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Abstract. We prove an analogue of Beurling’s theorem in the setting of Dunkl transform, which
improves the theorem of Kawazoe-Mejjaoli ([5]).

1. Introduction

Uncertainty principles in Euclidean spaces says that a nonzero function f and its Euclidean

Fourier transform f̂ can not have arbitrary decay. There are many theorems depending on how the
decay of a function is measured. However the remarkable result in recent time is due to Hörmander

([4]) where decay has been measured in terms of integrability of f and its Fourier transform f̂ .

Theorem 1.1. (Hörmander 1991) Let f ∈ L2(R) such that∫
R

∫
R
|f(x)||f̂(y)|e|xy| dx dy <∞. (1.1)

Then f = 0 a.e.

Hörmander attributes this theorem to A. Beurling. The beauty of this theorem is that many
other theorems like Hardy’s theorem, Cowling-Price theorem (inequality case) follows from this
theorem. The above theorem was further generalized by Bonami et al ([1]) which can characterize
the Gaussian function.

Theorem 1.2. (Bonami, Demange and Jaming) A function f ∈ L2(Rd) satisfies the condition∫
Rd

∫
Rd

|f(x)| |f̃(ξ)|
(1 + |x|+ |ξ|)N

e|〈x,ξ〉| dx dξ <∞

for some N ≥ 0 if and only if f(x) = p(x)e−a|x|
2) for some polynomial p of degree < N−d

2 and
a > 0.

We may call this as a master theorem as the (equality case of) theorem of Hardy, theorem of
Cowling-Price and the theorem of Gelfand-Shilov can also be obtained from this generalized version
of Beurling’s theorem. For the statement of these theorems and further results in this direction we
refer the excellent book of Thangavelu ([10]). There are many attempts has been made to find the
suitable version of the theorem above (with or without denominator), in different context such as
on SL(2,R) ([8]), on symmetric spaces of noncompact type ([9]), on Heisenberg groups and two step
nilpotent lie groups ([6]) and also on theory of Heckman and Opdam ([2]). Recently these theorems
are also considered in the context of Dunkl transform by Gallardo and Trieméche ([3]), Kawazoe

and Mejjaoli ([5]). The Dunkl Kernel Ek(x, y) is a generalization of e〈x,y〉. In the statement of
Beurling’s theorem Kawazoe and Mejjaoli measure the decay of f and its Dunkl transform in terms
of integral against e|x||y|. Our point of departure is to find the exact analogue of the theorem
of Bonami, Demange and Jaming in the context of Dunkl transform where e|x||y| is replaced by
Ek(x,±y) and therefore our theorem improves the theorem of Kawazoe and Mejjaoli. To prove the
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theorem we adapt the proof of Bonami et al. The crux of the proof is the existance of convolution
of a function with a radial function (thanks to [11]) and the explicit expression of the translation of
the heat kernel (see equation (3.1)). These machinaries are not available in the theory of Heckman
and Opdam. Even the explicit expression of the translation of the heat kernel is not available in
semisimple Lie groups. As in the Euclidean case we obtain several corollaries to prove an analogue
of Hardy’s theorem, Gelfand-Shilov’s theorem and Cowling-Price’s theorem.

2. Preliminaries

Let Σ be a root system in Rd and let G be the finite reflection group associated to the root
system Σ. Let k : Σ → C be a multiplicity function i.e., k : Σ → C is invariant under the action
of the group G. For each ξ ∈ Rd and a multiplicity function k, the Dunkl operator (which is a
differential reflection operator) is given by

T kξ f(x) = ∂ξf(x) +
∑
α∈Σ+

k(α)(α, ξ)
f(x)− f(σαx)

(α, x)
.

We assume that our multiplicity functions are nonnegative, i.e. k(α) ≥ 0 for all α ∈ Σ. Then it is
known that ξ 7→ T kξ is a commutative algebra of differential reflection operators.

Definition 2.1. The Dunkl kernel Ek(·, y) for a fixed spectral parameter y ∈ Cd is defined as the
unique real analytic function such that

T kξ Ek(·, y) = (ξ, y)Ek(·, y) for all ξ ∈ Cd

and Ek(0, y) = 1.

