
Tool Support for the Analysis of TADL2 Timing Constraints using TimeSquare

Arda Goknil, Julien DeAntoni, Marie-Agnès Peraldi-Frati, Frédéric Mallet
AOSTE Research Team

UNS-I3S-INRIA
Sophia-Antipolis, France

{arda.goknil, julien.deantoni, marie-agnes.peraldi frati, frederic.mallet}@inria.fr

Abstract—Modeling and analysis of non-functional proper-
ties are central concerns in distributed real-time embedded
systems. In automotive domain, EAST-ADL is one of the main
architectural modeling approaches for real-time embedded
systems. In our previous work we introduced the Timing
Augmented Description Language V2 (TADL2), which is the
new release of the time model for EAST-ADL. It provides
new modeling capabilities such as explicit notion of timebase
and symbolic timing expressions. In this paper we propose an
approach to simulate and analyze TADL2 timing constraints.
The formal semantics of TADL2 is given by an exogenous model
transformation in QVTo to the Clock Constraint Specification
Language (CCSL), a formal language that implements the
MARTE Time Model. With this transformation, the analysis
of TADL2 constraints become possible through TIMESQUARE
framework dedicated to the analysis of CCSL specifications.
The approach is illustrated on the Brake-By-Wire example.

Keywords-timing constraints; analysis; EAST-ADL

I. INTRODUCTION

Model Driven Development (MDD) is more and more
applied in automotive domain. EAST-ADL (Electronic Archi-
tecture and Software Tools, Architecture Description Lan-
guage) [1] is a concrete example for architectural modeling
of safety-critical embedded systems. It is specified through a
metamodel and implemented as a UML2 profile [1]. EAST-
ADL mainly focuses on functional design specifications.

The new release of EAST-ADL (v2) has recently adopted
the time model proposed in the Timing Augmented De-
scription Language (TADL) [2] [3]. TADL allows for
expressing and composing basic timing constraints such
as repetition rates, end-to-end delays, and synchronization
constraints on top of EAST-ADL models. The TIMMO-2-
USE project [4] goes one step beyond TADL by recently
introducing TADL2 [2]. The time model of TADL2 spe-
cializes the time model of the UML Profile for MARTE
(Modeling and Analysis of Real-Time and Embedded sys-
tems) [5]. TADL2 augments TADL with new constructs
borrowed from MARTE companion language, the Clock
Constraint Specification Language (CCSL) [6]. CCSL is a
formal language dedicated to the specification of temporal
and causal constraints. In particular, TADL2 provides new
modelling capabilities such as explicit notion of time base
and symbolic timing expressions.

This paper proposes an automatic model transformation
approach to simulate and analyze TADL2 timing constraints
conjointly with an EAST-ADL architecture (see Figure 1).
The formal semantics of TADL2 is given by an exoge-
nous model transformation to CCSL. We use the Event
Constraint Language (ECL) [7] to explicitly denote the
semantics of both EAST-ADL and TADL2 metamodels. ECL
is a lightweight extension of the Object Constraint Lan-
guage (OCL) [8] with notions borrowed from CCSL. From
the ECL specification given for the EAST-ADL and TADL2
metamodels, it is possible to generate a QVTo transforma-
tion [9] that takes EAST-ADL/TADL2 models as input and
produces a CCSL model. The resulting CCSL model can then
be used to simulate and analyze TADL2 constraints with
TIMESQUARE [10].

EAST-ADL
Model

EAST-ADL
Metamodel

TADL2
Model

input output

TADL2
Metamodel

CCSL
Model

TimeSquareinput

Simulation
(Solution/
Deadlock)

output

High Order
Transformation

outputECL
Model

input
refers

refers

CCSL
Constraint

Library

QVTo
Transformation

refers

input

Figure 1. Overview of the Approach.

More than yet another transformation between two lan-
guages, we propose an approach to reason and refine EAST-
ADL/TADL2 specifications. This is very important since
syntactically well-formed TADL2 models can be under-
specified or inconsistent. Inconsistency may be caused by
two (or more) contradictory constraints. In such cases,
TIMESQUARE simulation will highlight disabled constraints
and dead clocks. Under-specification results in many possi-
ble solutions to satisfy the constraints. TIMESQUARE then
attempts to find one valid solution amongst the set of valid
solutions. When several simulation runs result in different
solutions, the system is underspecified. Finding either satis-
fying solutions or falsifying ones helps refine the constraint
system until the specification matches the expectations.

The paper is organized as follows. Section II introduces
the Brake-By-Wire (BBW) system as a running example.
Section III briefly overviews EAST-ADL and TADL2. Section
IV gives the semantics of EAST-ADL and TADL2. Section V

gives some simulation results on the BBW example. Section
VI discusses the related work.

II. RUNNING EXAMPLE

A distributed Brake-By-Wire (BBW) application with an
anti-lock braking functionality is used to illustrate our ap-
proach. The BBW example is one of the validator proposed
by Volvo Technology in the TIMMO-2-USE project [4].

The running example is a real-time distributed system
that is in charge of computing the torque that must be
applied on the brakes. The torque is a function of the brake
pedal position and the speed of the wheels. The goal is
to avoid blocking wheels. This is achieved by releasing
momentarily the pressure on the brake(s) even though the
driver is pressing the brake pedal. This example is interesting
for a couple of reasons. First, sensors, actuators and controls
are usually deployed on different Electronic Control Units
(ECUs) due to the car physical architecture; second, its
functional architecture supports possible synchronizations
(time triggered and/or event triggered). Third, its real-time
nature is auspicious for the specification of multiform and
symbolic timing constraints.

The BBW architecture is given in EAST-ADL (see Fig-
ure 2) and then augmented with TADL2 timing constraints.
These two languages are described in section III.

III. MODELING APPROACH FOR TIMING CONSTRAINTS

This section describes the core of our approach. It first
presents EAST-ADL and focuses on the behavioral semantics
hidden behind the stereotypes. The EAST-ADL semantics is
important and needs to be made explicit because it enforces
synchronization and causality constraints that impact the
timing analysis. After introducing EAST-ADL, we show how
an EAST-ADL model can be augmented with a TADL2
specification to obtain a global model for timing constraints.

