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Abstract

Efficient and reliable operation of Polymer Electrolyte Membrane (PEM) fuel

cells are key requirements for their successful commercialization and appli-

cation. The use of diagnostic techniques enables the achievement of these

requirements. This paper focuses on model-based Fault Detection and Isola-

tion (FDI) for PEM fuel cell stack systems. The work consists in designing

and selecting a subset of consistency relations such that a set of predefined

faults can be detected and isolated. Despite a nonlinear model of the PEM

fuel cell stack system will be used, consistency relations that are easily imple-

mented by a variable back substitution method will be selected. The paper

also shows the significance of structural models to solve diagnosis issues in

complex systems.
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1. Introduction

Polymer Electrolyte Membrane (PEM) fuel cells are ones of the most

promising technologies to be used, in a near future, as power supply sources

in many portable applications (e.g. automobiles, aerospace, remote stations,

etc.). For this reason, maintenance operations cannot always be properly

performed or are expensive to carry out. Thus, the task of monitoring the

correct operation of this systems is crucial. In order to perform such a task,

efficient diagnosis systems to detect and isolate incipient faults in the PEM

fuel cell system must be developed.

In the literature, the works devoted to diagnosis for Fuel Cell Stack (FCS)

systems can be roughly divided in two groups. On one hand, there are works

designing ad-hoc techniques that use a specialised and specific knowledge

to perform diagnosis on the cell stack. Some examples of such techniques

are the polarisation curve, the current interruption or the electrochemical

impedance spectroscopy methods [1] [2]. Such techniques have demonstrated

to have good results for detecting malfunctions inside the cell stack (e.g. fuel

cell membrane flooding or/and drying). On the other hand, there are other

fault diagnosis techniques based on models. For instance, in [3] faults are di-

agnosed in an FCS system by using Bayesian networks. In [4], a set of tests

are designed from a linear FCS model. Test quantities design techniques are

also used in [5], where two tests are developed to detect hydrogen leaks in

the anode side. Finally, in [6], a set of structured residuals is obtained from a

bond-graph model of a FCS system. The advantage of working with model-

based methods is that they are model dependent and thus more robust to

modifications of the system. This permits to apply the same method (some-
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times with a slight modification) to different system configurations as long

as its corresponding model is provided. This is the main reason why model-

based diagnosis methods are usually chosen to diagnose faults in the whole

FCS system rather than ad-hoc methods valid only for a specific system.

Considerable research has been done in developing such model-based di-

agnosis systems [7]. Traditionally, diagnosis systems have been developed

for linear systems by first linearizing the model and then applying robust

techniques to the residual generator design [8]. However, a model lineariza-

tion approach is not feasible for FCS systems due to the complexity of such

systems, that involve a wide range of non-linear equations (lookup tables,

polynomial functions, saturations, non-linear dynamic equations, etc.), and

moreover their operating point changes. Nevertheless, a non-linear model

thoroughly describes the non faulty behavior for different operating points.

Therefore, in this present work, non-linear equations are directly applied in

the fault diagnosis system design. Despite the nonlinear nature of the model,

only residuals that are easily implemented by a variable back substitution

method will be selected for the diagnosis system.

In this paper, a complete FCS system model developed in [9] is used to

derive the diagnosis system. Based on this FCS model, a set of faults to be

detected and isolated is defined. The aim of the work is to use the structural

information contained in the model and to design a subset of consistency

relations to detect and isolate the set of predefined faults in an FCS system.

Then, a set of residuals that can be easily implemented by a simple back

substitution method are generated and tested for fault diagnosis.

In Section 2, a review of model-based fault diagnosis is given. In Section 3,
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the FCS system is described and a set of faults is defined. In Section 4, a set of

consistency relations is designed based on the FCS system model. Simulation

results are given in Section 5, and the main conclusions are presented in

Section 6.

2. Model-based diagnosis review

2.1. Consistency relations

Model-based fault diagnosis is a consolidated research area, with many

published works, within the control field [7], [8]. Most approaches to detect

and isolate faults are based on consistency checking. The basic idea behind all

these works is the comparison between the observed behavior of the process

and its corresponding model. This is performed by means of consistency

relations. A consistency relation can be roughly described as a function of

the form:

h(y(t),u(t)) = 0 (1)

where y(t) and u(t) are vectors of known variables, denoting respectively

process measurements and process control inputs. Function h is obtained

from the model and is the basis to generate a residual:

r(t) = h(y(t),u(t)) (2)

A residual is a temporal signal indicating how close is behaving the pro-

cess compared with its expected behavior predicted by the model. At the

absence of faults, the residual equals zero. In fact, a threshold based test

is usually implemented in order to cope with noise and model uncertainty
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effects. Otherwise, when a fault is present the model is no longer consistent

with the observations (known process variables) and the residual diverges

from zero.

Detecting faults is possible with only one residual sensitive to all faults.

However, fault isolation is usually required rather than just detecting the

presence of a fault. The fault isolation task is performed by designing a set

of residuals from different consistency relations. Each residual is sensitive

to different faults such that the residual fault signature is unique for each

fault. Therefore, distinguishing the actual fault from other faults is possible

by looking at the residual fault signature.

