An R-package for finite mixture models

Jang SCHILTZ (University of Luxembourg)

joint work with Jean-Daniel GUIGOU (University of Luxembourg),
\& Bruno LOVAT (University of Lorraine)

December 7, 2013

An R-package for finite mixture models

Jang SCHILTZ (University of Luxembourg)

joint work with Jean-Daniel GUIGOU (University of Luxembourg),
\& Bruno LOVAT (University of Lorraine)

December 7, 2013

Outline

(1) The Basic Finite Mixture Model of Nagin

Outline

(1) The Basic Finite Mixture Model of Nagin
(2) Generalizations of the basic model

Outline

(1) The Basic Finite Mixture Model of Nagin
(2) Generalizations of the basic model
(3) Muthén's model

Outline

(1) The Basic Finite Mixture Model of Nagin
(2) Generalizations of the basic model
(3) Muthén's model

4 Research Agenda

Outline

(1) The Basic Finite Mixture Model of Nagin
(2) Generalizations of the basic model
(3) Muthén's model
4. Research Agenda

General description of Nagin's model

We have a collection of individual trajectories.

General description of Nagin's model

We have a collection of individual trajectories.
We try to divide the population into a number of homogenous sub-populations and to estimate a mean trajectory for each sub-population.

General description of Nagin's model

We have a collection of individual trajectories.
We try to divide the population into a number of homogenous sub-populations and to estimate a mean trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.
$P\left(Y_{i}\right)$ denotes the probability of Y_{i}

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.
$P\left(Y_{i}\right)$ denotes the probability of Y_{i}

- count data \Rightarrow Poisson distribution

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.
$P\left(Y_{i}\right)$ denotes the probability of Y_{i}

- count data \Rightarrow Poisson distribution
- binary data \Rightarrow Binary logit distribution

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.
$P\left(Y_{i}\right)$ denotes the probability of Y_{i}

- count data \Rightarrow Poisson distribution
- binary data \Rightarrow Binary logit distribution
- censored data \Rightarrow Censored normal distribution

The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i.
$P\left(Y_{i}\right)$ denotes the probability of Y_{i}

- count data \Rightarrow Poisson distribution
- binary data \Rightarrow Binary logit distribution
- censored data \Rightarrow Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for instance polynomials of degree 4, $P(t)=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3}+\beta_{4} t^{4}$.

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j
$\Rightarrow \pi_{j}$ is the size of group j.

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j
$\Rightarrow \pi_{j}$ is the size of group j.
We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j
$\Rightarrow \pi_{j}$ is the size of group j.
We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.
$P^{j}\left(Y_{i}\right)$: probability of Y_{i} if subject i belongs to group j

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j
$\Rightarrow \pi_{j}$ is the size of group j.
We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.
$P^{j}\left(Y_{i}\right)$: probability of Y_{i} if subject i belongs to group j

$$
\begin{equation*}
\Rightarrow P\left(Y_{i}\right)=\sum_{j=1}^{r} \pi_{j} P^{j}\left(Y_{i}\right) \tag{1}
\end{equation*}
$$

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j
$\Rightarrow \pi_{j}$ is the size of group j.
We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.
$P^{j}\left(Y_{i}\right)$: probability of Y_{i} if subject i belongs to group j

$$
\begin{equation*}
\Rightarrow P\left(Y_{i}\right)=\sum_{j=1}^{r} \pi_{j} P^{j}\left(Y_{i}\right) \tag{1}
\end{equation*}
$$

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j $\Rightarrow \pi_{j}$ is the size of group j.

We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.
$P^{j}\left(Y_{i}\right)$: probability of Y_{i} if subject i belongs to group j

$$
\begin{equation*}
\Rightarrow P\left(Y_{i}\right)=\sum_{j=1}^{r} \pi_{j} P^{j}\left(Y_{i}\right) \tag{1}
\end{equation*}
$$

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

- finite : sums across a finite number of groups

The Likelihood Function (2)

π_{j} : probability of a given subject to belong to group number j $\Rightarrow \pi_{j}$ is the size of group j.