A. EAST-ADL Functional Model

EAST-ADL is an architecture description language spec-
ified through a metamodel and implemented as a UML
profile [1]. It has been initially developed in the context of
the EAST-EEA European project [11]. Its modeling process
is structured into different abstraction levels: vehicle level,
analysis level, design level and implementation level. The
features of the vehicle electronic system are modeled at
the Vehicle Level. Abstract functional definitions of these
features are modeled at the Analysis Level. The details of
the functional definition are given at the Design Level. The
Implementation Level describes reusable code and software
& system configurations for hardware deployment.

At both analysis and design levels, the system is described
by a FunctionalArchitecture (called FunctionalDesignArchi-
tecture in Figure 2). The functional architecture is com-
posed of a number of interconnected FunctionPrototypes
where each prototype instantiates a FunctionType. In the

Brake-by-Wire example we have five function prototypes
that manage the acquisition of data from the environment
(four prototypes for wheel speed sensors called XXWheel-
SpeedSensor and one prototype for the brake pedal sensor
called BrakePedalSensor). The StartBrakingDetector func-
tion prototype represents the act of changing pedal position
which is detected by BrakePedalSensor. There are also four
function prototypes that manage the actuation of the physical
brake for each wheel (called XXBrake). Other function
prototypes in Figure 2 are used to control the execution
between the acquisition and actuation. The most important
one is GlobalBrakeControler. Others are interfacing the
brake pedal sensor and the brake actuators with the global
brake controller. To provide the communication among func-
tion prototypes, the function types and consequently their
function prototype instances have ports that can be either
FlowPort or ClientServerPort. The connections between
ports are provided by FunctionConnectors. Connected flow
ports represent shared data from an output port to an input
port.

One specificity of EAST-ADL is functionTrigger. It spec-
ifies when a function should be executed. It is a flexible
mechanism allowing a function to be activated in a time-
driven mode as well as an event-driven mode. In both event
and time driven modes, triggerCondition specifies when to
trigger the function. This condition is a key point to perform
timing analysis in an EAST-ADL model because changing
when a function is executed has an impact on the system
behavior and consequently on the timing analysis.

Unfortunately no language is given to express trigger
conditions. We propose to denote the semantics of EAST-
ADL and TADL2 in CCSL (see Section IV). More precisely
in CCSL we propose to denote formally (i) the causal and
synchronization semantics of EAST-ADL reflected by the def-
inition of the design and/or analysis functional architecture,
(ii) the timed and causal semantics of TADL2 to augment
the functional architecture with the temporal constraints
imposed by real-time distributed systems. The result is
providing an operational framework (TIMESQUARE) which
is able to conduct simulations and formal analysis of EAST-
ADL/TADL2 models. Additionally, we provide simple but
sufficient ways to specify trigger conditions for:
• Event-triggered functions. The condition is

expressed by a set of ports. It means that at least
one data must be received on each port after the last
function execution to trigger the function again. This is
a very simple way to express the trigger condition and
one can use more complex expressions (for instance by
directly using a CCSL expression). For all cases, it must
be possible to denote the semantics of the triggering
condition in CCSL.

• Time triggered functions: Because TADL2 is
dedicated to specifying timing expressions, we propose
to use it to specify time trigger conditions.

Figure 2. The Brake-By-Wire Example Functional Architecture in EAST-ADL

In the following subsection, we detail TADL2 constructs.

B. TADL2: Timing Augmented Description Language
In this section, we introduce TADL2 which supports mod-

eling timing constraints with Symbolic Timing Expressions
and Time Bases. Symbolic timing expressions are used to
express durations such as maximum/minimum delay and tol-
erance with variables. TADL2 provides the ability to define
relationships between TimeBases along with Dimension and
Unit. For a more detailed TADL2 description please refer to
[2].

1) TADL2 Timing Constraints: The TADL2 timing con-
straints constrain the identifiable state changes of the system
formulated as Events. Usual events are sending/receipt of
information through ports. The timing constraints allows
events to occur only when some conditions are met. In this
paper we consider the following TADL2 timing constraints
which are sufficient to represent the timing model of BBW
example with symbolic timing expressions and time bases.
• SynchronizationConstraint is a constraint on

a set of events, which constrains the time duration
between the nth occurrence of all the events in the set
(i.e.,maximum allowed time between the arrival of the
event occurrences). All event occurrences must occur
within a sliding window specified by the tolerance
attribute and measured on an explicit timebase.

• PeriodicConstraint describes the behavior of an
event with a strict periodic occurrence pattern given by
the period attribute.

• ReactionConstraint defines how long after the
occurrence of a stimulus a corresponding response must
occur. The causal relation between event occurrences is
taken into account.

Timing attributes like tolerance and period are given
as Timing Expressions. There are three types of timing
expressions: Value, Variable and Symbolic. Variable Timing
Expressions stand for free variables and constants. Symbolic
Timing Expressions integrate basic arithmetic and relation
operators associated with timing values.

Additionally, the causally-related events are contained as
a pair by EventChain. Based on Events and EventChains,
it is possible to represent data dependencies and critical
execution paths as additional constraints of an EAST-ADL
functional architecture model, and to apply timing con-
straints on these paths.

Some timing constraints are attached to the BBW archi-
tecture in Figure 2. One of these constraints is about periodic
sensor acquisition. Another constraint is the synchronization
constraint that represents the temporal consistency of events.
Delays on the ports are represented by reaction constraints.
Listing 1 gives some of the event declarations in TADL2 for
the EAST-ADL model in Figure 2. For the complete TADL2
specification of the BBW example, please refer to [12].