If k = 0, then E0(x, y) = e(x,y) for all x, y ∈ Cd. It is known that there exists a probability
measure µkx such that

Ek(x, y) =

∫
Rd
e(ξ,y) dµkx(ξ)

where µkx is supported in the closed ball B(0, ‖x‖).
We have the following well known properties of the Dunkl kernel:

(1) Ek(gz1, gz2) = Ek(z1, z2) for all g ∈ G and z1, z2 ∈ Cd.
(2) Ek(z1, z2) = Ek(z2, z1) for all z1, z2 ∈ Cd.
(3) |Ek(x, u+ iv)| ≤ Ek(x, u) for all x, u, v ∈ Rd.
(4) Ek(x, y) ≤ maxg∈G e

〈x,gy〉, for x, y ∈ Rd.
(5) |Dν

zEk(x, z)| ≤ |x|ν exp(|x||<z|) where Dν
z = ∂|ν|

∂z
ν1
1 ∂z

ν2
2 ···∂z

νn
n

.

For z ∈ Cd, let l(z) = z2
1 + z2

2 + · · ·+ z2
d. Then for z, w ∈ Cd we have∫

Rd
Ek(z, x)Ek(w, x)e−

|x|2
2 wk(x) dx = cke

l(z)+l(w)
2 Ek(z, w) (2.1)

where ck =
∫
Rd e

− |x|
2

2 wk(x) dx.

Definition 2.2. For a function f ∈ L1(Rd, wk) the Dunkl transform is defined by

Dkf(ξ) = c−1
k

∫
Rd
f(x)Ek(−iξ, x)wk(x) dx

where wk(x) =
∏
α∈Σ+ |(α, x)|2k(α).
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It follows from equation (2.1) that Dk(e−|x|
2/2)(ξ) = e−|ξ|

2/2. Also by the change of variable it

follows that, Dk(e−δ|x|
2
)(ξ) = 1

(2δ)ν+
d
2
e−
|ξ|2
4δ for δ > 0.

We have the following well known properties of the Dunkl transform:

(1) If f ∈ L1(Rd, wk), then Dkf ∈ C0(Rd).
(2) If f ∈ L1(Rd, wk) and Dkf ∈ L1(Rd, wk), then the following inversion formula holds:

f(x) = c−2
k

∫
Rd
Dkf(ξ)Ek(iξ, x)wk(ξ) dξ.

(3) The Dunkl transform on the Schwartz space S(Rd) extends uniquely to an isometric iso-
morphism from L2(Rd, wk) onto L2(Rd, wk).

(4) For j = 1, 2, · · · , d and f ∈ S(Rd), Dk(ixjf) = −Tej (Dkf) where ej is the j-th standard
basis. Therefore for any polynomial p,

Dk(p(x)e−δ|x|
2
)(ξ) = r(ξ)e−

|ξ|2
4δ

where r is a polynomial of degree equal to deg p.

For f ∈ L1(Rd, wk) we have∫
Rd
f(x)wk(x) dx =

∫ ∞
0

(∫
Sd−1

f(rβ)wk(β) dσd(β)

)
r2ν+d−1 dr,

where dσd is the normalized surface measure on the unit sphere Sd−1 and ν =
∑

α∈Σ+ k(α).
Therefore, if f is a radial integrable function then there exists a function F on R such that
f(x) = F (‖x‖) = F (r) for ‖x‖ = r and∫

Rd
f(x)wk(x) dx = dk

∫ ∞
0

F (r)r2ν+d−1 dr (2.2)

where dk =
∫
Sd−1 wk(β) dσd(β).