A key point in model-based diagnosis relies on the design of consistency

relations. For static or dynamic linear models, computing the required con-

sistency relations can be straightforwardly done by means of linear trans-

formations. Nevertheless, consistency relations design becomes trickier for

non-linear models.

2.2. Structural model-based diagnosis

One widely accepted approach to handle non-linear models is to represent

them by a graph [7]. More formally, given a model composed of equations

which depend on a set of unknown variables X and a set of known variables Z

(i.e. measured and controlled variables in vectors y and u, respectively), the

corresponding structural model is a bipartite graph, G = (M,V ;A), where

M is the set of equation vertices, V = X ∪ Z is the set of variable vertices

and A is the set of edges such that

A = {(m, v) | variable v ∈ V appears in equation m ∈ M} (3)
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Alternatively, a structural model is described by a biadjacency matrix

which relates equations (rows) and variables (columns). Then, the set of

edges of the corresponding bipartite graph is represented by a set of crosses

in the biadjacency matrix.

Generating a consistency relation from a structural model entails finding

a subset of equations, M ′ ⊆ M , that depend on a subset of unknown variables

X ′ ⊆ X such that there exists a complete matching of X ′ into M ′ and

|M ′| = |X ′|+ 1 (4)

where |·| denotes the cardinality of the set. A matching of a bipartite graph is

a subset of edges such that no two edges share a common vertex. A complete

matching of X ′ into M ′ means that all variables in X ′ are covered by the

matching. Theoretically speaking, the variables in |X ′| can be computed from

|M ′| − 1 equations in M ′, and then the remaining equation is used to derive

the consistency relation. Since all unknown variables have been computed,

the remaining equation will be in the form of Equation (1). There exist in

the literature several algorithms to compute all M ′ subsets given a structural

model [10] [11].

However, designing a consistency relation is not always possible since it

requires a feasible computation of all unknown variables. In [12], a framework

that takes into account the causal computability concept is described. In

order to ensure the computability of every unknown variable, the set of edges

is divided into two disjoint subsets:

• A× = {(m, x) ∈ A | x ∈ X is causally computable in m}

• A∆ = {(m, x) ∈ A | x ∈ X is not causally computable in m}
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Causally computable means that variable x can be computed using equation

m, assuming that the remaining variables in m are known. Then, Algorithm

7 in [12] computes the complete set of those subsets M ′ that guarantee the

unknown variable computation. Hence, all these subsets M ′ have a causal

complete matching. A causal matching is a matching such that all edges

belong to A×. Thus a residual expression can be easily computed using a

variable back substitution method, following the corresponding computation

sequence. A computation sequence is a directed graph that shows how un-

known variables can be substituted (or computed) in order to generate a

residual. The computation sequence is directly derived from the complete

matching.

2.3. Academic example

Next, an academic example based on an air compressor is described. The

causal framework in [12] is applied to design a set of residuals which can be

easily computed using the variable back substitution method. Assume that

the compressor behavior is modeled by the following equations:

m1 : v(t) = kv · ωc(t) +R · i(t) + L
d

dt
i(t) (5a)

m2 : J
d

dt
ωc(t) = kt · i(t)− B · ωc(t)− τ(t) (5b)

m3 : W (t) = g(ωc(t), pin(t), pout(t), Tin(t)) (5c)

m4 : η(t) = Lookup-Table(W (t), pin(t), pout(t)) (5d)

m5 : τ(t) = Cp

Tin(t) ·W (t)

η(t) · ωc(t)

((

pout(t)

pin(t)

γ−1

γ

)

− 1

)

(5e)
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Table 1 describes all model variables and parameters. According to the

previous definitions, the following sets of equations and variables are defined:

• M = {m1, m2, m3, m4, m5}

• V = {v, ωc, i, τ,W, pin, pout, Tin, η}

Function g in (5c) describes the behavior of the compressor box, whereas

expression (5d) determines the compressor efficiency, η(t), by means of a

look-up table. Note that both expressions are non-invertible. Therefore,

the variables in the right hand side of both expressions are not causally

computable.

Assume that the set of variables can be partitioned into the set of known

variables Z = {v, i,W, pin, pout, Tin} and the set of unknown variables X =

{ωc, τ, η}. Table 2 shows the biadjacency matrix of the graph G = (M,X ;A)

that just involves unknown variables. Now, the set of edges A contains

causal and non-causal edges which are respectively represented by crosses

and triangles in the biadjacency matrix.

Applying Algorithm 7 in [12], the following three M ′ subsets are ob-

tained from the structural model in Table 2: M ′

1
= {m1, m2, m4, m5}, M

′

2
=

{m1, m3} and M ′

3 = {m2, m3, m4, m5}. The set of residuals can be obtained

by applying a variable back substitution method. For instance, given subset

M ′

1
the following causal matching can be obtained: {(m1, ωc), (m2, τ), (m4, η)}.