1 Event f i r s tWhee lTorqCmd{ F u n c t i o n a l A r c h i t e c t u r e : :
f r o n t L e f t B r a k e : : FLTorqCmd}

Event g l o b a l T o r q u e R e a d { F u n c t i o n a l A r c h i t e c t u r e : :
g l o b a l B r a k e C o n t r o l l e r : : G loba lTorque}

3 Event s t a r t B r a k i n g { F u n c t i o n a l A r c h i t e c t u r e : :
S t a r t B r a k i n g D e t e c t o r : : s t a r t B r a k i n g }

Event f i r s t W h e e l B r a k e A c t u a t i o n { F u n c t i o n a l A r c h i t e c t u r e : :
f r o n t L e f t B r a k e : : F L A c t u a t o r S i g n a l}

5 Event b r a k e P e d a l S e n s o r A c t i v a t i o n { F u n c t i o n a l A r c h i t e c t u r e : :
b r a k e P e d a l S e n s o r : : B r a k e P e d a l A c t i o n n i n g}

Event t o r q F i r s t W h e e l { F u n c t i o n a l A r c h i t e c t u r e : :
g l o b a l B r a k e C o n t r o l l e r : : t o r q F r o n t L e f t W h e e l}

7 Event f i r s t W h e e l S e n s o r A c q u i s i t i o n { F u n c t i o n a l A r c h i t e c t u r e
: : f r o n t L e f t W h e e l S p e e d S e n s o r : : W h e e l S p e e d S e n s o r T r i g g e r}

Listing 1. Event Declarations in TADL2

For instance, the brakePedalSensorActivation and
firstWheelSensorAcquisition events are attached to the
BrakePedalActionning port of the BrakePedalSensor
function prototype and the WheelSpeedSensorTrigger time
function trigger of the FrontLeftWheelSpeedSensor function
prototype in Figure 2 respectively.

Listing 2 gives some of the timing constraints in TADL2
for the BBW functional architecture.

1 v a r r ea c t i onT imeMin ms on u n i v e r s a l t i m e := 0 . 0
v a r reac t ionTimeMax ms on u n i v e r s a l t i m e := 330 .0

3 v a r X3 ms on u n i v e r s a l t i m e := 1 0 . 0

5 R e a c t i o n C o n s t r a i n t t c 1 a {
s o u r c e s t a r t B r a k i n g

7 t a r g e t f i r s t W h e e l B r a k e A c t u a t i o n
lower = reac t i onT ime Min upper = reac t ionTimeMax

9 scope p e d a l P o s i t i o n W r i t e , p e d a l P o s i t i o n R e a d ,
Globa lTorqueWr i t e , g loba lTorqueRead , t o r q F i r s t W h e e l ,

11 r eques t edTorqFL , FLABSRead , f i r s tWhee lTorqCmd
}

13

P e r i o d i c C o n s t r a i n t t c 3 a {
15 e v e n t f i r s t W h e e l S e n s o r A c q u i s i t i o n p e r i o d = X3
}

17

R e a c t i o n C o n s t r a i n t t c 5 a {
19 s o u r c e g l o b a l T o r q u e R e a d t a r g e t t o r q F i r s t W h e e l

lower = (r eac t i onT ime Min * 0 . 2 7 5)
21 upper = (reac t ionTimeMax * 0 . 2 7 5)
}

23

R e a c t i o n C o n s t r a i n t t c 8 a {
25 s o u r c e f i r s tWhee lTorqCmd t a r g e t f i r s t W h e e l B r a k e A c t u a t i o n

lower = 0 upper = (10 ms on ecu1)
27 }

29 S y n c h r o n i z a t i o n C o n s t r a i n t t c 1 0 {
e v e n t s f i r s t W h e e l B r a k e A c t u a t i o n ,

31 secondWhee lBrakeAc tua t ion , t h i r d W h e e l B r a k e A c t u a t i o n ,
f o u r t h W h e e l B r a k e A c t u a t i o n

33 t o l e r a n c e = (5 . 0 ms on u n i v e r s a l t i m e) }

Listing 2. Some BBW Timing Constraints in TADL2

All reaction and periodic constraints in Figure 2 are
replicated for the four wheels. Listing 2 only shows the
constraints for the first wheel (tc1a, tc3a, tc5a and tc8a).
tc1a gives the end-to-end delay between the brake pedal ac-
tivation and the brake actuation on the front left wheel. The
scope attribute gives the sequence of events involved in the
reaction from pressing the pedal to the brake activation (lines
9-11). tc3a specifies that the first wheel sensor is sampled
periodically at period X3 (line 14-16). tc5a specifies the
minimum and maximum delays between the receipt of the
information of the first wheel speed and the computation of
the torque by the GlobalBrakeController function. The lower
and upper bounds of tc5a are computed by using symbolic
timing expressions (”reactionTimeMin*0.275” and ”reac-
tionTimeMax*0.275” in lines 20-21). reactionTimeMin and
reactionTimeMax are declared as variable timing expressions
(lines 1-2). Since tc5a is between the input and output ports
of the same function prototype (GlobalBrakeController),
it does not need its scope to be specified. tc10 is about
the maximum tolerated time difference among the wheel
brake actuations. Its attribute tolerance is equal to a value

timing expression (”5 ms on universal time” in line 33).
In Listing 2, all constraints except tc8a specify timing
values based on universal time. The wheel sensors and
brake controllers have their own Electronic Computing Units
(ECUs). Therefore, they could use their own time bases as
a time reference [2].

2) TimeBase, Dimension, Unit and TimeBaseRelation:
A TimeBase represents a discrete and totally ordered set
of instants. An instant can be seen as an event occurrence
called a “tick”. A TimeBase may represent any repetitive
event in the system. Events may refer to the “classical” time
dimension or to some evolution of a physical part of the
system (e.g., rotation of crankshaft, distance). The type of
a TimeBase is a Dimension with a kind that represents the
nature of the TimeBase. Time, Angle and Distance, often
used in automotive, are proposed as predefined dimension
kinds.

A Dimension has a set of units to express durations
measured on a given TimeBase. Each Unit is related to
another Unit with factor, offset and reference to enable
conversions. Only linear conversions are allowed. Because
Timebase is a discrete set of instants, a discretization step is
specified with precisionFactor and precisionUnit. Listing 3
shows TADL2 declarations for Dimension and TimeBase.