We try to estimate a set of parameters $\Omega=\left\{\beta_{0}^{j}, \beta_{1}^{j}, \beta_{2}^{j}, \beta_{3}^{j}, \beta_{4}^{j}, \pi_{j}\right\}$ which allow to maximize the probability of the measured data.
$P^{j}\left(Y_{i}\right)$: probability of Y_{i} if subject i belongs to group j

$$
\begin{equation*}
\Rightarrow P\left(Y_{i}\right)=\sum_{j=1}^{r} \pi_{j} P^{j}\left(Y_{i}\right) \tag{1}
\end{equation*}
$$

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

- finite : sums across a finite number of groups
- mixture : population composed of a mixture of unobserved groups

The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the sequential realizations of the elements of Y_{i} !!!

The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the sequential realizations of the elements of Y_{i} !!!

$$
\begin{equation*}
\Rightarrow P^{j}\left(Y_{i}\right)=\prod_{t=1}^{T} p^{j}\left(y_{i_{t}}\right) \tag{2}
\end{equation*}
$$

where $p^{j}\left(y_{i_{t}}\right)$ denotes the probability of $y_{i_{t}}$ given membership in group j.

The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the sequential realizations of the elements of Y_{i} !!!

$$
\begin{equation*}
\Rightarrow P^{j}\left(Y_{i}\right)=\prod_{t=1}^{T} p^{j}\left(y_{i_{t}}\right) \tag{2}
\end{equation*}
$$

where $p^{j}\left(y_{i_{t}}\right)$ denotes the probability of $y_{i_{t}}$ given membership in group j.
Likelihood of the estimator:

The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the sequential realizations of the elements of Y_{i} !!!

$$
\begin{equation*}
\Rightarrow P^{j}\left(Y_{i}\right)=\prod_{t=1}^{T} p^{j}\left(y_{i_{t}}\right) \tag{2}
\end{equation*}
$$

where $p^{j}\left(y_{i_{t}}\right)$ denotes the probability of $y_{i_{t}}$ given membership in group j.
Likelihood of the estimator:

$$
L=\prod_{i=1}^{N} P\left(Y_{i}\right)
$$

The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the sequential realizations of the elements of Y_{i} !!!

$$
\begin{equation*}
\Rightarrow P^{j}\left(Y_{i}\right)=\prod_{t=1}^{T} p^{j}\left(y_{i_{t}}\right) \tag{2}
\end{equation*}
$$

where $p^{j}\left(y_{i_{t}}\right)$ denotes the probability of $y_{i_{t}}$ given membership in group j.
Likelihood of the estimator:

$$
\begin{equation*}
L=\prod_{i=1}^{N} P\left(Y_{i}\right)=\prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} p^{j}\left(y_{i_{t}}\right) \tag{3}
\end{equation*}
$$

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.
Notations:

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.
Notations:

- $\beta^{j} t_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}$.

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.
Notations:

- $\beta^{j} t_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}$.
- ϕ : density of standard centered normal law.

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.
Notations:

- $\beta^{j} t_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}$.
- ϕ : density of standard centered normal law.

Hence,

The case of a normal distribution (1)

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}, \tag{4}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.
Notations:

- $\beta^{j} t_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}$.
- ϕ : density of standard centered normal law.

Hence,

$$
\begin{equation*}
p^{j}\left(y_{i_{t}}\right)=\frac{1}{\sigma} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i t}}{\sigma} .\right) \tag{5}
\end{equation*}
$$

The case of a normal distribution (2)

So we get

The case of a normal distribution (2)

So we get

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) \tag{6}
\end{equation*}
$$

The case of a normal distribution (2)

So we get

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) \tag{6}
\end{equation*}
$$

The estimations of π_{j} must be in $[0,1]$.

The case of a normal distribution (2)

So we get

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) \tag{6}
\end{equation*}
$$

The estimations of π_{j} must be in $[0,1]$.
It is difficult to force this constraint in model estimation.

A computational trick

Instead, we estimate the real parameters θ_{j} such that

A computational trick

Instead, we estimate the real parameters θ_{j} such that

$$
\begin{equation*}
\pi_{j}=\frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}}, \tag{7}
\end{equation*}
$$

A computational trick

Instead, we estimate the real parameters θ_{j} such that

$$
\begin{equation*}
\pi_{j}=\frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}}, \tag{7}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) . \tag{8}
\end{equation*}
$$

A computational trick

Instead, we estimate the real parameters θ_{j} such that

$$
\begin{equation*}
\pi_{j}=\frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}}, \tag{7}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) . \tag{8}
\end{equation*}
$$

It is too complicated to get closed-forms equations.