3. Beurling’s theorem

Kawazoe and Mejjaoli (in [5]) proved the following analogue of the Beurling’s theorem in the
setting of Dunkl transform:

Theorem 3.1. (Kawazoe and Mejjaoli) Let N ∈ N, δ > 0 and f ∈ L2(Rd, wk) satisfies∫
Rd

∫
Rd

|f(x)| |Dkf(ξ)| |P (ξ)|δ

(1 + |x|+ |ξ|)N
e|x| |ξ|wk(x)dx dξ <∞

where P is a polynomial of degree m. If N ≥ d+mδ + 2, then

f(x) =
∑

|s|<N−d−mδ
2

aksW
k
s (x, r) a.e.,

where r > 0, aks ∈ C. Otherwise f(x) = 0 a.e..

Here W k
s (x, r) is defined as

W k
l (x, r) =

i|l|

c2
k

∫
Rd
ξl11 · · · ξ

ld
d e
−r|ξ|2Ek(iξ, x)wk(ξ) dξ.

Then Dk(W k
l (·, r))(ξ) = i|l|

ck
ξl11 · · · ξ

ld
d e
−r|ξ|2 .

We prove the following analogue of Beurling’s theorem for Dunkl transform, which improves the
theorem above. To prove the theorem we adapt the proof of Bonami, Demange and Jaming ([1]).
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Theorem 3.2. Let f ∈ L2(Rd, wk), be such that,∫
Rd

∫
Rd

|f(x)| |Dkf(ξ)|
(1 + |x|+ |ξ|)N

Ek(x,±ξ)wk(x)wk(ξ) dx dξ <∞.

Then

f(x) = p(x)e−δ|x|
2

for some polynomial p of deg p < N−d
2 − ν and for some δ > 0.

Proof. Step 1: Since f satisfies the condition above, for almost every ξ ∈ Rd we have

|Dkf(ξ)|
∫
Rd

|f(x)|
(1 + |x|)N

Ek(x,±ξ)wk(x) dx <∞.

Let {ξ1, ξ2, · · · , ξd} be a basis of Rd such that Dkf(ξi) 6= 0 for all i = 1, · · · , d. Now∑d
i=1Ek(x, ξi) +

∑d
i=1Ek(x,−ξi) =

∑d
i=1

∫
Rd e

〈y,x〉 dµξi(y) +
∑d

i=1

∫
Rd e

〈y,−x〉 dµξi(y)

=
∑d

i=1

∫
Rd
(
e〈y,x〉 + e〈y,−x〉

)
dµξi(y)

≥ C
∑d

i=1

∫
Rd e

|〈y,x〉| dµξi(y)

≥ C
∑d

i=1

∫
Rd(1 + |x|)N dµξi(y)

= C(1 + |x|)N .

Therefore we have f ∈ L1(Rd, wk). Similarly we can prove that Dkf ∈ L1(Rd, wk)

Step 2: We consider the heat kernel qt(x) = 1

(2t)ν+
d
2
e−
|x|2
4t for t > 0. Then we have Dkqt(ξ) = e−t|ξ|

2
.

The translation of a suitable function f is given by

τky f(x) =

∫
Rd
Dkf(ξ)Ek(ix, ξ)Ek(−iy, ξ)wk(ξ) dξ.

Then Dkτky f(ξ) = Dkf(ξ)Ek(−iy, ξ). For k = 0, the translation reduces to τ0
y f(x) = f(x − y). It

follows from equation (2.1) that the translation of the heat kernel is given by

τky qt(x) =
ck

(2t)ν+ d
2

e−(
|x|2+|y|2

4t
)Ek(

x√
2t
,
y√
2t

) (3.1)

(see [7]). Let F (x) = (f ∗ q1/2)(x). Such convolution exists and F ∈ L1 ∩ L2(Rd, wk) (thanks to

[11, Theorem 4.1]). Also, DkF (ξ) = Dkf(ξ)e−
|ξ|2
2 . Then,

F (x) =

∫
Rd
f(y)τky q1/2(x)wk(y)dy = C

∫
Rd
f(y)e−(

|x|2+|y|2
2

)Ek(x, y)wk(y)dy.
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Now∫
Rd
∫
Rd
|F (x)||DkF (ξ)|
(1+|x|+|ξ|)N Ek(x,±ξ)wk(x)wk(ξ) dx dξ