1 Dimension p h y s i c a l T i m e {
U n i t s {

3 mi c r os{ f a c t o r 1 . 0 o f f s e t 0 . 0} ,
ms{ f a c t o r 1000 .0 o f f s e t 0 . 0 r e f e r e n c e mic ro s } ,

5 second{ f a c t o r 1000000 .0 o f f s e t 0 . 0 r e f e r e n c e mi c ro s}
}

7 k ind Time
}

9 TimeBase u n i v e r s a l t i m e {
d imens ion p h y s i c a l T i m e p r e c i s i o n F a c t o r 1 . 0

11 p r e c i s i o n U n i t m ic ro s
}

Listing 3. Declaration of Dimension and TimeBase in TADL2

The physicalTime dimension has three units where 1
second is equal to 106 micros and 1 ms is equal to 103 micros
(lines 3 - 5). universal time represents an ideal measurement
of time on Earth.

The hardware platform of a real-time system consists of
sensors/actuators and ECUs. Each ECU in the system has its
own temporal reference (TimeBase) which is not necessarily
(well) synchronized with others. Communications among
the ECUs are mainly asynchronous despite the apparition
of Time Triggered buses. The drifts between the ECU time
bases can be captured with TimeBaseRelation (see Listing 4).
TimeBase ecu1 {

2 d imens ion p h y s i c a l T i m e p r e c i s i o n F a c t o r 0 . 1
p r e c i s i o n U n i t m ic ro s

4 }
T i m e B a s e R e l a t i o n t b r {

6 (1 ms on ecu1) = (1100 m ic ros on u n i v e r s a l t i m e)
}

Listing 4. TimeBaseRelation Declaration in TADL2

ecu1 is an ECU timebase. tbr states that 1 ms on ecu1 is
equal to 1100 micros on universal time (lines 5-7).

For the modeling of timing constraints we have a TADL2
editor [2]. The textual concrete syntax for TADL2 is tooled
by using Xtext [13] which is a framework for the develop-
ment of programming and domain specific languages. The
next section explains how we formally define the semantics
of EAST-ADL and TADL2.

IV. SEMANTICS DENOTATION

In order to define the formal semantics of TADL2 and
EAST-ADL, we need a formal language which covers syn-
chronous, asynchronous and polychronous aspects. As a
consequence, we decided to use CCSL (Clock Constraint
Specification Language). CCSL has been first introduced
in the annex of the MARTE profile and after several im-
provements it became a formal language whose associated
tool (TIMESQUARE) is dedicated to the analysis of CCSL
specifications. CCSL has been used to give the semantics
of models without changing the technological space. It also
provides a convenient feedback to the modeler like model
animation and timing diagrams linked to models. Please
refer to [14] for a detailed description of the language with
its semantics and to [10] for an overview of the tool1.

A. CCSL and ECL

1) CCSL: In CCSL, the main concept is Clock which
represents a (possibly infinite) totally ordered set of instants
noted I. Clocks can be seen as events and their instants as
event occurrences. They can be logical or physical, dense
or discrete. In the remainder of this paper we only consider
discrete clocks, rather logical or physical. A dense clock
can be used to represent a physical magnitude like physical
time. A discrete clock is derived from the dense clock with
discretization.

For a discrete clock c1, we denote by c1[k] the kth instant
of c1 where k ∈ N+. CCSL also provides clock constraints
which refer to at least two clocks in order to constrain the
respective evolution of their instants.

The CCSL formal semantics can be exploited to process
a correct execution, if any. If no correct execution can
be processed, TIMESQUARE indicates the presence of a
deadlock. Foundational CCSL constraints are defined in a
kernel library. CCSL allows building new libraries for user-
defined constraints by composing existing relations in the
kernel library or in other user-defined libraries to support
constraints for any specific domain.

CCSL is a means of specifying constraints for the evolution
of clocks. Constraints can be either a relation or an expres-
sion. A relation can be synchronous or asynchronous. CCSL
also provides a set of expressions whose goal is to define
a new clock based on other clocks. In this paper we do
not give all details of the CCSL semantics but we informally
describe the necessary material to intuit the language as well
as the relations and expressions used in this paper.

1available here: http://timesquare.inria.fr

Clock relations are based on a reflexive and transitive
instant relation named causality (or non strick precedence)
and noted 4. From 4 four new instant relations are derived:
Coincidence (≡), Strict precedence (≺), Independence (‖),
and Exclusion (#).

A clock relation is the generalization of an instant relation
on all instants of a clock. For instance, (a 4 b) denotes
that a is non-strictly faster than b, that is for all positive
natural numbers k, the kth instant of a precedes or is
coincident with the kth instant of b. The strick precedence
clock relation (denoted ≺) between two clocks a and b
is asynchronous and specifies that for all positive natural
numbers k, the kth instant of a occurs before the kth

instant of b: ∀k ∈ N+, a[k] ≺ b[k]. Another example is
the coincidence relation (denoted =) between two clocks
a and b that imposes a stronger synchronous dependency:
the kth instant of a must be coincident with the kth instant
of b: ∀k ∈ N+, a[k] ≡ b[k]. The same mechanism applies
for all relations. Informally, the exclusion relation (denoted
) between two clocks a and b specifies that no instants

of the clock a coincide with the instants of the clock b.
The independence relation between two clocks a and b
states that there is no relation between the instants of these
two clocks. It is possible to build new relations based on
existing relations. For instance, the alternatesWith relation
(denoted ∼) between the two clocks a and b is built upon
the strict precedence relation and specifies that the instants
of the clock b are the interleaving instants of the clock a
(∀k ∈ N+, a[k] ≺ b[k] ≺ a[k + 1]).