Thus, equation m5 can be used as a redundant equation and the consistency

relation corresponding to residual r1 can be obtained following the compu-

tation sequence in Figure 1.
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A much simpler consistency relation is obtained from subset M ′

2
. The

corresponding causal matching is {(m1, ωc)}. Considering equation m3 as

the redundant equation, consistency relation (6) can be straightforwardly

derived following the computation sequence in Figure 2.

h(v(t), i(t),W (t), pin(t), pout(t), Tin(t))

= W (t)− g(v(t)−Ri(t)− L
d

dt
i(t), pin(t), pout(t), Tin(t)) = 0

(6)

Remark that this computation sequence satisfies the causal computability

requirement. Therefore, a causally computable residual is directly derived

from (6) as

r2(t) = h(v(t), i(t),W (t), pin(t), pout(t), Tin(t)) (7)

Following a similar procedure residual expression r3 could be obtained for

subset M ′

3
. The set of residuals r1, r2 and r3 could be used to detect and

isolate faults. For instance, assume a fault concerning the electrical resistance

of the motor winding. This fault would imply the misbehavior of equation

m1 in (5a). Thus, this fault could be detected by residuals r1 and r2 since

both subsets M ′

1
and M ′

2
include equation m1.

Now, assume that measured variables were noisy. Therefore, the compu-

tation of variable ωc(t) through m1 and variable τ(t) through m2 would not

be desirable since it would imply the differentiation of noisy signals, lead-

ing to a bad performance. This means that ωc(t) and τ(t) should be set as

non-causally computable in m1 and m2 respectively. Thus Table 2 should
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be replaced by Table 3. Then, under this new setting, Algorithm 7 in [12]

would not produce any subset since the causal computability requirement

could not be satisfied. For instance, remark that now M ′

2
is not feasible

since there does not exist any causal matching involving equations m1 and

m2. Thus, the fault concerning the electrical resistance of the motor winding

would no longer be detectable.

In this present paper, residuals will be computed such that the com-

putability of the unknown variables is ensured. In order to do so, causally

computable sub-models M ′ will be first computed, then the corresponding

computation sequences will be derived from each sub-model M ′ and finally

the residuals will be evaluated to detect and isolate faults for the FCS system.

3. Fuel Cell Stack System

3.1. System description

The model used in this work is developed in [9]. The model is widely

accepted in the control community as a good representation of the behavior

of a FCS system. For the sake of space saving, the full model is not detailed

here. The interested reader is referred to the aforementioned reference. The

system model schema is depicted in Figure 3. The cathode side consists of an

air compressor to feed atmospheric air to the cathode, the supply manifold

that connects the compressor output with the air cooler input, and the air

cooler and the static humidifier, that respectively refrigerates and humidifies

the air before it goes into the stack. The model guarantees the required sto-

ichiometry by regulating the hydrogen, supplied from a pressurized or liquid

hydrogen tank, by means of a controlled valve. The electrochemical princi-
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ples of the fuel cell stack are also modeled in order to accurately evaluate

the electricity production and the outputs of the stack. This implies specific

model equation for the anode, the cathode, the membrane and the stack

voltage. Finally, the cathode outlet manifold of the fuel cell is considered in

the model as an external component.

The model only describes the normal operational mode. Hence purges

in the anode side are not considered. This means that all the hydrogen in

the anode side is consumed. It is also assumed that the temperature of the

fuel cell stack (Tst(t)) is known and constant since its dynamic behavior is

much more slower than that of the rest of the model. These two assumptions

reduce the complexity of the model by not considering discrete behaviors nor

thermodynamic equations for the stack model. The resulting FCS system

model is a complex and large-scale model involving 96 equations.

The available sensors in the system is another important issue to take into

account for fault diagnosis. We assume that the following sensors installed

in the system: the compressor motor speed (ω(t)), the compressor output

flow (Wcp(t)), the supply manifold output temperature (Tsm(t)) and pressure

(psm(t)), the static humidifier temperature (Tsh(t)) and pressure (psh(t)), the

outlet manifold flow (Wom(t)) and pressure (pom(t)), and the cathode output

pressure (pca(t)). In order to determine the set of sensors for fault diagnosis,

several methodologies exist in the model-based diagnosis literature. Here,

the optimal set of sensors has been chosen to ensure that convenient consis-

tency relations can be finally designed [12]. The costs of sensors measuring

pressures and temperatures are set to low values since such sensors are re-

liable, cheap and easy to install. On the other hand, humidity sensor costs
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have high values since they are not desirable. Flow and speed sensors have

intermediate cost values. As a result, the chosen sensors involve as much

pressures and temperatures readings as possible.

Furthermore, there are other variables assumed to be known. This is

the case of atmospheric variables such as humidity (φatm(t)), temperature

(Tatm(t)) and pressure (patm(t)). Similar assumption is done for the inlet an-

ode hydrogen humidity (φan,in(t)) since the hydrogen comes from a pressured

tank where the humidity can be known. The desired air temperature (Tdes(t))

and the desired air humidity (φdes) are setpoints and therefore regarded as

known variables. Also, the original model has an external controller which

controls the compressor voltage (vcp(t)) by means of the stack current (ist(t)),

consequently these two variables are also known due to control purposes.

