [z] = |wZ]

is an isomorphisms of complex tori.
So, while studying the isomorphism classes of complex tori, it is enough to consider only the
lattices
Z+7Z- -1, Imt#0.
Moreover, if Im7 < 0, then Im7~! > 0 and 7(Z+Z7 ') = (Z+Z7), i. e., the lattices Z + Z7*

and Z + Z7 define isomorphic tori. Therefore, it is enough to consider only lattices

L+ 7 -1, Imt>0.

Notation. Let H denote the upper half-plane H := {7 € C | Im 7 > 0}.
For 7 € H denote I'(7) :=Z + 7Z - .

Let now I'y =I'() =Z+7Z -1, 'y =T'(2) = Z + 7Z - 75. Assume they define isomorphic
tori C/T'y & C/T'y. Then the isomorphism is given by [z] — [az] + [b]. Since the translation
[z] = [2] + [b] is an isomorphism, the map [z] — [az] must be an isomorphism as well. So it
must hold aI'y = I'y (cf. Example .

In particular it means that a - 7 and a - 1 belong to I's. Write
ary =ar+ £, a=vm+9, «,B,0,7 € Z.
In other words

1 a f T2
a - — .

1 v oo 1

Analogously, since the equality al'y = I'y is equivalent to a='I's = I'1, one concludes that

1 ~ Y 1

for some integer matrix



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 47

One has
T T o T « T
! = a_la ! g a_l . /8 . 2 g ﬁ . [a_l . 2 ] =
1 1 v 0 1 1
a f8 C12 71 [CuTitCi2
v 0 S C22 1 C21T1 + Co2
where
C11 Ci12
Ca1  Ca2 v 4
Therefore, from the equalities 71 = ¢1171 + ¢12 and 1 = ¢9171 + co9 We get
c11 Ci2 10
Co1  C22 0 1 ,
. a p o B . : . .
which means that and are invertible to each other integer matrices. There-
o 5 ,.Y/ 5

fore, their determinants equal either 1 or —1.

ari  am+

Since 1 = — = , we obtain
a YTo + 0
o oan+p o (an+ R+ ay|nf* + 88 + adn — T
T1 = = =
YTo + 0 |ym2 + 9|2 |ym2 + 9|2
Hence
3) I (b — )1
mrm = ————-(ad — mT:
'yt o2 L

!
Since Im7; > 0 and Im 7 > 0, one concludes that ad — gy = det & > 0 and hence

v 0
det (: g) = 1. We have shown that ( ) € SLy(Z).
aty +
So, if I'y and I'y define isomorphic tori, then 7 = ( ) € SLy(Z).
Y7o + 0
Ty + B
On the other hand, if 7 = 5 for (3 ?) € SLy(Z), then al'y = T'y for a = vy + 5. We
VT2

obtained the following result.

Theorem 10.2. Two lattices I'(1y) and I'(r2), 11,72 € H, define isomorphic complez tori if and
only if
aty + 8
a YTo + 0
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for (3‘ §) € SLy(Z).
In other words, if one defines an action of SLa(Z) on H by

at + 8
T=—
YT+ 9

the set of its orbits H/ SLy(Z) can be seen as the set of all isomorphism classes of complex tori.
Consider now the quotient map
X 5 H/SLy(Z), 7+~ orbit of 7.

Introduce on H/ SLy(Z) the quotient topology, i. e., call the set U C H/SLy(Z) open if and
only if 771U C H is open.

Exercise. 7 is a local homeomorphism outside of the orbits of the points 7,p € H, p =

exp(¥ i) =—1 + \/ng This allows us to introduce a structure of a Riemann surface on
(H/ SLa(Z)) \ {7 (i), 7(p)},
i. e., on the quotient space without the two points 7 (i) and m(p).

Remark 10.3. Notice that the restriction of 7 to every neighbourhood of 7 or p is never

injective. This shows that 7 can not be a local homeomorphism around these points.
Let us visualize the space H/ SLy(Z). Let
1
R={z€C||z| > 1,|Rez| <§}

and take

—_

1
F:RU{Z|Rez:—§,|z|>1}U{z|\z|:1,—§<Rez<0}.

|
—_

|
N |
|
[S—y
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Exercise. Then the restriction of 7w to F' is a bijection, i. e., F' can be seen as the set of all

isomorphism classes of complex tori.

Automorphism of complex tori. Let us study the automorphism of complex tori. By

Proposition |10.1] it is enough to study the automorphisms C/T’ ER C/I" such that f([0]) = 0.

So let Auty(C/T") denote the subgroup in the group of all automorphisms of C/I" consisting of
the automorphisms C/I" ERN C/T" such that f([0]) = [0]. Then, as already mentioned,

Auto(C/T) = {C/T — C/T,[2] = [a2] |a € C,a-T =T}.

An automorphism from Auty(C/I'(7)), 7 € H, is given by a matrix (: ?) € SLy(Z) such that

at+p
YT40 °

T = Namely, the automorphism is given by the rule
(2] = [az], a=~T+0.