Available Software

Available Software

SAS-based Proc Traj procedure
 By Bobby L. Jones (Carnegie Mellon University).

Available Software

SAS-based Proc Traj procedure

By Bobby L. Jones (Carnegie Mellon University).
Uses a quasi-Newton procedure maximum research routine.

Available Software

SAS-based Proc Traj procedure

By Bobby L. Jones (Carnegie Mellon University).
Uses a quasi-Newton procedure maximum research routine.
Since the likelyhood is nor convex, nor a contraction, there are issues with local maxima.

Available Software

SAS-based Proc Traj procedure

By Bobby L. Jones (Carnegie Mellon University).
Uses a quasi-Newton procedure maximum research routine.
Since the likelyhood is nor convex, nor a contraction, there are issues with local maxima.

R-package crimCV
By Jason D. Nielsen (Carleton University Ottawa).

Available Software

SAS-based Proc Traj procedure

By Bobby L. Jones (Carnegie Mellon University).
Uses a quasi-Newton procedure maximum research routine.
Since the likelyhood is nor convex, nor a contraction, there are issues with local maxima.

R-package crimCV
By Jason D. Nielsen (Carleton University Ottawa).
Just implements a zero-inflation Poission model.

Future Software

Future Software

R-package FMM

By Jang Schiltz \& Mounir Shal (University of Luxembourg).

Future Software

R-package FMM

By Jang Schiltz \& Mounir Shal (University of Luxembourg). Uses the EM Algortihm.

Future Software

R-package FMM

By Jang Schiltz \& Mounir Shal (University of Luxembourg).
Uses the EM Algortihm.
Allows the estimation of a generalised version of Nagin's model, as well as Muthen's model.

Future Software

R-package FMM

By Jang Schiltz \& Mounir Shal (University of Luxembourg).
Uses the EM Algortihm.
Allows the estimation of a generalised version of Nagin's model, as well as Muthen's model.

Will take us probably another year before completion.

Model Selection (1)

Model Selection (1)

Bayesian Information Criterion:

$$
\begin{equation*}
\mathrm{BIC}=\log (L)-0,5 k \log (N) \tag{9}
\end{equation*}
$$

where k denotes the number of parameters in the model.

Model Selection (1)

Bayesian Information Criterion:

$$
\begin{equation*}
\mathrm{BIC}=\log (L)-0,5 k \log (N), \tag{9}
\end{equation*}
$$

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

$$
\begin{equation*}
C V E=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{T} \sum_{t=1}^{T}\left|y_{i_{t}}-\hat{y}_{i_{t}}^{[-i]}\right| . \tag{10}
\end{equation*}
$$

Model Selection (2)

Leave-one-out Cross-Validation Apporach:

$$
\begin{equation*}
C V E=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{T} \sum_{t=1}^{T}\left|y_{i_{t}}-\hat{y}_{i_{t}}^{[-i]}\right| . \tag{10}
\end{equation*}
$$

Rule:

The smaller the CVE, the better the model!

Their "proof " that CVE is better than BIC

Their "proof" that CVE is better than BIC

TO1:

ngr	llike	AIC	BIC	CVE
1	-13967.63	27945.26	27982.26	1.0902792
2	-11929.40	23880.81	23962.22	0.9128347
3	-11424.68	22883.37	23009.18	0.9592355
4	-11191.28	22428.55	22598.77	0.9052791
5	-11016.19	22090.37	22304.99	0.8535441
6	-10886.30	21842.61	22101.63	0.8334242
7	-10805.59	21693.18	21996.60	0.8261734
8	-10732.58	21559.16	21906.99	$\mathbf{0 . 8 1 2 3 7 8 5}$
9	-10684.54	$\mathbf{2 1 4 7 5 . 0 8}$	$\mathbf{2 1 8 6 7 . 3 1}$	0.8240060

Posterior Group-Membership Probabilities

Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group $j: P\left(j / Y_{i}\right)$.

Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group $j: P\left(j / Y_{i}\right)$.
Bayes's theorem

$$
\begin{equation*}
\Rightarrow P\left(j / Y_{i}\right)=\frac{P\left(Y_{i} / j\right) \hat{\pi}_{j}}{\sum_{j=1}^{r} P\left(Y_{i} / j\right) \hat{\pi}_{j}} \tag{11}
\end{equation*}
$$

Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group $j: P\left(j / Y_{i}\right)$.
Bayes's theorem

$$
\begin{equation*}
\Rightarrow P\left(j / Y_{i}\right)=\frac{P\left(Y_{i} / j\right) \hat{\pi}_{j}}{\sum_{j=1}^{r} P\left(Y_{i} / j\right) \hat{\pi}_{j}} \tag{11}
\end{equation*}
$$

Bigger groups have on average larger probability estimates.

Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group $j: P\left(j / Y_{i}\right)$.
Bayes's theorem

$$
\begin{equation*}
\Rightarrow P\left(j / Y_{i}\right)=\frac{P\left(Y_{i} / j\right) \hat{\pi}_{j}}{\sum_{j=1}^{r} P\left(Y_{i} / j\right) \hat{\pi}_{j}} \tag{11}
\end{equation*}
$$

Bigger groups have on average larger probability estimates.
To be classified into a small group, an individual really needs to be strongly consistent with it.

Model Fit (1)

Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment AvePP should be at least 0,7 for all groups.

Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment AvePP should be at least 0,7 for all groups.

Diagonostic 2: Odds of Correct Classification

$$
\begin{equation*}
O C C_{j}=\frac{A v e P P_{j} / 1-{A v e P P_{j}}^{\hat{\pi}_{j} / 1-\hat{\pi}_{j}} . . . ~}{\text {. }} \tag{12}
\end{equation*}
$$

Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment AvePP should be at least 0,7 for all groups.

Diagonostic 2: Odds of Correct Classification

$$
\begin{equation*}
O C C_{j}=\frac{\text { AvePP }_{j} / 1-{A v e P P_{j}}^{\hat{\pi}_{j} / 1-\hat{\pi}_{j}} . . . ~ . ~}{\text {. }} \tag{12}
\end{equation*}
$$

OCC C_{j} should be greater than 5 for all groups.

Model Fit (2)

Diagonostic 3: Comparing $\hat{\pi}_{j}$ to the Proportion of the Sample Assigned to Group j
The ratio of the two should be close to 1 .

Model Fit (2)

Diagonostic 3: Comparing $\hat{\pi}_{j}$ to the Proportion of the Sample Assigned to Group j
The ratio of the two should be close to 1 .

Diagonostic 4: Confidence Intervals for Group Membership Probabilities

The confidence intervals for group membership probabilities estimates should be narrow, i.e. standard deviation of $\hat{\pi}_{j}$ should be small.

An application example

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:

- gender (male, female)

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth

An application example

The data : first dataset Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth
- age in the first year of professional activity

Result for 9 groups (dataset 1)

Result for 9 groups (dataset 1)

LLUXEMBOURG
SCHOOL OHMNC

Results for 9 groups (dataset 1)

| Group | Parameter | Maximum Likelihood Estimates
 Model: Censored Normal (CNORM) | | | Prob > \|T| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Estimate | Standard Error | T for HO: Parameter=0 | |
| 1 | Intercept | 589.03067 | 18.46813 | 31.894 | 0.0000 |
| | Linear | 387.72145 | 11.31617 | 34.263 | 0.0000 |
| | Quadratic | -14.36621 | 2.12997 | -6.745 | 0.0000 |
| | Cubic | -0.01563 | 0.15109 | -0.103 | 0.9176 |
| | Quartic | 0.00856 | 0.00358 | 2.395 | 0.0166 |
| 2 | Intercept | 784.79156 | 15.75939 | 49.798 | 0.0000 |
| | Linear | 277.63602 | 9.78078 | 28.386 | 0.0000 |
| | Quadratic | -28.36731 | 1.83236 | -15.481 | 0.0000 |
| | Cubic | 1.17739 | 0.12972 | 9.076 | 0.0000 |
| | Quartic | -0.01635 | 0.00307 | -5.330 | 0.0000 |
| 3 | Intercept | 709.28728 | 15.90545 | 44.594 | 0.0000 |
| | Linear | 318.88029 | 8.97949 | 35.512 | 0.0000 |
| | Quadratic | -21.54540 | 1.69611 | -12.703 | 0.0000 |
| | Cubic | 0.62010 | 0.12002 | 5.167 | 0.0000 |
| | Quartic | -0.00440 | 0.00284 | -1.554 | 0.1203 |三

Outline

(1) The Basic Finite Mixture Model of Nagin

(2) Generalizations of the basic model

(3) Muthén's model

4. Research Agenda

Predictors of trajectory group membership

Predictors of trajectory group membership

x_{i} : vector of variables potentially associated with group membership (measured before t_{1}).