3.2. Fault description

A set of seven faults has been defined in the FCS system. The faults are

defined such that either a parameter or a variable is modified in only one

specific model equation.

Faults fcp1, fcp2, fsm, fst and fom are simulated as multiplicative faults

where the corresponding parameters or variables are proportionally modified.

On the other hand, faults fac and fsh are simulated as additive faults, where

an offset is added to their corresponding values. In order to introduce theses

variations caused by faults, seven new parameters αfi, one for each fault, are

introduced in the model. Next, the models for these faults are detailed.
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3.2.1. Compressor faults

There are two compressor faults, fcp1 and fcp2. Fault fcp1 represents an

electric fault where the electrical resistance varies (e.g. due to an overheat-

ing). Specifically, it affects the electric resistance, R, in the following electric

motor equation:

vcp(t) = kv · ω(t) +R · icp(t) (8)

where vcp(t) is the motor compressor voltage, kv is the speed-to-voltage co-

efficient, ω(t) is the compressor angular speed and icp(t) is the motor current.

The presence of this fault is simulated by modifying the electric resistance,

Rfaulty = αfcp1 · R (for 0 ≤ αfcp1 < 1).

Fault fcp2 represents a malfunction of the compressor box. To characterize

the relation among the compressor pressure, pcp(t), the motor speed, ω(t),

and the normalized compressor flow rate Φ(t), the model uses a compressor

map proposed in [13]. This compressor map involves non-linear equations,

therefore it is condensed in a non-linear and non-invertible function:

Φ(t) = CompressorMap (ω(t), pcp(t), Tamb(t)) (9)

The corresponding fault is simulated by changing the computed flow, Φfauty(t) =

αfcp2 · Φ(t) (for 0 ≤ αfcp2 < 1).

3.2.2. Supply manifold fault

The supply manifold is affected by fault fsm which represents a leak or a

partial blocked pipe. It is modeled by a loss of the output air flow, Wsm(t),

calculated in the next linearized equation of a nozzle model:

Wsm(t) = ksm(psm(t)− psm,ds(t)) (10)
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where ksm is the orifice constant, psm(t) is the supply manifold pressure and

psm,ds(t) is the supply manifold downstream pressure. The presence of the

fault implies that W faulty
sm (t) = αfsm ·Wsm(t) (for 0 ≤ αfsm < 1).

3.2.3. Air cooler fault

The air cooler fault, fac, represents a general malfunction of this device.

As a consequence the air is not cooled to the desired temperature. This is

simulated by setting an offset in the air cooler output air temperature:

T faulty
ac (t) = Tdes(t) + αfac (11)

where αfac is the temperature variation in Kelvins due to air cooler fault.

Note that in this case the fault is additive, therefore the fault is present

whenever αfac 6= 0.

3.2.4. Static humidifier fault

The static humidifier fault, fsh, represent a malfunction in the humidifier

device. Similar to the air cooler fault, the humidifier fault is simulated by an

offset in the desired setpoint:

φfaulty
sh (t) = φdes(t) + αfsh (12)

Here the fault is also additive and αfsh indicates the excess or lack of relative

humidity in the air caused by a fault in the humidifier device.

3.2.5. Fuel cell stack fault

Next fault, fst, affects the fuel cell stack. It represents a failure in the

outlet cathode (e.g. the outlet is partially stuck). Specially, it affects the
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cathode outlet air flow Wca(t) calculated from:

Wca(t) = kca(pca(t)− pst,ds(t)) (13)

where kca is the flow resistance constant, pca(t) the cathode pressure and

pst,ds(t) the stack downstream pressure. The fault is simulated byW faulty
ca (t) =

αfst ·Wca(t) (for 0 ≤ αfst < 1).

3.2.6. Outlet manifold fault

Last fault fom affects the outlet manifold, that is characterized by means

of a non-linear nozzle:

Wom(t) = NonlinearNozzle (pom(t), pom,ds(t), Tom(t)) (14)

where Wom(t) is the output flow, the pom(t) is the manifold pressure and the

Tom(t) is the inlet air temperature. The fault fom is simulated by a change

of the Wom(t), i.e. W faulty
om (t) = αfomWom(t) (for 0 ≤ αfom < 1), and it

represents either a leak or an outlet obstruction.

Table 4 summarizes the set of proposed faults as well as their correspond-

ing affected model variable or parameter. Note that other faults could be

easily included in this set by modifying other variables or parameters in some

model equations.

4. Consistency relations design for the FCS system

In this section, the different sets of model equations selected to construct

a reduced set of consistency relations are presented in order to generate the

desired residuals. But first, the steps to obtain these consistency relations

are briefly detailed.

15



1. A structural model of the whole system is constructed. This model

involves 96 equations and takes into account the causal computability

of the unknown variables.