Notice that (3)) implies in this case |a| = 1.
If v = 0, then this provides two different automorphisms of C/T'(7): the identity [z] — [z]
and [z] — —[z].
Analyzing the case of v # 0 one can obtain the following statement.
Claim. Let T € F. If T # i and T # p, then
Auto(C/F(T>) = {:i: idC/F(T)} = Z/QZ

It holds also
Auto(C/T'(4)) = Z/AZ, Auto(C/T'(p)) = Z/6Z.

Proof. Exercise. O
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Exercises.

Exercise 31. In the lecture we realized the group SLy(Z) as the group of transformations of
the upper half-plane H of the form

ar +b

T —
cr +d’

(¢a) € SLa(Z).

(1) Show that this group is generated by the transformations

1
T—7+1 and 7T~ ——.
T

(2) Let R={z€ C||z| > 1,Re(z) < 5} and let

< Re(z) < 0}.

N | —

F:RU{z€C|Re(z):—%,|z| >1)Uf{zeC|lz| =1, -
Prove that the restriction of the projection map
m:H — H/SLy(Z)
to F'is a bijection.

(3) What is the image of the region R under the generators of SLy(Z) from the first part of this

exercise?

Exercise 32. Let 7 : H — H/SLy(Z) be the projection map as in the previous exercise.

(1) Let p= —1 + \/73 — ¢35, Show that m is a local homeomorphism outside of the orbits of i

and p.

(2) Show that for every 7 € H from the orbit of i or p every open neigbourhood of 7 contains

different points with the same image under 7.

(3) In the situation of (2), how many different points with the same image can you find for

7 =1 and for 7 = p?

Exercise 33. Let I' be a lattice in C and let C/I" be the corresponding complex torus. In the

lecture we showed that the automorphisms of X must be of the form
2] = [az] +[b], a,beC, a-I'=T.

Let Autg(C/I") denote the subgroup in the group of all automorphisms of C/I" consisting of the
automorphisms C/I" EN C/T" such that f([0]) = [0], i. e.,

Auto(C/T) ={C/T' - C/T',[z] = |az] |a € C,a- T =T}.

(0) Show that a-I" =I' implies |a| = 1.
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(1) Compute Auto(C/I'(i)), where I'(i) = Z + Z - i.

(2) Compute Auto(C/T'(p)), where T'(p) = Z +Z - p, p = 3™ = -1+

e[S

1.
(3) Compute Auto(C/I'(7)), where I'(1) =Z + Z - 7, for 7 = 2i and 7 = % + 1.

(4) Try to compute Auto(C/T'(7)), for an arbitrary 7 € F.

51
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11. LECTURE 11

Meromorphic functions on complex tori. Consider the Riemann-Roch formula from The-
orem for a complex torus X = C/I". We know that g = gx = 1, hence 2g — 1 = 1 and thus
for every divisor D on X with deg D > 0 it holds deg D > 2g — 1 and we obtain

(D) =degD+1—g=degD.
In particular for D = n - [0] we obtain

1, if n =0;
(4) (D) =

n, if n > 1.
This gives [(2 - [0]) = 2, i. e., there exists a non-constant meromorphic function on X with the

only pole at [0] or multiplicity 2.

Reminder 11.1. Recall that meromorphic functions on C/I" are in one-to-one correspondence

with doubly periodic (elliptic) meromorphic functions on C with respect to I' (Theorem [2.7)).

So there must exist an elliptic function on C with respect to I' with poles of order 2 at the
points of I'.
A naive attempt to construct such a function could be to consider the sum

1
Z(2—7)2’

yerl
but this sum is infinite and is not convergent in any reasonable sense. However one can slightly

modify this idea in order to get the required function. Put

o) =t O (s )

— 2
ot Gl ]
This infinite sum is summable (read about this!) and defines an elliptic function on C with
respect to I' with poles of order 2 at the points of I'. Of course, this function depends on a

given I' = Zw, 4+ Zw, or I' = Z + Z7, so to indicate this dependence one uses the notations
p(2) = p(z: 1) = p(z;w1,w2) = (2 7).
Definition 11.2. p is called the Weierstraf} p-function.

The derivative of the Weierstrafl p-function

, 2
@(Z):—Z(Z_—7)3

yel


http://en.wikipedia.org/wiki/Karl_Weierstrass
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has clearly poles of order 3 at the points of I', so it defines a meromorphic function on C/I"
with the only pole of multiplicity 3 at [0]. Note that p(z) and @'(z) are linearly independent.
Therefore, implies

L0)=C-1, L2-[0))=C-14+C-p(z), LB-[0))=C-1+C-p(2)+C-¢(2),

where we use the same notations for elliptic functions and the corresponding meromorphic
functions on C/T".

Combining p(z) and '(z) with each other one easily produces examples of meromorphic
functions from L£(n - [0]) for every n € N. For example p?(z) € L(4-[0]), p(2)¢'(2) € L(5-[0]).
Of course, one can also take higher derivatives, then p"(z) € L£(4 - [0]), etc.