Expressions are directly defined on clocks. For instance,
the isPeriodicOn expression takes three parameters: (i) a
clock specifying the super clock, (ii) a positive natural num-
ber specifying the period and (iii) a positive natural number
specifying the offset. It results in a clock which is a subclock
of the super clock and whose instants are always separated
by the period instants of the super clock. Moreover, the
first instant of the resulting clock coincides with the offsetth

instant of the super clock. Another expression used in this
paper is delayedFor. It takes three parameters: (i) a reference
clock which represents the clock we want to delay, (ii) a
counter clock which represents the clock on which the delay
is counted and (iii) a positive natural number which specifies
the number of ticks of the counter clock the reference clock
is delayed for.

A CCSL specification is the conjunction of a set of
constraints. Since synchronous and asynchronous relations
are used conjointly, the execution of a CCSL specification is
a partially ordered set of coincidence-equivalence classes of
instants [6].

2) ECL: ECL (Event Constraint Language) [7] is a
lightweight extension of OCL (Object Constraint Language)
[8] with the explicit notion of events (clocks) and constraints
(clock relations and expressions) borrowed from CCSL. From
an ECL specification expressed for a metamodel MM1, it is

possible to automatically generate a QVTo transformation
which transforms any model that conforms to MM1 to CCSL
specifications. CCSL is able to provide the semantics of a
specific model. In the following we use ECL to denote the
semantics of both EAST-ADL & TADL2 metamodels and con-
sequently every model that conforms to these metamodels.

ECL exploits the def construct of OCL to declare Events
at the metamodel level. To constraint these event(s), ECL
extends the OCL invariants with the ability to add CCSL
like constraints on these events. Consequently, in a specific
context (for a specific metaclass) some constraints can be
added at the metamodel level. Please note that the notion
of Event in ECL is not the same with the notion of Event
in TADL2. ECL is quite intuitive for the readers familiar to
OCL. The details of the language can be found in [7]. The
semantics of EAST-ADL and TADL2 are given with ECL in
Sections IV-B and IV-C.

B. EAST-ADL semantics

In this section we present how the informal presentation in
Section III-A can be equipped with a formal semantics given
in ECL. The first step is to define the ECL events which are
relevant for the EAST-ADL semantics definition. For instance,
the start and stop events of a function prototype must be
made explicit. The trigger of a function prototype is also
important. Finally, the writing of data on an ’out’ flow port
and the reading of a value on an ’in’ port should also be
made explicit. These are the minimum relevant events which
are needed to specify the behavioral semantics of EAST-ADL
(see Listing 52).

c o n t e x t F u n c t i o n T r i g g e r
2 d e f a c t i v a t e : Event (s e l f) = G e n e r i c E v e n t

4 c o n t e x t F lowPor t
d e f i f ((s e l f . d i r e c t i o n) = P o r t D i r e c t i o n : : OUT) :

6 w r i t e : Event (s e l f) = p r o d u c e E v e n t
d e f i f ((s e l f . d i r e c t i o n) = P o r t D i r e c t i o n : : IN) :

8 r e a d : Event (s e l f) = ConsumeEvent

10 c o n t e x t A n a l y s i s F u n c t i o n P r o t o t y p e
d e f s t a r t : Event (s e l f) = S t a r t E v e n t

12 d e f s t o p : Event (s e l f) = S topEven t

Listing 5. Behavioral Invariants for Some EAST-ADL Elements

Once the relevant events are defined, we have to constrain
their respective evolution. At this point some choices have
to be made since the informal semantics of EAST-ADL
has some ambiguities. For instance, nothing is said about
the re-entrance of function prototypes in the EAST-ADL
specification. Here we provide only some of the constraints
that fix such ambiguities. In Listing 6, we explicitly define
the function prototypes as being non re-entrant (i.e., start
and stop alternates).

2Please note that to avoid the stereotype navigation, we
provide the ECL specification for the EAST-ADL domain
model. The version based on the profile is available here:
http://timesquare.inria.fr/ecl/EASTMoC/

c o n t e x t A n a l y s i s F u n c t i o n P r o t o t y p e
2 i n v nonReEnt rance :

R e l a t i o n A l t e r n a t e s (s e l f . s t a r t , s e l f . s t o p)

Listing 6. Behavioral Invariants for Non Re-entrance of EAST-ADL
Function Prototype

In the nonReEntrance invariant we directly use the alter-
natesWith clock relation of CCSL to state that the next start of
the function prototype cannot occur before the execution of
the function prototype ends (∀k ∈ N+, start[k] ≺ stop[k] ≺
start[k + 1]).

Another example concerns the function triggers with the
event triggering policy (see the BrakePedalSensorTrigger,
GlobalBrakeControllerTrigger and ABSSatTrigger function
triggers in Figure 2). In Listing 7, we define the event
triggering policy as being activated once at least one data
has been provided on each input port referenced by the port
collection of the function trigger.
c o n t e x t F u n c t i o n T r i g g e r

2 i n v E v e n t T r i g g e r R u l e :
(s e l f . t r i g g e r P o l i c y K i n d = T r i g g e r P o l i c y K i n d : : EVENT)

i m p l i e s
4 l e t d o I t : Event = E x p r e s s i o n Sup (s e l f . p o r t . r e a d) i n

R e l a t i o n C o i n c i d e s (d o I t , s e l f . a c t i v a t e)

Listing 7. Behavioral Invariants for the Event Trigger Policy based on
Input Port Reading

The EventTriggerRule invariant states that if the triggering
policy kind is “Event” (line 3), then the slowest input port
of the function prototype coincides with the activation of
the function prototype (∀k ∈ N+, dolt[k] ≡ activate[k]).
Please note that Sup is a CCSL clock expression creating a
clock which coincides with the slowest clock of its input
clocks (”d = sup(a, b)” is the fastest clock slower than
both a and b: ∀k ∈ N+, d[k] ≡ b[k] if a[k] ≺ b[k] , d[k] ≡
a[k] otherwise).

All other invariants for EAST-ADL are provided in the web
page (http://timesquare.inria.fr/ecl/EASTMoC/). A QVTo
transformation is automatically generated from the whole
set of invariants so that any EAST-ADL model can be
transformed to its corresponding CCSL model. It is then
possible to simulate and analyze the EAST-ADL models. In
addition, the EAST-ADL semantics is mandatory to enable the
analysis of the TADL2 timing constraints on top of EAST-
ADL models.