2. A set of 63 sub-models M ′ are derived applying Algorithm 7 in [12] to

the structural model. With this sub-models, it is possible to detect and

fully isolate all the preestablished faults.

3. A reduced set of sub-models M ′ such that all faults are detectable

and fully isolable is sought. The selection criterion is fault isolability

maximization so sub-models that are each sensible to a large number of

faults are penalized. This problem can be easily solved applying Binary

Integer Linear Programming techniques [14]. Finally, seven out of the

63 sub-models are selected, each one sensitive to only one single fault.

For each selected sub-model, it is possible to construct a consistency

relation involving one fault and therefore derive from it a residual sensitive

to that fault. This will facilitate the task of isolating faults since the fault

signature involves a one-to-one correspondence between a residual and a fault.

Next, the seven sub-models are presented as well as the construction of

the consistency relation. For the sake of clarity, the variables assumed to be

known (see Section 3) will be signaled by an asterisk. Hence, these variables

do not need to be computed from other model equations.

4.1. Sub-models for consistency checking

4.1.1. Sub-model for fault fcp1

The first consistency relation is sensitive to the motor compressor fault

fcp1. It is constructed from the dynamic motor equation (15) used to de-
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termine the motor speed from the motor torque τm(t) and the compressor

torque τcp(t).

ω∗(t) =
1

J

∫ T

0

(τm(t)− τcp(t)) dt (15)

Both torque variables must be computed since their values are unknown. In

(16) the motor torque is determined from the motor current icp(t), the torque

constant kt, the friction torque coefficient B and the motor speed ω∗(t). Note

that the motor current is determined from (17) which is the equation used to

introduce fault fcp1 (see (8)). Thus, the consistency relation will be sensitive

to fault fcp1.

τm(t) = kt · icp(t)− B · ω∗(t) (16)

icp(t) =
1

R
(v∗cp(t)− kv · ω

∗(t)) (17)

On the other hand, the compressor torque is determined from the thermo-

dynamic equation (18) where Cp is the specific heat capacity of air, γ is the

ratio of the specific heat of air, η(t) is the compressor efficiency which is

computed from (20), pratio(t) is the ratio between output and input pressure

determined from (19), and finally Wcp(t) is the measured compressor flow.

τcp(t) = Cp

T ∗

atm(t)

η
(pratio(t)

γ−1

γ − 1)W ∗

cp(t) (18)

pratio(t) =



















0 if p∗cp(t)/p
∗

atm(t) ≤ 0

p∗cp(t)/p
∗

atm(t) if 0 < p∗cp(t)/p
∗

atm(t) < 1000

1000 if p∗cp(t)/p
∗

atm(t) ≥ 1000

(19)

η(t) = LookupTable(W ∗

cp(t), pratio(t)) (20)

The output compressor pressure p∗sm(t) is assumed to be known since it is

indeed the same as the supply manifold pressure, which is measured, then it

holds that p∗cp(t) = p∗sm(t).
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It should be noted that the compressor efficiency η(t) is determined by

means of a look-up table, and the pressure ratio is bounded between 0 and

1000 bar by the saturation function (19). This implies that both equations,

(19) and (20), are non invertible and thus it is not possible to compute, for

example, pratio from (20). This fact was taken into account in the generation

of the consistency relations.

4.1.2. Sub-model for fcp2

The consistency relation sensitive to fault fcp2 is constructed as follows.

First, the output compressor flow W ∗

cp(t) can be obtained from (21) where

parameters ρa and dc stand for air density and compressor diameter output,

respectively. The variables to be determined are the compressor flow rate,

Φ(t), and the compressor blade tip speed, Uc(t).

W ∗

cp(t) =
p∗atm(t)

√

T ∗

atm(t)/288
Φ(t)ρa

π

4
d2cUc(t) (21)

The compressor flow rate is determined by the compressor map (22) which

becomes inconsistent with the fault fcp2. As in the previous case, pratio(t) is

computed from (19).

Φ(t) = CompressorMap (ω∗(t), pratio(t), T
∗

amb(t)) (22)

The blade tip speed is directly obtained from (23).

Uc(t) =
π

60
dc

ω∗(t)
√

T ∗

atm(t)/288
(23)

18



4.1.3. Sub-model for fault fsm

The consistency relation to detect the fault fsm is mainly constructed from

supply manifold equations. The air temperature is expected to decrease in

the supply manifold, i.e. Tsm(t) < Tcp(t) ∀t > 0 . Therefore, the pressure

dynamic equation (24) is used in the model, where Ra is the gas constant,

Vsm is the manifold volume. The variables to be computed are the output

supply manifold flow, Wsm(t), the compressor and manifold air temperatures,

Tcp(t) and Tsm(t) respectively.

p∗sm(t) =
γRa

Vsm

∫ T

0

(W ∗

cp(t)Tcp(t)−Wsm(t)Tsm(t)) dt (24)

The output manifold flow is determined from (25) which is the faulty

equation for fault fsm introduced in Section 3.2. Note that the downstream

pressure of the manifold is the output cathode pressure, which is measured.