Combining p(z) and ¢'(z) and using (4]) one easily computes £(4 - [0]) and L(5 - [0]).

Exercise. L(4-[0])=C-14+C-p(2)+C-¢'(2) +C-p*(2), L(5-[0]) =C-1+C-p(z) + C-
9'(2) + C- 9*(2) + C- p(2)¢/ ().
Let now n = 6. Then (6 - [0]) = 6. However the functions
Lo, wh, ¢ e, ¢ (¢)
all belong to £(6-[0]). Therefore they must be linearly dependent. This means that there must

exist a polynomial in two variables f(z,y) € Clz,y|, with monomials 1, z,y, 2?, zy, 23, y* such

that
fp,¢') =0.

Let us find this polynomial.

Algebraic relation between p and ¢'.

Claim. The Weierstraf§ o-function can be given as

1 - 2n
o(z) = S+ Z;(Qn +1)Ganin) - 27,

where the coefficients

G,, = Z ™ m > 3.
0#vyeGamma
are called the Eisenstein series.

Proof. Exercise. O


http://en.wikipedia.org/wiki/Gotthold_Eisenstein
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One computes

1
p(z) =5 —|—3G422 +5G6Z4+ e
z

2
p/(Z) = — 3 + 6G4Z —+ 2OGGZ3 4+ ... s
¥4

4 1
(¢'(2)" = % - 24— = 80Gs + ...,

1 1
z z9
Therefore,
1
(¢'(2))? —4p*(2) = —60G4; —140Gg + . . .,
(¢'(2))* — 49 (2) + 60G4p0(2) = —140Gg + .. .,

which means that (p'(2))? — 49(2) + 60G49(2) is holomorphic, thus it must be constant, i. e.,
(¢'(2))? — 49°(2) + 60G4p(2) = —140Gs.
We obtained the following statement.
Proposition 11.3. Let go = 60Gy4, g3 = 140Gs. Put
fla,y) =y* —42° + gow + g5.

Then f(p,¢") = 0.

Our next aim is to determine the field M x (X)) of meromorphic functions on a complex torus
X.

Identify M x(X) with the field of elliptic functions on C with respect to I

Let f(z) be an elliptic function, then

1

£(2) = 5 () + F(=2)) + 5 (=) = F(=2).

Put g(z) = 5(f(2)+ f(=2)) and h(z) = 5(f(2) = f(=2)), then f(2) = g(2) +h(2), 9(—2) = g(2)
and h(—z) = —h(z), i. e., g is even and h is odd. This proves the following.

Claim. Fwvery elliptic function on C can be represented as a sum of an even elliptic function

f with an odd elliptic function h.
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Even elliptic functions. Our first observation is that p(z) is even.

Theorem 11.4. Let f(z) be an even elliptic function. Then there ezists a rational function in
one variable ®(t) € C(t) such that f = ®(p). Moreover, if the poles of f are contained in T,

then ® can be taken polynomial.

Proof. Assume that the poles of f are contained in I'. Consider the Laurent expansion of f at

0. Since f is even, we get

f = Z azz‘Z%-

>—n

Hence the poles of f must have an even order. Consider the principal part of f at O:

Aoz "+ Fa_1z72

Note that the Laurent expansion of p(z) at zero is
1
_2+b222+b424+....
z
Its principal part is i One concludes that the principal part of g!(z) is of the form

1
— T linear combination of — with v < [.
A i

Then f — a_s,9"(z) has poles of smaller multiplicity that f. So, by induction one gets that

for some coefficients A; € C the function f—3 % A, o' is holomorphic, hence constant, say \g.

Then . :
F=Y "N =0(p), @)= A\t

120 120

Let now f be an arbitrary even elliptic function. Modulo I' it can have only finitely many poles
outside I'. Let p1,...,p, be the corresponding representatives of all poles not belonging to I.

Then (z) — p(p;) has a zero at p;. Let v; be the multiplicity of the pole p; of f. Then
nz) = f-[](e(z) = pp:))”
i=1

does not have any poles outside of I and therefore there exists a polynomial ¥(¢) € C[t] such

that U(p) = h(z). Then

i.e, f=®(p) for

This concludes the proof. 0
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Exercises.

Exercise 34. Let I" be a lattice in C and let p be the corresponding Weierstrafl function.

(1) Notice that the elliptic functions p”(z) and ©"”(z) are even with poles in I". Represent them

as polynomials in .

(2) Notice that the elliptic function ¢'(2)- " (z) is even with poles in I'. Represent this function

as a polynomial in p.

Exercise 35. Let I' be a lattice in C and let p be the corresponding Weierstrafl function.

(1) Notice that ¢'(z) considered as a meromorphic function on C/I" has only pole at [0] of
multiplicity 3. How many zeroes could ¢'(z) have? Using that g’ is elliptic and odd, show that

the points [4}], [42], [“542] are zeroes of @/(z). Are there any other zeroes of ¢/(z)?