= C
∫
Rd
∫
Rd

1
(1+|x|+|ξ|)N

∣∣∣∣∫Rd f(y)e−(
|x|2+|y|2

2
)Ek(x, y)wk(y)dy

∣∣∣∣ |Dkf(ξ)|e−
1
2
|ξ|2

Ek(x,±ξ)wk(x)wk(ξ) dx dξ

≤ C
∫
Rd
∫
Rd |f(y)| |Dkf(ξ)|

∫
Rd

e
−
(
|x|2+|y|2+|ξ|2

2

)
(1+|x|+|ξ|)N Ek(x, y)Ek(x,±ξ)wk(x) dxwk(y)wk(ξ) dy dξ.

We let α = 1 + |y| + |ξ| and M = {x ∈ Rd | min±,g,g′∈G |gy − x ± g′x| ≥ bα} for some fixed
1√
2
< b < 1.

Then

∫
M e

−
(
|x|2+|y|2

2

)
1

(1+|x|+|ξ|)NEk(x, y)Ek(x,±ξ)e−
|ξ|2
2 wk(x) dx

≤ maxg̃∈G
∫
M e−

|ξ|2
2 e−

|g̃y|2
2 e〈x,g̃y〉e−

|x|2
2 Ek(x,±ξ)wk(x) dx

= maxg̃∈G
∫
M e

−
(
|g̃y−x|2

2

)
e−
|ξ|2
2 Ek(x,±ξ)wk(x) dx

≤ maxg̃,g′∈G
∫
M e

−
(
|g̃y−x|2

2

)
e−
|g′ξ|2

2 e±〈x,g
′ξ〉wk(x) dx

= maxg̃,g′∈G e
±〈g̃y,g′ξ〉 ∫

M e
−
(
|g̃y−x±g′ξ|2

2

)
wk(x) dx

Then the expression is less than equals to

max
g̃,g′∈G

e±〈g̃y,g
′ξ〉p1(|y|)p2(|ξ|)e−

b2

2
(1+|ξ|+|y|)2

for some polynomials p1, p2. This is bounded by a constant C. Also, from step 1, we have

Ek(y, ξ) + Ek(y,−ξ) ≥ C(1 + |y|+ |ξ|)N .

This implies that,

∫
M
e
−
(
|x|2+|y|2

2

)
1

(1 + |x|+ |ξ|)N
Ek(x, y)Ek(x,±ξ)e−

|ξ|2
2 wk(x) dx ≤ CEk(y, ξ) + Ek(y,−ξ)

(1 + |y|+ |ξ|)N
.

Therefore we have∫
M
e
−
(
|x|2+|y|2

2

)
1

(1 + |x|+ |ξ|)N
Ek(x, y)Ek(x,±ξ)e−

|ξ|2
2 wk(x) dx ≤ C max

±

Ek(y,±ξ)
(1 + |y|+ |ξ|)N

.
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Let g0, g
′
0 ∈ G be such that min±,g,g′∈G |gy−x± g′ξ| = |g0y−x− g′0ξ|. Then on Rd \M, we have

1 + |x|+ |ξ| = 1 + |g0y − (g0y − x)|+ |g′0ξ|

≥ 1 + 1
2 |g0y − (g0y − x)|+ |g′0ξ|

≥ 1
2(1 + |g0y|+ |g′0ξ|)− 1/2|g0y − x− g′0ξ|

≥ 1−b
2 α.

If g0, g
′
0 ∈ G be such that min±,g,g′∈G |gy− x± g′ξ| = |g0y− x+ g′0ξ|, then similarly on Rd \M, we

have

1 + |x|+ |ξ| ≥ 1

2
(1 + |g0y|+ |g′0ξ|)− 1/2|g0y − x+ g′0ξ| ≥

1− b
2

α.