Hence, p∗sm,ds(t) = p∗ca(t) should be considered in the consistency relation

design.

Wsm(t) = ksm(p
∗

sm(t)− p∗sm,ds(t)) (25)

The compressor air temperature is determined by (26) where pratio(t) and

η(t) are determined from (19) and (20) respectively.

Tcp(t) = T ∗

atm(t)−
T ∗

atm(t)

η(t)
(pratio(t)

γ−1

γ − 1) (26)

Finally, the supply manifold air temperature is obtained from the ideal gas

law, see (27), where the mass conservation principle is used in flow balance
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(28) to compute the manifold mass msm(t).

Tsm(t) =
Vsmp

∗

sm(t)

Ramsm(t)
(27)

msm(t) =

∫ T

0

(W ∗

cp(t)−Wsm(t)) dt (28)

4.1.4. Sub-model for fault fac

This consistency relation is straightforwardly derived. Actually, due to

the fact that the output air cooler temperature is measured, there is no need

to use model information to detect fault fac. Equality (29) must hold as long

as fac is not present.

T ∗

ac(t) = T ∗

des(t) (29)

Note that, since no temperature change is considered in the static hu-

midifier model, we assume that the temperature measurement T ∗

sh(t) is also

valid for the air cooler device, i.e. T ∗

ac(t) = T ∗

sh(t).

4.1.5. Sub-model for fault fsh

The consistency relation for fault fsh could be similarly derived as the

fac case, if output humidity was measured. However, it is known that good

humidity measurements are hard and expensive to obtain. Therefore, to

exploit the model properties and at the same time make the approach more

feasible, no humidity measurements were considered in the sensor selection.

As a consequence, humidity changes are regarded in all devices from the

compressor to the static humidifier. Specifically, relative humidity varies
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from an initial humidity φ1(t) to a final humidity φ2(t), given two different

pressures p1(t) and p2(t), and two different saturation pressures, psat(T1(t))

and psat(T29t)), according to:

φout(t) =
p∗out(t)psat(T

∗

in(t))φin(t)

p∗in(t)psat(T
∗

out(t))
(30)

The saturation pressure, psat(T (t)), depends on the air temperature T (t)

and is computed as [15]

log10(psat(T (t))) = a4T (t)
4 + a3T (t)

3 + a2T (t)
2 + a1T (t) + a0 (31)

where ai (i = {0, 1, 2, 3, 4}) are piecewise coefficients that vary with the

temperature[9, 16].

The gas mixture properties of the dry and vapor gas are also considered to

construct this consistency relation. First, the output pressure is the sum of

the dry and the vapor gas pressures (see (32)). Vapor pressure is determined

in (33) from the saturation pressure of the humidifier psat(T
∗

sh(t)) and the

output air humidity φsht) which, in the absence of fault, should be the desired

humidity, φ∗

des(t) (see (34)).

p∗sh(t) = pa,sh,out(t) + pv,sh,out(t) (32)

pv,sh,out(t) = φsh(t)psat(T
∗

sh(t)) (33)

φsh(t) = φ∗

des(t) (34)

On the other hand, dry gas pressure remains unaltered throughout the

humidifier, i.e. pa,sh,out(t) = pa,sh,in(t). Again, using the gas mixture prop-

erty, pa,sh,in(t) is computed in (35), where p∗ac(t) is the measured outlet cooler
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pressure and pv,sh,in is the inlet vapor air pressure. The later is determined

from (36) where the cooler air humidity, φac is needed.

pa,sh,in(t) = p∗ac(t)− pv,sh,in(t) (35)

pv,sh,in(t) = φac(t)psat(T
∗

ac(t)) (36)

Since no humidity sensors is used, the cooler air humidity is related to the

supply manifold air humidity, φsm(t), in (37) and this, in turn, is obtained

from the compressor air humidity, φcp(t) in (38). The relative humidity con-

tained in the output compressor air is obtained from atmospheric humidity

φatm which is known.

φac(t) =
p∗ac(t)psat(T

∗

sm(t))φsm(t)

p∗sm(t)psat(T
∗

ac(t))
(37)

φsm(t) =
p∗sm(t)psat(Tcp(t))φcp(t)

p∗cp(t)psat(T
∗

sm(t))
(38)

φcp(t) =
p∗cp(t)psat(T

∗

atm(t))φ
∗

atm(t)

p∗atm(t)psat(Tcp(t))
(39)

The compressor air temperature Tcp(t) is determined by means of ex-

pression (26). All the remaining variables involved in (37)-(39) are already

known since, as mentioned before, it holds that T ∗

ac(t) = T ∗

sh(t) and p∗ac(t) =

p∗sm(t) = p∗cp(t).