(2) Show that p(z) = p(w) if and only if either z =w mod I' or z = —w mod T
Hint: For a fized w consider h(z) = p(z) — p(w) and study its set of zeroes using that ©(z) is

an even function.

Exercise 36. Notice that ¢"(2)/¢'(2) is an even elliptic function. Write it as a rational

function in g. Describe the set of its poles.
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12. LECTURE 12
Last time we described even elliptic functions.

0dd elliptic functions. Notice that ©/(z) is odd. Let f be an arbitrary odd elliptic function.
Then é is an even elliptic function, hence there exists ®(t) € C(t) such that f = ¢’ - ®(p).
Finally we get

Theorem 12.1. Let X = C/T" be a complex torus. Let p(z) = p(z;T') be the corresponding
Weierstraf p-function. Then Mc;r(C/T") = C(p) + ¢'(2)C(p)

Remark 12.2. Notice that the proof of Theorem [I2.1]is constructive

Corollary 12.3. Mc;r(C/T) = C(x)[y]/(y* — 42® + gox + g3), where go = 60> . p ,y%,
g3 = 140 ZO;&VGI‘ %6

Proof. Define a surjective homomorphism
C(z)ly] = Mcr(C/T), z = p(2), = ¢'(2)
Then by Proposition y? — 423 4 gox + g3 lies in the kernel and we obtain a surjection
C(2)[y)(y* — 42° + g2z + g3) — Meyr(C/T).

Since f is irreducible polynomial over C(z), we conclude that C(z)[y](y* — 42 + gow + g3) is
a field. Since non-zero field homomorphisms are injective, we conclude that Mc,r(C/I') =

C(z)[y]/(y* — 42® + gox + g3). This concludes the proof. O

Complex tori as smooth projective algebraic plane curves. Recall that the projective

plane
Py = {(x0, 21, 22) | (z0,21,22) € C*\ {0}},

has a natural structure of a complex manifold.

Definition 12.4. A plane projective curve C' is the set of zeroes of a homogeneous polynomial
f € C[ZO7 21, 22]
C:Z(f):{<l'0,x1,l'2€]P2 | f(I0,$17$2):0>}.

C' is called smooth is it is a complex submanifold of Py (in this case it is a Riemann surface).
Claim. C = Z(f) C Py is smooth if and only if

of of of f .

- 2L =) =0,2=0,1,2

8207 8217 822 azl (l’o,iﬂl,l'g) 72 ) 9 }

18 empty, 1. e., the partial deriwatives of f do not have common zeroes in Py.

Z( ) = {(x0, 21, x2) € Py |
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Proof. Exercise. 0

Theorem 12.5. Every complex torus C/I is isomorphic to a smooth projective plane cubic

curve. More precisely, C/T" = Z(f), where

1 1
f= 202 — 421 + gazoz1 + 9375, g2 = 60 Z —» g3 =140 Z 5
0#£~el 0#£vel v

The isomorphism is given by the map

(1 p(2), 0'(2)), 2] # [0];
<07 0, 1>= [Z] = [O]

C/T L Py, [2]

Proof(Sketch). Let C' = Z(f). From the discussion above it is clear that (C/I") C C.
I. Bijectivity of ¢ : C/T' — C.
[.1. Injectivity.

Lemma 12.6. 1) p(z) = p(w) if and only if z=w mod I" or z = —w mod I'.

2) ¢'(2) =0 if and only if 2z € T, i. e., there are three different mod T' zeroes %L, <2 «itws,

W9 W1 + Wo

wi1Fw2
o 2

ol

o
g e
&

S

So if z,w ¢ I" such that ¢(z) = ¢(w), then p(z) = p(w), ¢'(z) = ¢'(w). So either w = z
mod I' (and hence [z] = [w]) or z = —w mod I" and ¢'(2) = ¢'(—w) = —¢'(w) = —p'(2). In
the second case 2¢'(z) = 0, thus ¢'(z) = 0. Then by Lemma 2z € T" and finally z = w
mod I'. Since ¢([z]) # (0,0,1) for all [z] # [0], we conclude that ¢ is injective.

Remark 12.7. In particular p takes different values at <!, <2, wl;“”? (i. e., at zeroes of ¢'). Put

h(x) = 42 — gox — g3. Then since '(2)* = h(p(z)), we conclude that p(“3), p(£2), p(“5e2)

are 3 different zeroes of h, thus

= 4(e-o () (-0 (3) (-0 (252)).

[.2 Surjectivity. It is clear that (0,0,1) € o(C/T").

Take an arbitrary (1,a,b) € C. Since p takes all values,there exists z € C with p(2) = a.
Since b = ¢/(2)? = h(p(z)) = h(a) we conclude ¢'(z) = +b. If ¢'(2) = b, then p([2]) = (1, a,b).
If ¢'(2) = =b, then p([=2]) = (L, p(=2), '(=2)) = (L, p(2), =¢'(2)) = (1, a,b).
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II. C' is a smooth curve in P, (i. e., submanifold). Indeed. Suppose the contrary. Then

there exists s = (s, $1, $2) € Py such that

of of of
8_20(8 =5 :8—22(5):0.