Predictors of trajectory group membership

x_{i} : vector of variables potentially associated with group membership (measured before t_{1}).
Multinomial logit model:

$$
\begin{equation*}
\pi_{j}\left(x_{i}\right)=\frac{e^{x_{i} \theta_{j}}}{\sum_{k=1}^{r} e^{x_{i} \theta_{k}}} \tag{13}
\end{equation*}
$$

where θ_{j} denotes the effect of x_{i} on the probability of group membership.

Predictors of trajectory group membership

x_{i} : vector of variables potentially associated with group membership (measured before t_{1}).
Multinomial logit model:

$$
\begin{equation*}
\pi_{j}\left(x_{i}\right)=\frac{e^{x_{i} \theta_{j}}}{\sum_{k=1}^{r} e^{x_{i} \theta_{k}}} \tag{13}
\end{equation*}
$$

where θ_{j} denotes the effect of x_{i} on the probability of group membership.

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{x_{i} \theta_{j}}}{\sum_{k=1}^{r} e^{x_{i} \theta_{k}}} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t_{i_{t}}}{\sigma}\right) \tag{14}
\end{equation*}
$$

Group membership probabilities

Group membership probabilities

The Wald test which indicates whether any number of coefficients is significally different, allows the statistical testing of the predictors.

Group membership probabilities

The Wald test which indicates whether any number of coefficients is significally different, allows the statistical testing of the predictors.

Confidence intervals for the probabilities of group membership can be computed by a parametric bootstrap technique.

Adding covariates to the trajectories (1)

Adding covariates to the trajectories (1)

Let $z_{1} \ldots z_{L}$ be covariates potentially influencing Y.

Adding covariates to the trajectories (1)

Let $z_{1} \ldots z_{L}$ be covariates potentially influencing Y.
We are then looking for trajectories

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\alpha_{1}^{j} z_{1}+\ldots+\alpha_{L}^{j} z_{L}+\varepsilon_{i_{t}}, \tag{15}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation and z_{l} are covariates that may depend or not upon time t.

Adding covariates to the trajectories (1)

Let $z_{1} \ldots z_{L}$ be covariates potentially influencing Y.
We are then looking for trajectories

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\alpha_{1}^{j} z_{1}+\ldots+\alpha_{L}^{j} z_{L}+\varepsilon_{i_{t}}, \tag{15}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation and z_{l} are covariates that may depend or not upon time t.

Unfortunately the estimation of parameters α_{l}^{j} is not implemented in proc traj procedure; it is just possible to plot the impact of the covariates.

Adding covariates to the trajectories (1)

Let $z_{1} \ldots z_{L}$ be covariates potentially influencing Y.
We are then looking for trajectories

$$
\begin{equation*}
y_{i_{t}}=\beta_{0}^{j}+\beta_{1}^{j} A g e_{i_{t}}+\beta_{2}^{j} A g e_{i_{t}}^{2}+\beta_{3}^{j} A g e_{i_{t}}^{3}+\beta_{4}^{j} A g e_{i_{t}}^{4}+\alpha_{1}^{j} z_{1}+\ldots+\alpha_{L}^{j} z_{L}+\varepsilon_{i_{t}}, \tag{15}
\end{equation*}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation and z_{l} are covariates that may depend or not upon time t.

Unfortunately the estimation of parameters α_{l}^{j} is not implemented in proc traj procedure; it is just possible to plot the impact of the covariates.

Moreover, the influence of the covariates is limited to the intercept of the trajectory.

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity
- marital status

An application example

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity
- marital status
- year of birth of children

Adding covariates to the trajectories (3)

Adding covariates to the trajectories (3)

-PRED1M

- PRED1F - PRED1F
- PRED2M
- PRED3M

What's really going on

Our model

Our model

Let $x_{1} \ldots x_{L}$ and $z_{i_{1}}, \ldots, z_{i_{T}}$ be covariates potentially influencing Y.