4.1.6. Sub-model for fault fst

To construct the consistency relation sensitive to fault fst, we start with

the computation of the outlet manifold pressure, pom(t), as in (40), where
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Vom is the manifold volume. In this equation all variables, except output

cathode flow Wca(t), are known. Therefore, the output cathode flow is deter-

mined from the outlet cathode model equation (41), which is the inconsistent

equation in case of fault fst.

p∗om(t) =
Ra

Vom

∫ T

0

T ∗

st(t)(Wca(t)−W ∗

om(t)) dt (40)

Wca(t) = kca,out(p
∗

ca(t)− p∗st,ds(t)) (41)

The stack downstream pressure p∗st,ds(t) is indeed the outlet manifold pres-

sure p∗om(t), i.e. p
∗

st,ds(t) = p∗om(t).

4.1.7. Sub-model for fault fom

The last consistency relation is sensitive to fom fault. This is directly

obtained from the non-linear nozzle model (42) since all variables involved

in are already known. According to Section 3.2, at the presence of fault fom,

the expression in (42) is not longer valid (it becomes inconsistent).

W ∗

om(t) = NonlinearNozzle(p∗om(t), p
∗

om,ds(t), T
∗

st(t)) (42)

Due to the fact that the exhausted air from the cathode is thrown to the

atmosphere, the outlet downstream pressure is the same as the atmospheric

pressure, i.e. p∗om,ds(t) = p∗atm(t).

4.2. Residual computation for the fault diagnosis system

Now, deriving a consistency relation for each sub-model presented above

is straightforward. In each sub-model, the first equation is used as a redun-

dant equation and then its unknown variables are computed by backtracking
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through the remaining equations, following the computation sequence. Figure

4 shows the computation sequence for each consistency relation.

After computing the unknown variables as depicted in Figure 4, every

residual only depends on known variables and can therefore be expressed as

in Equation (2). For this particular case, seven residuals are obtained, each

one depending on the following known variables:

r1(t) = h1(vcp(t), ω(t),Wcp(t), psm(t), patm(t), Tatm(t))

r2(t) = h2(ω(t),Wcp(t), psm(t), pca(t), patm(t), Tatm(t))

r3(t) = h3(Wcp(t), psm(t), pca(t), patm(t))

r4(t) = h4(Tsh(t), Tdes(t))

r5(t) = h5(Wcp(t), psm(t), Tsm(t), psh(t), Tsh(t), φdes(t), patm(t), Tatm(t), φatm(t))

r6(t) = h6(pca(t),Wom(t), pom(t), Tst(t))

r7(t) = h7(Wom(t), pom(t), Tst(t), patm(t))

5. Simulation results

The model of the FCS system presented in this work is available in

Simulink [9]. In this section, previously designed residual generators are

also implemented in Simulink in order to proof their diagnostic performance

by means of several simulation runs.

Four kinds of sensors are considered: air flow sensors, angular speed sen-

sors, pressure sensors and temperature sensors. To set up a more realistic

scenario, white noise with a Gaussian distribution is added in the measure-
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ments. Table 5 shows the nominal order of magnitude corresponding to every

kind of sensor and its standard deviation.

In a more realistic approach, model uncertainties should be included.

This is handled by modifying some nominal parameter values involved in

the equations of the consistency relations. Hence, discrepancies between the

FCS system model and the equations in the residual generators are obtained,

which is always true for real applications. Table 6 shows the set of parameters

that have been modified to simulate modeling errors. The different values

considered in the FCS system model and in the residual generator equations

are also detailed. Uncertainty in parameters not appearing in the residual

generators is not taken into account since it would have no effect on the

residual performance.

Figures 5- 7 show the residual responses obtained from a series of sim-

ulations. Specifically, Figure 5 depicts the residual responses when there is

no fault in the system. Basic thresholds are set up from these responses and

each residual is normalized so that its corresponding threshold is ±1 for all

plots (residual units are irrelevant). It is important to point out that in the

absence of faults, residuals differ from zero due to the presence of noise and

modeling errors (this can be specially noted for residual r1 in plot (a)). In

Figure 6, the residual responses under a compressor fault fcp1 are shown.

Remark that the only residual that is activated is r1, which is indeed the

only residual sensitive to fault fcp1. The remaining residuals behave as in the

fault-free scenario in Figure 5. Note that this sensitivity/insensitivity prop-

erty of the residuals was gained by a convenient choice of equations when

the structural sub-models were derived. The remaining six faults were also
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simulated and the corresponding activated residuals are shown in Figure 7.

The remaining residual responses would correspond to the fault free case.

In all these simulations, fault magnitudes concerning multiplicative faults

are quantified as follows: αfcp1 = 0.99, αfcp2 = 0.95, αfsm = 0.98, αfst = 0.95

and αfom = 0.98. Concerning additive faults, the air cooler fault fac is

simulated as an increment of αfac = 0.4K in the desired air temperature,

whereas the static humidifier fault fsh is simulated as a αfsh = 1% increment

in the desired relative humidity of the air. Larger fault magnitudes would

not present any problem since the affected residuals would become larger

as well. However, smaller fault magnitudes may not activate the residual

which would imply that the fault is not detected. Hence, more advanced

techniques for residual evaluation would be required, such as signal filtering

and conditioning, statistical properties evaluation, adaptive thresholds, etc.