One computes that this implies that
A =g —27g5 =0.

On the other hand one notes that A is the discriminant of h(x) = 42 — gox — g3. Since the
latter has 3 zeroes, we get A # 0 and thus a contradiction. Therefore C' is smooth.

ITI. From the definition of ¢ it follows that it is continuous. Clearly ¢ is holomorphic on
C/T'\ {[0]}. By Theorem ¢ is a holomorphic map to Py. Its image C is a submanifold, so
¢ : C/T' — C is a holomorphic map of Riemann sirfaces. Since it is bijective, we conclude that

© is an isomorphism, which concludes the proof. U

Definition 12.8. Smooth projective plane cubic curves are called elliptic curves. So complex

tori are elliptic curves.

j-invariant. We defined for 7 € H g5 = ¢2(7), g3 = g3(7). Thus one can consider g and g3 as

functions on H. These functions are holomorphic on H. One can show that for (¢ %) € SLy(C)

ar +b\ 4 at +b\ 6
9o (CT—i—d) =(ct+d)* - g2(7), g3 (CT+d> = (et +d)° - g3(7).

One says in this situation that go is a modular form of weight 4 and g5 is a modular form of
weight 6.
Then A = g5 — 27g3 has the property

A (“T * b) — (7 +d)'2 - A(r)

ct+d

and one says that A is a modular form of weight 12. We showed above that A = g3 —27g3 # 0,

so one obtains the following holomorphic function on H:

L ga(T)
j<7—) - A(T) .

faTt+b i)
J ct+d — AT

so j is invariant under the action of SLy(Z) on H.

Then

Definition 12.9. The holomorphic function j : H — C is called j-invariant.
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Therefore, there exists a unique factorization through H -~ H/ SLy(Z), which by abuse of

notation is denoted by j as well.

\/

H/ SLy(Z

Theorem 12.10. The map

H/SLy(Z) % C,  [r] = j(r)
is a bijection, i. e., two complex tori C/T' (1) and C/T'(7") are isomorphic if and only if j(1) =
().

Proof. No proof. A proof can be found for example in [5]. O
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Exercises.

Exercise 37. In the lecture we showed that
Mcr(C/T) = C(x)[y]/(y* — 42® + gox + g3).

Find the inverse of y* in C(z)[y]/(y* — 42® + g2z + g3). Use it to express (1/¢/(z))? as a

polynomial in g’ with coefficients in C(p).

Exercise 38. Let I' be a lattice in C and let p be the corresponding Weierstrafl function.
Notice that the elliptic functions " (z) and p®)(z) are odd. Represent them as g - ¥(gp) for
some U(t) € C(t).

Exercise 39. In the lecture we defined j-invariant

i) = 95(7)

A(1) = g5(1) — 27g3.

A(r)’
Try to compute the following values of j-invariant:
1 3
j §+z’§ —0, j(i)=1.
In other words show that
1 V3 .
92\ 5 —HT =0, gs(i) =0.
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13. LECTURE 13

Integration of differential forms. Let U C X be an open subset of a Riemann surface X.
Let w € Qx(U).

Let 7 : [a,b] — U be a smooth (i. e., piece-wise differentiable) path. This means that for every
chart ; : U; — V;, U; C U, the functions ¢; oy : ’y‘l(Ui) — V; are piece-wise differentiable.

I. Assume there exists a chart ¢ : W — V, W C U such that y([a,b]) C W. Write
wlw = f - dp for f € Ox (W) and define

[w= [s60) ooy

Claim. This definition does not depend on the choice of .
Proof. Exercise. 0
I1. One can always choose a partition of the interval [a, b], i. e.,

a=aqy<a; < - <au,=>b

such that for v; = V|, ) : [a;_1,a;] — X there exists a chart ¢; : U; — V; of X with

Claim. This definition does not depend on the choice of the partition.

vi(lai—1,a;]) C U;. Define now

Proof. Exercise. O

So, for every open subset U C X, for every w € Qx(U), and for every smooth path v :

/wE(C.

Y

[a,b] — U, we get

Remark 13.1. Analogously, for an open set U C X, for w € Kx(U), and and for a smooth

path 7 : [a,b] — U such that v([a, b]) does not contain poles of w, one gets [ w as well. Indeed,
ol

just replace U by U’ = U \ {poles of w}. Then w € Qx(U’) and 7([a,b]) C U’

Properties. I. Reparameterisation invariance. Let [/, )] = [a,b] be a smooth map such

that a(a’) = a, a(b’) = b. Let 7 : [a,b] = X be a smooth path. Then vy o« : [d/, V] is a smooth

/w:/w.
v Yoo

path as well and
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II. Linearity. f (Awy + pws) = A f wy + @ f wy for differential forms wq, we around ~ and for
v il v

A\ e C
III. Let 7 : [a,b] — X be a smooth path, let U be a neighbourhood of v([a, b)), let f € Ox(U).
Then

/ df = F(3(6)) — F(v(a)).