Our model

Let $x_{1} \ldots x_{L}$ and $z_{i_{1}}, \ldots, z_{i_{T}}$ be covariates potentially influencing Y.
We propose the following model:

$$
\begin{array}{r}
y_{i_{t}}=\left(\beta_{0}^{j}+\sum_{l=1}^{L} \alpha_{0 I}^{j} x_{l}+\gamma_{0}^{j} z_{i_{t}}\right)+\left(\beta_{1}^{j}+\sum_{l=1}^{L} \alpha_{1 /}^{j} x_{l}+\gamma_{1}^{j} z_{i_{t}}\right) A g e_{i_{t}} \\
+\left(\beta_{2}^{j}+\sum_{l=1}^{L} \alpha_{2 l}^{j} x_{l}+\gamma_{2}^{j} z_{i_{t}}\right) \\
A g e_{i_{t}}^{2}+\left(\beta_{3}^{j}+\sum_{l=1}^{L} \alpha_{3 l}^{j} x_{l}+\gamma_{3}^{j} z_{i_{t}}\right) A g e_{i_{t}}^{3} \\
+\left(\beta_{4}^{j}+\sum_{l=1}^{L} \alpha_{4 l}^{j} x_{l}+\gamma_{4}^{j} z_{i_{t}}\right) A g e_{i_{t}}^{4}+\varepsilon_{i_{t}}
\end{array}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}(0, \sigma), \sigma$ being a constant standard deviation.

An alternative analysis (1)

Salary trajectories of the men

An alternative analysis (2)

Salary trajectories of the women

Outline

(1) The Basic Finite Mixture Model of Nagin

(2) Generalizations of the basic model
(3) Muthén's model
4. Research Agenda

Muthén's model (1)

Muthén and Shedden (1999): Generalized growth curve model

Muthén's model (1)

Muthén and Shedden (1999): Generalized growth curve model
Elegant and technically demanding extension of the uncensored normal model.

Muthén's model (1)

Muthén and Shedden (1999): Generalized growth curve model
Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters β^{j} that define a group's mean trajectory.

Muthén's model (1)

Muthén and Shedden (1999): Generalized growth curve model
Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters β^{j} that define a group's mean trajectory.

Trajectories of individual group members can vary from the group trajectory.

Muthén's model (1)

Muthén and Shedden (1999): Generalized growth curve model
Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters β^{j} that define a group's mean trajectory.

Trajectories of individual group members can vary from the group trajectory.

Software:

Mplus package by L.K. Muthén and B.O Muthén.

Muthén's model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Muthén's model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM
(1) Difficult to extend to other types of data.

Muthén's model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

(1) Difficult to extend to other types of data.
(3) Group cross-over effects.

Muthén's model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

(1) Difficult to extend to other types of data.
(2) Group cross-over effects.
(0) Can create the illusion of non-existing groups.

Outline

(1) The Basic Finite Mixture Model of Nagin

(2) Generalizations of the basic model
(3) Muthén's model

4 Research Agenda

Outlook

Outlook

- Relationship between finite mixture models and hierarchical cluster analysis of functions.

Outlook

- Relationship between finite mixture models and hierarchical cluster analysis of functions.
- Stability of the trajectories in finite mixture models.
- Using classical statistics.
- Using statistical shape analysis.
- Using functional data analysis.

Outlook

- Relationship between finite mixture models and hierarchical cluster analysis of functions.
- Stability of the trajectories in finite mixture models.
- Using classical statistics.
- Using statistical shape analysis.
- Using functional data analysis.
- Handling missing data.

Bibliography

- Nagin, D.S. 2005: Group-based Modeling of Development. Cambridge, MA.: Harvard University Press.
- Jones, B. and Nagin D.S. 2007: Advances in Group-based Trajectory Modeling and a SAS Procedure for Estimating Them. Sociological Research and Methods 35 p.542-571.
- Nielsen, J.D., Rosenthal, J.S., Sun, Y., Day, D.M., Bevc, I., Duchesne, T. 2012: Group-Based criminal trajectory analysis using cross-validation criteria. http://www.probability.ca/jeff/research.html.
- Muthén, B., Shedden, K. 1999: Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm. Biometrics 55 p.463-469.
- Guigou, J.D, Lovat, B. and Schiltz, J. 2012: Optimal mix of funded and unfunded pension systems: the case of Luxembourg. Pensions 17-4 p. 208-222.