Therefore,

∫
Rd\M e

−
(
|ξ|2+|y|2

2

)
1

(1+|x|+|ξ|)NEk(x, y)Ek(x,±ξ)e−
|x|2
2 wk(x) dx

≤ C 1
(1+|y|+|ξ|)N e

−
(
|ξ|2+|y|2

2

) ∫
Rd Ek(x, y)Ek(x,±ξ)e−

|x|2
2 wk(x) dx

= C 1
(1+|y|+|ξ|)N e

−
(
|ξ|2+|y|2

2

)
Ek(y,±ξ)e

(
|ξ|2+|y|2

2

)

= C Ek(y,±ξ)
(1+|y|+|ξ|)N

The last but one step follows from equation (2.1). Hence∫
Rd
∫
Rd
|F (x)| |DkF (ξ)|
(1+|x|+|ξ|)N Ek(x,±ξ)wk(x)wk(ξ) dx dξ

≤ C max±
∫
Rd
∫
Rd
|f(y)||Dkf(ξ)|
(1+|y|+|ξ|)N Ek(y,±ξ)wk(y)wk(ξ) dy dξ

<∞.

Step 3: We have F ∈ L1(Rd, wk) and DkF ∈ L1(Rd, wk). Therefore,

F (x) = cDk(DkF )(−x) ∈ C0(Rd).

Also, since wk(x)→∞ as |x| → ∞, there exists M > 0 such that wk(x) > 1 for all |x| > M .
Then from Step 2, we get that∫

|x|>M
∫
Rd
|F (x)| |DkF (ξ)|
(1+|x|+|ξ|)N Ek(x,±ξ)wk(ξ) dx dξ

≤
∫
|x|>M

∫
Rd
|F (x)| |DkF (ξ)|
(1+|x|+|ξ|)N Ek(x,±ξ)wk(x)wk(ξ) dx dξ

<∞.
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Also ∫
|x|≤M

∫
Rd

|F (x)| |DkF (ξ)|
(1+|x|)N (1+|ξ|)NEk(x,±ξ)wk(ξ) dx dξ

≤
∫
|x|≤M

|F (x)|
(1+|x|)N

∫
Rd
|Dkf(ξ)|
(1+|ξ|)N e

− 1
2
|ξ|2e|x| |ξ|wk(ξ) dξ dx

≤
∫
|x|≤M

|F (x)|
(1+|x|)N

∫
Rd
|Dkf(ξ)|
(1+|ξ|)N e

− 1
2
|ξ|2eM |ξ|wk(ξ) dξ dx

≤ C
∫
|x|≤M

|F (x)|
(1+|x|)N

∫
Rd
|Dkf(ξ)|
(1+|ξ|)Nwk(ξ) dξ dx

<∞.
Therefore we have ∫

Rd

∫
Rd

|F (x)| |DkF (ξ)|
(1 + |x|)N (1 + |ξ|)N

Ek(x,±ξ)wk(ξ) dx dξ <∞.

Also ∫
|x|>M

|F (x)| dx ≤
∫
|x|>M

|F (x)|wk(x) dx <∞

and
∫
|x|≤M |F (x)| dx <∞ implies that ∫

Rd
|F (x)| dx <∞.

Step 4: Let β > 2 be a fixed number. Then∫
|x|≤R

∫
Rd |F (x)| |DkF (ξ)|Ek(x,±ξ)wk(ξ) dx dξ

≤
∫
|x|≤R |F (x)|

[∫
|ξ|>βR |Dkf(ξ)|e−

1
2
|ξ|2eR|ξ|wk(ξ) dξ +

∫
|ξ|≤βR |DkF (ξ)|Ek(x,±ξ)wk(ξ) dξ

]
dx

≤ C
∫
Rd |F (x)| dx+

∫
|x|≤R

∫
|ξ|≤βR |F (x)| |DkF (ξ)|Ek(x,±ξ)wk(ξ) dx dξ.

The first term is finite as
∫
Rd |F (x)| dx < ∞. Also multiplying and dividing the polynomial (1 +

|x|)N (1 + |ξ|)N in the second term of the expression above, we get from step 3 that,∫
|x|≤R

∫
Rd
|F (x)| |DkF (ξ)|Ek(x,±ξ)wk(ξ) dx dξ ≤ C(1 +R)2N .

Step 5: It is easy to check that

|DkF (ξ)| ≤ Ce−
1
2
|ξ|2 .