S
IV. Let {7;}} be a partition of a smooth path v, i. e, v = 9172 ...7,. Then

V. Let 7! be the inverse path to a smooth path v. Then

It

Remark 13.2. Every continuous path can be approximated by smooth paths. This allows to

define integrals of differential forms over arbitrary continuous paths.

Theorem 13.3. Let X be a Riemann surface. Let w € Qx(X). Let v ~ § be two homotopic

paths. Then
/ w= / "
¥ 1

Proof (hint). This is a consequence of the Stokes’ theorem. U

Corollary 13.4. Let X be a RS, let xy € X. Consider the fundamental group m (X, o). Let
w € Qx(X), then

m(X,z9) = C, [y]~— /w
Y
18 a well-defined group homomorphism.

Proof. The map is well-defined by the previous theorem. Let v, d be two closed paths at z;.

fon [or o

-6

By property (IV) of integrals it holds

Thus the map [y] — [ w is a group homomorphism for every w € Qx(X). O
v


http://en.wikipedia.org/wiki/Stokes'_theorem
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Definition 13.5. The number [ w is called period of v with respect to w. The homomorphism
2

/w (X, 20) > C, 1] > /w,

is called the period homomorphism.

Exercise. Compute the periods of the generators of m;(C/I') with respect to some generator

w of Q¢/r(C/T).

Definition 13.6. Let w € Kx(U) for some open subset U of a RS X. Let a € U. Let
z:U"— V be a local coordinate at a. Let w|y: = fdz for some f € Mx(U’). Define

IeSq, W i= TeS;(q) f,

this number is called the residue of w at a.
Reminder 13.7. Let U C C be open, let b e U, f € Ox(U \ {b}), and let

)= ez —b)

i
be its Laurent power series at b. Then

res, [ = c_1.
Equivalently

1
res, f = —j[fdz
2m
b

Remark 13.8. It makes no sense to define residues of meromorphic functions on RS because

it would depend on the choice of local coordinates.
Claim. res, w defined as in Definition[15.0 does not depend on the choice of a local coordinate.

Theorem 13.9 (Residue theorem). Let X be a compact RS, let w € Kx(X). Then
Z res, w = 0.
zeX

Proof (hint). Follows from the Stokes’ theorem. O

Example 13.10. Let f € Mx(X). Put w = %. The residue theorem reads then as

Zresp% = 0.

peEX


http://en.wikipedia.org/wiki/Pierre_Alphonse_Laurent
http://en.wikipedia.org/wiki/Stokes'_theorem
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For every p € X choose a local coordinate z at p and write f locally around p as f = zkf,

where fis a holomorphic function around p such that f(p) # p and k = ord, f. Then

df = (k2" f + zkg—i)dz

and therefore

/-

This means resy, =

k = ord, f, so the residue theorem reads as

Zordpf =0,

peX

which we already know.

Theorem 13.11. Let S C X be a finite set. Let for a € S U, be an open neighbourhood such
that U, N U, = for a #b. Let w, € Kx(U,) such that w, € Ox (U, \ {a}). Let > res, w, = 0.

a€sS
Then there ezists w € Kx(X) such that S is its set of poles and w|y, —w, € Qx(U,).

Proof. Without. 0

Remark 13.12. This means that the the condition ) __ res,w = 0 from the residue theorem

is the only restriction for the existence of meromorphic differential forms.

Corollary 13.13. On every compact Riemann surface X there exists a non-constant mero-

morphic function f € Mx(X).

Proof. For every two different points py,ps € X there exist differential forms wy,wy € Kx(X)
such that p; is the only pole of wy with ord,, wy = —2, p, is the only pole of ws, ord,, wy = —2.

Then wy = f - wy for some f € Mx(X). One sees that f should be non-constant. O
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Exercises.

Exercise 40. Consider the lattice ' = Z -5+ Z - (2+ 3i). Let X = C/I" be the corresponding
complex torus. Consider the path v: [0,1] = X, ~(¢t) = [(12+ 97) - t]. Let w be the standard
generator of Qx(X), i. e, for every chart ¢ : U — V' it holds w|y = dy. Compute

/ w.

N
Exercise 41. Let I' = Z~, +Zy, be a lattice in C. Let X = C/I" be the corresponding complex
torus.
Define 6; : [0,1] — X by §1(¢t) = [t - 1] and d5 : [0,1] — X by da(t) = [t - 72]. Notice that d
and 09 are smooth closed paths at the point [0] € X. Moreover, they generate the fundamental

group of X.

Let w be the standard generator of Qx(X), i. e., for every chart ¢ : U — V it holds w|y = de.

Jo ma [

61 62

Compute the integrals

Exercise 42. Let D = ) a; - x; be a principal divisor on a complex torus X = C/I', i. e.,
i=1
D = (f) for some meromorphic function f € Mx(X). Show that

Z a; - T; = 0
i=1
as an element of X = C/I.