C. TADL2 semantics

We denote the TADL2 semantics with ECL based on the
TADL2- CCSL mappings given in Table I.

These mappings are quite direct since TADL2 has been
inspired by CCSL. However, some parts of the TADL2
semantics have to be clarified. For instance, an event chain
specifies a set of causality for related events if the event
chain is not used in the context of a reaction constraint. If it
is used in a reaction constraint, the event chain means that
in the scope started by the reaction constraint stimulus, a
sampling chain must be observed to consider the reaction
occurrence that results in the response.

Table I
MAPPING SUMMARY FROM TADL2 TO CCSL.

TADL2 CCSL Remark

Dimension

CCSL Dense
Clock and
Discretize
expression

Each Dimension represents a
physical reference and is equiv-
alent to a dense clock in CCSL.
To ease the mapping of time-
bases, a Dimension is also
mapped to a Discretize expres-
sion that discretizes the dense
clock according to its default
unit factor

Event CCSL Discrete
Clock

Each TADL2 Event is asso-
ciated with a CCSL Discrete
Clock. The CCSL Clock rep-
resents the set of instants at
which the concerned TADL2
Event occurs.

TimeBase
Periodic
expression

The precision factor and pre-
cision unit are used to com-
pute the period according to
the dimension referred by the
timebase.

Timing
Expression

Periodic
expression

The Timebase, Unit and value
given in a TimingExpression
are used to compute the period
and offset of a CCSL Periodic
expression.

TimeBase
Relation

Coincides
relation

A coincides relation between
the clocks for the timebases
to which the timebase rela-
tion refers is created (i.e., be-
tween the periodic expressions
in CCSL).

EventChain Precedence
Relation

if an EventChain in TADL2 is
not used in the context of a
ReactionConstraint, it contains
causally related events. It is
mapped to a set of causes rela-
tions in CCSL.

Timing
Constraints

Relations de-
clared in the
CCSL Library

Each TADL2 timing constraint
(Reaction, Synchronization, Pe-
riodic, etc.) is mapped to a set
of CCSL clock relations and
expressions declared either in
the CCSL built-in library or in
any dedicated CCSL library for
TADL2.

We obtain a set of ECL invariants. In Listing 8, an event
chain invariant is guarded by the fact that the event chain
is not used in the context of a reaction constraint (lines 4

to 7). For each pair in the event chain there is a non strict
precedence relation (line 8).
c o n t e x t Even tCha in

2 i n v e v e n t C h a i n C a u s a l i t y :
−−i f n o t used i n a r e a c t i o n c o n s t r a i n t

4 (n o t s e l f . o c l C o n t a i n e r () . oclAsType (Timing) . c o n s t r a i n t s
−>s e l e c t (t e | t e . o c l I s K i n d O f (R e a c t i o n C o n s t r a i n t))

6 . oclAsType (R e a c t i o n C o n s t r a i n t)−>e x i s t s (
r c | r c . s cope = s e l f)) i m p l i e s

8 (R e l a t i o n Causes (s e l f . segment . t a d l E v e n t))

Listing 8. One of the Behavioral Invariants for the TADL2 Event Chain
Semantics

Another mapping in Table I is the Dimension mapping.
A Dimension represents a physical magnitude used as a
reference in the system description (e.g., Time, Angle, Dis-
tance). Such physical references are represented in CCSL
by a dense clock with a base unit. The only thing CCSL
can do on a dense clock is the discretization. To do so, we
chose to use the first declared unit of a dimension as a base
unit. In addition, because CCSL constraints deal with discrete
clocks, we discretize the dense clock to provide a discrete
reference for the dimension. In the following we show the
CCSL code generated by the QVTo transformation for the
physical time dimension with the universal time timebase
given in Listing 3.

DenseClockType physicalT ime (1)
(baseunit = micros); (2)

Clock dense universalT ime : physicalT ime; (3)
universal time = (4)

dense universalT ime discretizedBy 1.0; (5)

Eqs.1-3 define a dense clock (dense universalTime) of
the physical time dimension. In Eqs. 4-5 the discrete clock
universal time is created for the micro reference Unit of the
universal time TimeBase.

Each TADL2 timing constraint (Reaction, Synchronization,
Periodic, etc.) is mapped to a set of CCSL clock relations
and expressions declared either in the CCSL built-in library
or in any dedicated CCSL library for TADL2. In Listing 9
we give the ECL invariant for the TADL2 synchronization
constraint.
c o n t e x t S y n c h r o n i z a t i o n C o n s t r a i n t

2 i n v s y n c h r o n i s a t i o n :
l e t f a s t e s t : Event = E x p r e s s i o n I n f (e v e n t s . t a d l E v e n t) i n

4 l e t s l o w e s t : Event = E x p r e s s i o n Sup (e v e n t s . t a d l E v e n t) i n
l e t t o l e r a n c e : I n t e g e r = s e l f . t o l e r a n c e . v a l u e *

6 s e l f . t o l e r a n c e . u n i t . f a c t o r
l e t d e l a y e d F a s t e s t : Event = E x p r e s s i o n DelayFor (f a s t e s t ,

8 s e l f . t o l e r a n c e . t imeBase . r e f ,
t o l e r a n c e) i n

10 R e l a t i o n P r e c e d e s (s l o w e s t , d e l a y e d F a s t e s t)

Listing 9. Part of the Behavioral Invariants for the TADL2 Synchronization
Constraint Semantics (navigation simplified)

First, we get the fastest/slowest events among all input
events for the synchronization constraint (lines 3-4). Please
note that Sup is a CCSL clock expression creating a clock
which coincides with the slowest clock of its input clocks
and Inf is a CCSL clock expression creating a clock which

coincides with the fastest clock of its input clocks. In the
synchronization constraint the tolerance attribute is specified
by a timing expression with a value, a unit and a timebase.
tolerance is then computed according to the value (line 5)
and the factor of the used unit with regard to the reference
timebase unit (line 6). tolerance specifies the delay of the
fastest event counted on the timebase (line 7-9). Finally, the
slowest event should not occur after this delay (line 10).
In the following we give the CCSL code generated by the
QVTo transformation for the tc10 synchronization constraint
in Listing 2.