Using this and inversion formula, it follows that F admits a holomorphic extension to Cd and also

|F (z)| ≤ Ce
1
2
|z|2 for all z ∈ Cd.

For x ∈ Rd and θ ∈ R, we have

F (eiθx) = C
∫
Rd DkF (ξ)Ek(iξ, e

iθx)wk(ξ) dξ

= C
∫
Rd DkF (ξ)Ek(ξ, ie

iθx)wk(ξ) dξ

Hence

|F (eiθx)| ≤ C
∫
Rd
|DkF (ξ)|Ek(ξ,−x sin θ)wk(ξ) dξ.
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But it is easy to check that

Ek(ξ,−x sin θ) ≤ Ek(ξ, x) + Ek(ξ,−x).

Therefore

|F (eiθx)| ≤ C
∫
Rd
|DkF (ξ)| (Ek(x, ξ) + Ek(x,−ξ))wk(ξ) dξ. (3.2)

Then as in [1] we will prove that F (z)F (iz) is a polynomial. Let

Γ(z) =

∫ z1

0
· · ·
∫ zd

0
F (u)F (iu) du.

To prove that F (z)F (iz) is a polynomial we will prove that Γ(z) is a polynomial on Cd. For

η = (η1, η2, · · · , ηd) ∈ Rd and 0 < α < β0, let Γ
(α)
η be defined on C by

Γ(α)
η (z) =

∫ η1z

0
· · ·
∫ ηdz

0
F (e−iαu)F (iu) du.

Then using step 4 and equation (3.2), it is easy to check that Γ
(α)
η has polynomial growth on

eiαR and on iR (which does not depend on α). Therefore the same estimate will valid inside the
angular sector by the Phragmén-Lindelhöf theorem and extends to Γη(z) := Γ(zη). Also the similar
estimate will valid on other three quadrants and get that Γη is a polynomial. This will imply that

Γ is a polynomial on Cd. This proves that F (z)F (iz) is a polynomial.

Step 6: Using [1, Lemma 2.3] we get that,

F (x) = p̃(x)e−a|x|
2

for some polynomial p̃ and for some a > 0. Also it follows from [1, Proposition 2.1] and equation
(2.2) that the degree of the polynomial p̃ satisfies deg p̃ < N−d

2 − ν. Therefore,

f ∗ q1/2(x) = p̃(x)e−a|x|
2
.

Taking Dunkl transform on both side we get

Dkf(ξ)e−
1
2
|ξ|2 = r(ξ)e−

1
4a
|ξ|2

where r is a polynomial of degree=deg p. That is

Dkf(ξ) = r(ξ)e−( 1
4a
− 1

2
)|ξ|2 .

Taking again Dunkl transform we get

f(x) = p(x)e−
a

1−2a
|x|2

for some polynomial p of degree=deg p̃ < N−d
2 − ν and 0 < a < 1

2 .
�

Remark 3.3. This theorem improves the result of Kawazoe and Mejjaoli (Theorem 3.1). In fact if
a function f satisfies condition of Theorem 3.1, then it is easy to check that it satisfies the condition
of the Theorem 3.2 with N replaced by N + 2ν −mδ. Therefore by Theorem 3.2 it follows that

f(x) = p(x)e−a|x|
2

where p is a polynomial of degree < N−mδ−d
2 and a > 0.

Corollary 3.4. Let f ∈ L2(Rd, wk), be such that,∫
Rd

∫
Rd

|f(x)| |Dkf(ξ)|
(1 + |x|)N (1 + |ξ|)N

e|x| |ξ|wk(x)wk(ξ) dx dξ <∞.

Then
f(x) = p(x)e−δ|x|

2
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for some polynomial p of deg p < N − ν − d
2 and for some δ > 0.

Proof. To prove the Corollary we just have to use the facts that Ek(x,±y) ≤ e|x| |y| and

(1 + |x|+ |y|)2N ≥ (1 + |x|)N (1 + |y|)N .
�

Corollary 3.5. (Hardy’s theorem) Let f ∈ L2(Rd, wk) be such that

|f(x)| ≤ C(1 + |x|)Ne−α|x|2

and

|Dkf(ξ)| ≤ C(1 + |ξ|)Ne−β|ξ|2 .
Then

(1) f = 0 if αβ > 1
4 .