Hint: Let 7 : C — X be the canonical projection. Consider F(z) = f o m(z). Choose a

fundamental parallelogram V' in C such that there are no poles or zeros of F' on its boundary

F'(z)
. d
/ z F02) z
ov
and apply the standard residue theorem.

0dV. Consider the integral

Theorem. For a meromorphic function g on an open set V. C C which possesses a continuous

extension to the closure of V' one has

1
— [ g(2)dz = Zresa g.

271
v a€eV
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14. LECTURE 14
Definition 14.1. Let X be a compact RS, let

0417"'704p7517"'7ﬂp

be some representatives of generators of the fundamental group m;(X) of X (cf. Lecture 4).

Let w € Qx(X), define A;(w) = [w, B;(w) = [ w. We obtain the linear maps
a; Bi

Qx(X) D C, wes (A (w), A (w), ..., Ay(w)),
Qx(X) B CP, we (Bi(w), Bo(w), ..., By(w)).
Theorem 14.2. A and B are isomorphisms of vector spaces.
Proof. No proof. A proof can be deduced from the theory of harmonic functions. 0
Corollary 14.3. Let w € Qx(X). Then
w=0 < Aw =0V < Bj(w) =0V

Definition 14.4. Fix a basis of Qx(X), say {wi,...,w,} (assume g > 1). Then for every

closed curve av in X at zg € X the vector

([oros [w)eer

is called a period of X with respect to {wi,...,wy}.
Denote by L = L(wy,...,w,) C C the set of all periods of X with respect to {wr,...,wy}.

fos fo [

« B a-fB

Since

we see that L is subgroup of CY.

Consider an arbitrary period ([ wi,..., [w,y). Since [ou],...,[ay], [61],- .., [B,] generate the
fundamental group, [a] can be expressed as a product of their powers. Then

(/wl,...,/wg)
o «
is a linear combination of

(/wl,...,/wg), i=1,...,9, and (/wl,...,/wg), ji=1,...,9,
(o7} a; Bj 61



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 68

with integer coefficients. In other words,

Jon [

is a linear combination with integer coefficients of the rows of the period matrix

Aj(wr) ... Ai(wy)
Ag(wr) Ay(wy)
By (wy) Bi(wy)
Bg(wl) . Bg(wg)

So the rows of the period matrix generate L as an abelian group.
One sees that the rank (over C) of the period matrix is g. Moreover, one can show that its
rows are linearly independent over R. This means that L is a free abelian subgroup of C9 of

rank 2g, i. e., a lattice in CY.

Definition 14.5. Define the Jacobian of X by

Jac(X) :=CY/L.
One introduces a complex structure on Jac(X) as for one-dimensional complex tori (page [4)).
Then Jac(X) is a complex manifold of dimension g.

Exercise. Jac(C/I') = C/I.

Fix a point ¢ € X of a compact Riemann surface X. For a point x € X take some path ~,

from ¢ from x and consider

x x x
/WIJ/WQ;'”?/WQ = /wla"'7/wg
q q q Yz Y

It is an element in C9. Of course it depends on the choice of v,. However if §, is another path

connecting ¢ and z, for every w € Qx(X)

Jo fom for fu= ] o

where o, =7, - 6, ! is a closed path at q. Therefore,

/wl,...,/wg — /wl,...,/wg = /wl,...,/wg e L.
Yz Yz Oz Oz

x Qg



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2103/2014 69

Thus the map
At X = Jac(X)=CI/L, z—| /wl,...,/wg]

is well-defined.

Moreover, it is holomorphic.
Exercise. Show that ), is holomorphic.

Since Jac(X) has a natural structure of an abelian group, one can extend \, by linearity to

a homomorphism

A, :DivX — Jac X, Z%'$ — Z% - Ag(2).

zeX zeX

Remark 14.6. A, depends on the choice of ¢ € X.
Consider its restriction to the subgroup Div? X C Div X.

Claim.
does not depend on the choice of q.

Proof. Since every D € Div’ X is a sum of divisors of the form a — b, a,b € X, a # b, it is
enough to check the statement for D = a — b, a # b. Then

Aq<D>=[(/qawl,...,/qawg)]—[</qbwl,...,/qbwg>1:
[(/qawl—/qbwl,...,/qawg—/qbwgnzu/bawl,...,/bawgn,

i. e., does not depend on gq. U
Definition 14.7. Define A := A,|p;,0 x for some (every) g € X.

We obtained a homomorphism A : Div X — JacX. Recall that for f € Mx(X), (f) €
Div’ X. Notice that (f) = (g) for f,g € Mx(X) implies that § € Ox(X) = C. Hence, to
know the divisor of f € Mx(X) is the same as to know f up to a multiplication by a scalar.

So, to describe My (X) is the same as to describe PDiv X C Div’ X.