fastest tc10 = Inf(firstWheelBrakeActuation,

secondWheelBrakeActuation,

thirdWheelBrakeActuation,

fourthWheelBrakeActuation)

slowest tc10 = Sup(firstWheelBrakeActuation,

secondWheelBrakeActuation,

thirdWheelBrakeActuation,

fourthWheelBrakeActuation)

Integer tolerance tc10 = 5000

slowest tc10 ≺ (fastest tc10 delayedFor
tolerance tc10 on universal time)

The QVTo transformation is able to create a CCSL speci-
fication from any TADL2 model and EAST-ADL model. The
architecture and timing constraints can then be analyzed with
TIMESQUARE. It is important to have the formal semantics
of both languages since a minor change in the structural part
(mainly in the triggering condition) may lead to the violation
of timing constraints (see Section V).

V. EXECUTING TADL2 SPECIFICATIONS WITH
TIMESQUARE

In this section we present the simulation results of the
whole BBW specification (i.e., EAST-ADL + TADL2). The
simulations have been done under two different configura-
tions of the system. The first configuration (Time Triggered
BBW) is fully time triggered and the second one (Time/Event
Triggered BBW) mixes time and event triggerings. For both
configurations we use a unique clock (the universal time) but
it is of course possible to use various timebases as supported
by TADL2.

A. Time Triggered BBW

The first configuration considers the BBW example as
totally time triggered. It means that all function prototypes
are triggered periodically and their periods are specified in
the TADL2 specification. In addition, each function prototype
has a fixed execution time specified by some TADL2 reaction
constraints (see Table II for the period and execution time
values). Finally, a global end-to-end reaction constraint

(the tc1a reaction constraint in Listing 2) is put from a
brake action on the brake pedal (the startBraking port in
the StartBrakingDetection function prototype) to the corre-
sponding brake actuations (the FLActuatorSignal ports in
the XXBrake function prototypes). In the requirements of the
BBW example, the interval of the global end-to-end reaction
constraint is set to [0 ; 330] ms.

Table II
TIMING CONFIGURATION OF THE BBW EXAMPLE.

Function Prototype Period Execution Time
Wheel Speed Sensors
(XXWheelSpeedSensor)

20ms 10ms

BrakePedalSensor 20ms 10ms
BrakeTorqueCalculator 50ms 40ms
GlobalBrakeController 90ms 80ms
ABS Function Prototypes
(XXABSSat)

40ms 30ms

Brakes (XXBrake) 40ms 10ms

One of the benefits of our approach is to simulate the
system with timing constraints based on the specified EAST-
ADL and TADL2 semantics in TIMESQUARE that provides
timing diagrams and model animation. Timing diagrams and
model animation help to understand causal and temporal
relationships of the system under simulation. During the
simulation with the values in Table II a deadlock occurred
and the simulation has been stopped by TIMESQUARE. This
is represented in Figure 3 which shows the timing diagram of
the event chain in the scope of the global reaction constraint
tc1a obtained by the simulation. The deadlock is due to a
lack of synchronization between the brake torque calculator
and the global brake controller as highlighted in Figure 3.

Since it is a synchronization problem, we decided to
change the activation condition of the GlobalBrakeCon-
troller function prototype from time triggered to event
triggered (change of the triggering policy in EAST-ADL).

B. Time/Event Triggered BBW

For the second configuration, we changed only the trig-
gering policy kind and the triggering condition of the
GlobalBrakeController function prototype. We decided that
GlobalBrakeController is triggered every two updates of its
globalTorque input port. Note that we do not want Global-
BrakeController to be triggered every time its globalTorque
port is updated since the execution time of GlobalBrake-
Controller is bigger then the minimum time between two
updates of the globalTorque port. If we did so, the non re-
entrance semantics chosen for EAST-ADL would lead to a
deadlock again. In this configuration, since the period of
the BrakeTorqueCalculator function prototype is 50 ms, the
globalTorque port is updated every 50 ms. Therefore, Glob-
alBrakeController is now triggered every 100 ms instead
of the previous period of 90 ms (see Table II). However,

Figure 3. A simulation of the Brake-By-Wire Time Triggered Configuration

Figure 4. A simulation of the Brake-By-Wire Time/Event Triggered Configuration

the event trigger activation of the GlobalBrakeController
function prototype helps to keep the synchronization of
the consignment between the BrakeTorqueCalculator and
GlobalBrakeController function prototypes as highlighted
in Figure 4. GlobalBrakeController is triggered every two
updates of the globalTorque port. Therefore, the maximum
time between the globalTorque port update (considered in
the event chain scope of the reaction constraint) and the
GlobalBrakeController activation is then the period of the
BrakeTorqueCalculator triggering. With this configuration,
the deadlock is not observed anymore. The global end-to-end
reaction constraint is shows by the blue arrows in Figure 4.

We believe this approach gives confidence on the correct-
ness of the system and features like model animation and
timing diagram help to understand the synchronizations in
the system. Beyond this, the approach provides the semantics
of TADL2 and EAST-ADL with ECL. The semantics helps
clarify ambiguities in TADL2 and EAST-ADL. The ambigu-
ities are not resolved in an opaque way by the tool imple-
mentation. Moreover, the approach outlines the possibility to
denote the behavioral semantics of two different languages
in order to provide a global heterogeneous simulation. We
showed that it is possible to detect some problems in timing
constraints via simulation in TIMESQUARE. In order to fully

validate the system an exhaustive simulation is needed. The
formal semantics of EAST-ADL and TADL2 in ECL can be
used as a reference for transformations to other analysis tools
as described in [15].