(2) f(x) = p(x)e−δ|x|
2

for some δ > 0 and p a polynomial of degree < N + 1 + d
2 if αβ = 1

4 .

Proof. We have ∫
Rd
∫
Rd

|f(x)| |Dkf(ξ)|
(1+|x|)N1 (1+|ξ|)N1

e|x| |ξ|wk(x)wk(ξ) dx dξ

≤
∫
Rd
∫
Rd

e−(
√
α|x|−

√
β|ξ|)2

(1+|x|)N1−N (1+|ξ|)N1−N e
(1−2

√
αβ)|x| |ξ|wk(x)wk(ξ) dx dξ

Then if αβ > 1
4 , the expression above for N1 = 0 is finite. Hence by Corollary 3.4 f = 0.

If αβ = 1
4 , then the expression above is finite if N1 −N − ν > d i.e. if N1 > N + ν + d and in

that case f(x) = p(x)e−δ|x|
2

for some δ > 0 and for some polynomial p of degree < N + 1 + d
2 . �

Corollary 3.6. (Gelfand-Shilov theorem) Let f ∈ L2(Rd, wk) be such that for 1 ≤ p, q <∞,∫
Rd

|f(x)|
(1 + |x|)N

e
(α|x|)p

p wk(x) dx <∞

and ∫
Rd

|Dkf(ξ)|
(1 + |ξ|)N

e
(β|ξ|)q
q wk(ξ) dξ <∞.

Then

(1) f = 0 if αβ > 1.

(2) f(x) = p(x)e−δ|x|
2

for some δ > 0 and p a polynomial of degree < N − ν − d
2 if αβ = 1.

To prove the corollary we have to use the inequality αβ|x||ξ| ≤ αp

p |x|
p + βq

q |ξ|
q.

Corollary 3.7. (Cowling-Price theorem) Let f ∈ L2(Rd, wk) be such that for 1 ≤ p, q <∞,∫
Rd

|f(x)|p

(1 + |x|)N
eαp|x|

2
wk(x) dx <∞

and ∫
Rd

|Dkf(ξ)|q

(1 + |ξ|)N
eβq|ξ|

2
wk(ξ) dξ <∞.

Then

(1) f = 0 if αβ > 1
4 .

(2) f(x) = p(x)e−δ|x|
2

for some polynomial p and for some δ > 0 if αβ = 1
4 .
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Proof. Let M > max{2ν + d+ N−2ν−d
p , 2ν + d+ N−2ν−d

q }. Then using Hölder’s inequality we get

the following inequalities: ∫
Rd

|f(x)|
(1 + |x|)M

eα|x|
2
wk(x) dx <∞

and ∫
Rd

|Dkf(ξ)|
(1 + |ξ|)M

eβ|ξ|
2
wk(ξ) dξ <∞.

Now ∫
Rd
∫
Rd |f(x)| |Dkf(ξ)|e|x| |ξ|wk(x)wk(ξ) dx dξ

=
∫
Rd
∫
Rd

|f(x)|
(1+|x|)M e

α|x|2 |Dkf(ξ)|
(1+|ξ|)M e

βq|ξ|2e−(
√
α|x|−

√
β|ξ|)2

×(1 + |x|)M (1 + |ξ|)Me(1−2
√
αβ)|x| |ξ|wk(x)wk(ξ) dx dξ

<∞ if αβ > 1
4 .

Therefore f = 0 if αβ > 1
4 .

If αβ = 1
4 then similarly we have∫

Rd

∫
Rd

|f(x)|
(1 + |x|)M

|Dkf(ξ)|
(1 + |ξ|)M

e|x| |ξ|wk(x)wk(ξ) dx dξ <∞.

Therefore we get f(x) = p(x)e−δ|x|
2

for some δ > 0 and for some polynomial of degree < M − ν −
d
2 . �
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