Theorem 14.8. I. (Abel) PDivX = KerA, i. e., a divisor D € Div' X is a divisor of some
meromorphic function f € Mx(X) (D = (f)) if and only if A(X) = 0. In particular Pic’ X =
Div’ X/ PDiv X can be seen as a subgroup of Jac X by means of the induced embedding

Pic’ X — Jac X, [D]+~ A(D).


http://en.wikipedia.org/wiki/Niels_Henrik_Abel
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II. (Jacobi) A is surjective, in particular
Pic’ X — Jac X, [D]~ A(D).
15 an isomorphism of abelian groups.
Proof. No proof. O

Corollary 14.9. )\, : X — Jac X is injective for every g € X

Proof. Suppose that )\, is not injective. Then there exist a,b € X, a # b, with \,(a) = A\,(b).
Then for D = a — b, A(D) = A\;(a) — A\;(b) = 0, hence there exists f € Mx(X) such that
D = (f). Then f has degree 1 as a map of Riemann surfaces X I, €. Therefore X = C, which

is a contradiction because we assumed gx > 1. O

Corollary 14.10. If gx =1, then A\, : X — Jac X = C/L is an isomorphism, i. e., complex

tori are the only compact Riemann surfaces of genus 1.

Proof. A\, is a holomorphic injective map of Riemann surfaces X — C/L, hence surjective, and

hence an isomorphism. O
Corollary 14.11 (Abel-Jacobi theorem for complex tori). Let X = C/T" be a complex torus.
(0) Then Jac X can be identified with X itself.

(1) Let D = Zal - |z;] € Div X be a divisor on X, a; € Z, x; € C. Let D¢ = Zaxl e C.
Then under the identification Jac X = X, the map A : Div® X — Jac X = X s gwen by

D+ [De] = De+T € X =C/T.

Hence
Pic’ X — X, [D]+~ [D¢],

is an isomorphism of abelian groups.

(2) In other words, for D € Div’ X there exists f € Mx(X) with D = (f) if and only if
Dc el

Proof. Exercise. U


http://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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Some final remarks. Let X be a compact Riemann surface of genus gx > 1. Then Jac X

can be embedded into P, for some n. Then the chain of the embeddings
X CclacX CcP,

gives an embedding of X into IP,, as a submanifold.

Remark 14.12. Note that not every higher dimensional torus can be embedded into P,.

However this is the case for the tori defined by eriod lattices.

Definition 14.13. A projective variety is a zero set of homogeneous polynomials f1,..., f,, €

Clzo, ..., xy)
Z(f1yo s fm) = {{xo, ...y xn) €Py | filwo,...,zn) =0 Vi=1,...,m}.
Theorem 14.14 (Chow). Compact complex submanifolds of P, are projective varieties.

Corollary 14.15. FEvery compact Riemann surface can be realized as a projective variety, i. e.,

a projective algebraic curve.

Remark 14.16. Let C = Z(f) C Py be a smooth plane algebraic curve, deg f = d. Then its
genus is

g =1 =2)

2
In particular, go =0 ford=1and d =2, gc =1ford =3, go =3 for d =4, go =6 for d = 5,
so one sees that not all compact Riemann surfaces can be realized as plane algebraic curves

(for example Riemann surfaces of genus 2).

Dimension of the moduli space. In our course we showed that the space of isomorphism
classes (so called moduli space) of compact Riemann surfaces of genus
e g = 0 consists of one point;
e g = 1 has dimension 1 and can be identified with C (using j-invariant).
One can show that for g > 2, the space M, of the isomorphism classes of compact Riemann

surfaces of genus ¢ has dimension 3g — 3.


http://en.wikipedia.org/wiki/W._L._Chow
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Exercises.

Exercise 43. (1) Let I be a lattice in C and let X = C/I" be the corresponding complex
torus. Fix some generators o and f; of the fundamental group of X, fix a basis of Qx(X), and

compute the corresponding period matrix. You could use some of your results from Exercise 41.

(2) Let I be a lattice in C and let X = C/I" be the corresponding complex torus. Show that
Jac(X) = X.

Exercise 44. Let X be a compact Riemann surface of genus g > 1. Let {wy,...,w,} be a
basis of Qx(X). Let L C C9 be the corresponding lattice of periods. For a fixed point ¢ € X

we constructed the map
At X = Jac(X)=CY/L, z— [(/wl,...,/wg)].
q q

Prove that )\, is a holomorphic map.

Hint: Notice that it is enough to understand the following.
(1) Let w be a point in C. Let f be a holomorphic function in some open neighbourhood W of
w. Then in every open ball U around w, U C W, for every point x € U, and for every path -,

/ fdz

x

depends only on = and not on the choice of 7., hence the notation | fdz := [ fdz makes sense.
w Yz

(2) Moreover, there exists an open ball U around w where f has a primitive function, i. e., a

holomorphic function F such that F'(z) = f(z). Then [ fdz = [ F'(z)dz = F(z) — F(w) and

that connects w and z, the integral

hence the function N
Usz— / fdz
is holomorphic.

Exercise 45. Let X = C/I" be a complex torus, ' = Z - w; + Z - wy. Let Dy = [%] + [ﬂ} —
[252], Do = [%] + [%] —2- [25=2], Ds = 3] + [%] -2 [=9=2].

Check whether Dy, Ds, D3 are principal divisors.
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