VI. RELATED WORK

A number of approaches in the literature address modeling
and analyzing timing constraints. Klein and Giese [16]
present Timed Story Scenario Diagrams (TSSD), a visual
notation for scenario specifications that takes structural
system properties into account. In TSSD it is possible to
specify Time Constraints that allow setting lower and upper
bounds for delays. There is no mention of analysis support
for TSSD. Alfonso et al. [17] present VTS, a visual language
to define complex event-based constraints like freshness,
bounded response, and event correlation. VTS does not
support the notion of explicit time units coded as time bases.
A mapping between VTS and timed automata is provided
to model and analyze VTS scenarios. Aegedal [18] presents
a general modelling language for Quality of Service (QoS).
The presented modelling language is based on enterprise
architecture modeling. It uses a time model where different
clocks can be defined. These clocks are related to the
chosen standard clock with skew, drift and offset. They are

indirectly related to each other via the chosen standard clock.
Zschaler [19] presents QML/CS, a specification language
used to model non-functional properties of component-based
systems including response time.

In the context of EAST-ADL, several approaches based on
timed automata have been proposed. In [20], Qureshi et al.
presented timed automata templates for EAST-ADL timing
constraints. These modeling templates capture various error
scenarios based on EAST-ADL architectural models. While
Kang et al. [21] have addressed the functional modeling
for EAST-ADL models using Uppaal, Enoiu et al. [22] have
addressed a limited aspect of time modeling for EAST-ADL
models. However, none of the above works address the
analysis of timing constraints with the explicit notion of time
base and symbolic timing expressions.

VII. CONCLUSION

In this paper we presented an approach for the conjoint
simulation and analysis of EAST-ADL and TADL2 specifica-
tions. We denoted the semantics of both languages by using
ECL. It allows for an automatic transformation to CCSL for
the simulation in TIMESQUARE.

We used a real industrial example proposed by Volvo
Technology in the TIMMO-2-USE project [4] to show
the capability of our approach with the tool support for
handling timing behavior of industrial systems. The example
highlighted the need for a precise semantics of both EAST-
ADL and TADL2 for an accurate timing analysis. It also
shows the benefits of an early simulation to understand
the synchronizations that exist directly at the model level.
However, a natural question arises about the scalability and
the efficacy of the proposed analysis approach on larger case
studies. As a future work we plan to conduct experimental
analysis on larger case studies. We also plan to study the
semantic impact of the interaction among languages.

REFERENCES

[1] ATESST (Advancing Traffic Efficiency through Software
Technology). (2008, March) East-ADL2 specifica-
tion. [Online]. Available: http://www.atesst.org,
2008-03-20

[2] M.-A. Peraldi-Frati, A. Goknil, J. Deantoni, and J. Nordlan-
der, “A timing language for specifying multi clock automotive
systems: The timing augmented description language v2,” in
ICECCS’12, July 2012.

[3] M.-A. Peraldi-Frati, A. Goknil, M. Adedjouma, and P. Y.
Gueguen, “Modeling a bsg-e automotive system with the
timing augmented description language,” in ISoLA (2), 2012,
pp. 111–125.

[4] ITEA TIMMO-2-USE Project. (2012, July). [Online].
Available: http://timmo-2-use.org/

[5] OMG, UML Profile for MARTE, v1.0, Object Management
Group, November 2009, formal/2009-11-02.

[6] C. André, F. Mallet, and R. de Simone, “Modeling time(s),”
in MoDELS’07, 2007, pp. 559–573.

[7] J. Deantoni and F. Mallet, “ECL: the Event Constraint
Language, an Extension of OCL with Events,” INRIA,
Research Report RR-8031, Jul. 2012. [Online]. Available:
http://hal.inria.fr/hal-00721169

[8] OMG, Object Constraint Language. [Online]. Available:
http://www.omg.org/spec/OCL/2.0/

[9] R. Dvorak, “Model transformation with operational qvt,” in
EclipseCon’08, 2008.

[10] J. DeAntoni and F. Mallet, “Timesquare: Treat your models
with logical time,” in TOOLS (50), 2012, pp. 34–41.

[11] The East-EEA Project. (2004) Definition of language for
automotive embedded electronic approach, technical report,
itea. [Online]. Available: http://timmo-2-use.org/

[12] (http://www-sop.inria.fr/members/Arda.Goknil/BBW2-
tadl2.pdf) BBW Spec in TADL2.

[13] XText. [Online]. Available:
http://www.eclipse.org/Xtext/

[14] C. André, “Syntax and Semantics of the Clock
Constraint Specification Language (CCSL),” INRIA,
Research Report RR-6925, 2009. [Online]. Available:
http://hal.inria.fr/inria-00384077

[15] L. Yin, F. Mallet, and J. Liu, “Verification of marte/ccsl time
requirements in promela/spin,” in ICECCS’11, 2011, pp. 65–
74.

[16] F. Klein and H. Giese, “Joint structural and temporal prop-
erty specification using timed story scenario diagrams,” in
FASE’07, 2007, pp. 185–199.

[17] A. Alfonso, V. A. Braberman, N. Kicillof, and A. Olivero,
“Visual timed event scenarios,” in ICSE’04, 2004, pp. 168–
177.

[18] J. Aegedal, “Quality of service support in development of
distributed systems,” PhD Thesis, 2001.

[19] S. Zschaler, “Formal specification of non-functional prop-
erties of component-based software systems,” Software and
Systems Modeling, vol. 9, no. 2, pp. 161–201, 2010.

[20] T. N. Qureshi, D.-J. Chen, and M. Törngren, “A timed
automata-based method to analyze east-adl timing constraint
specifications,” in ECMFA’12, 2012, pp. 303–318.

[21] E.-Y. Kang, P.-Y. Schobbens, and P. Pettersson, “Verifying
functional behaviors of automotive products in east-adl2 using
uppaal-port,” in SAFECOMP’11, 2011, pp. 243–256.

[22] E. P. Enoiu, R. Marinescu, C. Seceleanu, and P. Pettersson,
“Vital : A verification tool for east-adl models using uppaal
port,” in ICECCS’12, July 2012.