This part has intentionally been omitted in this work since the goal is to

show that diagnosing FCS systems in particular, and complex systems in

general, is possible by means of the right choice of suitable sub-models based

on structural properties.

6. Conclusions

This paper focuses on the design of residual generators for an FCS sys-

tem. Each designed residual is obtained from a specific and suitable set

of non-linear model equations. Based on structural model properties, the

methodology analyzes how the non-linear model equations can be combined

in order to obtain the set of consistency relations required by the diagnosis

system. This analysis is not trivial when dealing with non-linear equations
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since causal computability must be enforced. However, the chosen framework

for fault diagnosis system design, easily takes causalities into account.

The design methodology has been proved to be efficient when dealing with

a model that involves a high number of equations and unknown variables.

In this paper, the algorithm presented in [12] is used to automatically derive

the structural sub-models. These sub-models offer suitable properties to

easily obtain residuals, (i.e. different fault sensitivities and unknown variables

computation). Thus, because of these properties, it should not be difficult to

generate residuals automatically by combining the right equations according

to the sub-models and then simulating them by means of standard simulators.

However, in this paper, the software to automatically generate residual has

not been implemented and residual equations have been manually rearranged

instead.

The residual generators design methodology has been thoroughly de-

scribed for an FCS system. Finally, some fault scenarios have been simulated,

validating a good performance of the residuals. Note that, despite the noise

and modeling errors, it is possible to determine the presence of a fault just

by checking if the residual crosses the threshold. Furthermore, since each

residual is only sensitive to a specific fault, it is straightforward to determine

which of the possible faults has occurred. This shows that the developed

residuals are a good starting point for a diagnosis system where certainly

more advanced techniques can be applied on the proposed residuals in order

to improve fault detection and isolation.

Future work could entail the design of a fault diagnosis system for a real

PEM fuel cell stack station. This would require the parameter estimation of
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the equations involved in the designed consistency relations.
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Figure 1: Computation sequence for subset M ′

1
.

Figure 2: Computation sequence for consistency relation (6).
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Figure 3: Fuel cell stack system.
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Figure 4: Residual computation sequences for: (a) fcp1, (b) fcp2, (c) fsm, (d) fac, (e) fsh,

(f) fst, (g) fom.
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Figure 5: Residual responses for the free-fault scenario.
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Figure 6: Residual responses for the compressor fault fcp1 scenario.
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Figure 7: (a) Residual r2 response for fcp2 fault. (b) Residual r3 response for fsm fault.

(c) Residual r4 response for fac fault. (d) Residual r5 response for fsh fault. (e) Residual

r6 response for fst fault. (f) Residual r7 response for fom fault.
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Variable Description Parameter Description

v(t) motor voltage kv counter electromagnetic force

ωc(t) angular speed R motor winding resistance

i(t) motor current L motor inductance

τ(t) rotor torque J moment of inertia

W (t) output air flow rate kt torque coefficient

pin(t) input air pressure B viscous friction

pout(t) output air pressure Cp specific heat capacity of the air

Tin(t) input air temperature γ specific heat ratio of the air

η(t) efficiency

Table 1: Air compressor variables and parameters.

ωc τ η

m1 ×

m2 × ×

m3 ∆

m4 ×

m5 × × ×

Table 2: Compressor structural model.
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ωc τ η

m1 ∆

m2 × ∆

m3 ∆

m4 ×

m5 × × ×

Table 3: Compressor structural model with noisy measurements.

Affected variable

Fault or parameter Fault description

fcp1 R compressor motor fault

fcp2 Φ(t) compressor box fault

fsm Wsm(t) supply manifold fault

fac Tac(t) air cooler fault

fsh φsh(t) static humidifier fault

fst Wca(t) stack cathode fault

fom Wom(t) outlet manifold fault

Table 4: FCS system faults.

Nominal Noise

magnitude standard deviation

Air flow ∽ 0.1kg/s 4.5 · 10−4kg/s

Angular speed ∽ 104rad/s 10rad/s

Air pressure ∽ 3 · 105Pa 300Pa

Temperature ∽ 350K 0.07K

Table 5: Noise standard deviation.
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Parameter In the FCS In the residual

description Symbol system simulator generator Units

Gas constant Ra 289.9 287 J/(kg ·K)

Vapour molar mass Mv 18.015 · 10−3 18.02 · 10−3 kg/mol

Compressor

diameter outlet
dc 0.2286 0.2287 m

Compressor inertia J 5.01 · 10−5 5 · 10−5 kg/m2

Speed-to-voltage

coefficient
kv 15.3012 · 10−3 14.5 · 10−3 V/(rad/s)

Current-to-torque

coefficient
kt 22.496 · 10−3 24 · 10−3 N ·m/Amp

Friction coefficient B 1.91 · 10−5 2 · 10−5 N ·m/(rad/s)

Electric resistance R 1.16 1.2 Ω

Supply manifold

volume
Vsm 0.01838 0.02 m2

Outlet manifold

volume
Vom 5.313 · 10−3 5 · 10−3 m2

Table 6: Modeling errors.
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