
Railroad Crossing Heterogeneous Model

Matias Vara Larsen1, Arda Goknil2

1 University of Nice Sophia Antipolis,CNRS, I3S
route des Lucioles, BP 93 06902 Sophia Antipolis Cedex, France

<varalars@i3s.unice.fr>
2 INRIA Sophia Antipolis

route des Lucioles, BP 93 06902 Sophia Antipolis Cedex, France
<arda.goknil@inria.fr>

Abstract. Systems are getting more and more complex and usually in-
volve many stakeholders. Stakeholders are concerned by different aspects
of the system, potentially supported by multiple Domain Specific Mod-
eling Languages (DSMLs). The DSMLs are usually different not only
in their syntax but also in their behavioral semantics. In order to pro-
vide simulation and/or verification of the overall system, it is mandatory
to compose the DSMLs behavioral semantics. The composition of the
DSMLs behavioral semantics results in the coordination of different mod-
els that conform to the DSMLs. This paper presents the coordination of
the models representing a railroad crossing management system. The sys-
tem is composed of two models, conforming to two different DSMLs. The
paper explains the behavioral semantics of these DSMLs and presents a
simple coordination of the models used in the example.

1 Introduction

Complex heterogeneous systems often rely on several Domain Specific Languages
(DSMLs). A DSML efficiently specifies the domain concepts as well as their be-
havioral semantics within a particular domain. Several models following different
behavioral semantics are combined by heterogeneous systems. It is mandatory to
compose the DSMLs behavioral semantics in order to provide simulation and/or
verification of the overall system. The composition of the DSMLs behavioral
semantics results in the coordination of different models that conform to the
DSMLs.

We present the coordination of the models representing a Railroad Crossing
Management System (RCMS). The system is composed of two models, conform-
ing to two different DSMLs. The description of each DSML is split into the
language units Abstract Syntax (as), Domain Specific Actions (dsa), Model of
Computation(moc) and Domain Specific Events (dse). The as specifies the con-
cepts of the language and their relationships. An instance of the as is a model.
The dsa represent both the execution state and the execution functions of a
DSML. An instance of the dsa represents the state of a specific model during
the execution and the functions to manipulate such a state. The moc represents



the concurrency aspects in the language. An instance of a MOC is defined for a
specific model, conforming to the DSML. It is the part of the concurrency model
that specifies the possible partial orderings between the events instantiated with
regards to the model. The dse specify the coordination between the events from
the moc and the execution function calls from the dsa. In this paper we use the
dse as a behavioral interface to coordinate different models through constraints
between domain specific events. Only the concurrency part (MoC) of DSMLs is
detailed. It is described in ecl (Event Constraint Language) [1]. ECL is used to
specify, at the language level, the constraints used in a concurrency model for
any model. Then, for any model conforming to the DSML, the constraints given
in ECL are used to automatically create an executable concurrency model (an
instance of moc) in ccsl [2]. This model is used by TimeSquare [3] to provide
a simulation that gives the partial order between the domain specific events in
the model.

2 Example: the Railroad Crossing Management System

The Railroad Crossing Management System (RCMS) regulates the traffic that
crosses the rails to avoid possible collisions between the train and cars. The
overall system is composed of two subsystems: the Barrier Detection Controller
(BDC) and the Barrier Motor Controller (BMC). The BDC detects the location
of the train and commands the BMC to control the barrier. The BMC opens
and closes the barrier with the correct handling of the motor. When the train’s
approach is detected, the BDC commands the BMC to close the barrier. The
BMC starts the motor of the barrier and reads the position of the barrier con-
stantly. It stops the motor and informs the BDC when the barrier is completely
down. When the BDC detects that the train is far away from the road crossing,
it commands the BMC to reopen the barrier. The BMC starts the motor and
reads the position of the barrier constantly. It stops the motor and informs the
BDC when the barrier is completely up.

The subsystems are given in two different models, conforming to two dif-
ferent DSMLs. The opening and closing of the barrier have to be synchronized
with the detection of the train location. The synchronization need requires the
coordination of the concurrency parts (MoC) of the models for the BDC and the
BMC subsystems.

2.1 The Barrier Detection Controller

The BDC is given in a Timed Final State Machine (TFSM) model (see Figure
1). The TFSM model waits for the start event after its initialization and then
goes to the Up state. In this state it waits for the reception of an event called
TrainComing. When the TrainComing event is received, it sends the doClose
event and goes to the Closing state. The doClose event makes a request to
close the barrier. In the Closing state, it waits for the reception of the Closed
event. When the Closed event is received, it goes to the Down state. The Closed



Fig. 1. Barrier Detection Controller TFSM

Fig. 2. Timing output of the simulation with TFSM semantics

event informs that the barrier is completely down. It stays in this state until
the reception of the TrainfarEnough event. When this event occurs, the doOpen
event is sent and the Opening state is reached. The doOpen event is a request
to open the barrier. In this state it waits for the reception of the Opened event
and then, it returns to the Up state.

The instance moc of the TFSM model is specified in the ccsl language. The
events TrainComing,TrainFarEnough, Closed and Opened are not constrained
by the CCSL specification. In order to simulate them, we create a scenario. The
scenario specifies the occurrence of those events. In the case of TrainComing
and TrainFarEnough, we specify the occurrence periodically and alternatively in
time. Then, the scenario specifies that Closed precedes TrainComing and Opened
precedes TrainFarEnough. These constraints are added to the generated ccsl
specification manually. We execute the concurrency model (the ccsl specifica-
tion) of the TFSM model in TimeSquare. The execution of the concurrency



model produces a timing diagram representing the occurrences of the events (see
Figure 2). The occurrence of doClose coincides with the occurrence of TrainCom-
ing. These synchronizations are defined in the concurrency model and they are
part of the behavioral semantics. The Closed event fires the transition and the
Down state is reached (Down entering in Figure 2).

Fig. 3. Barrier Motor Controller Activity Diagram

Fig. 4. Timing output of the simulation with fUML semantics

2.2 The Barrier Motor Controller

The BMC is represented by an activity diagram following the fUML semantics
(see Figure 3). When the activity is initialized, it goes through a fork node. After
the fork node, the activity is split into two concurrent control flows. One branch
does the opening of the barrier and the other one does the closing. When the
doClose event is received, the activity invokes the startBarrierDown action and



goes to the readSensorDown action (through a merge node). Then, it goes to
a decision node to check if the barrier is completely down. If it is not down, it
goes to the readSensorDown action and checks the barrier again. If the barrier
is down, it invokes the stopMotorDown action, sends the signal closed and goes
back to the event reception node. The workflow of the opening branch is similar.
When the doOpen event is received, the activity invokes the startBarrierUp
action and goes to the readSensorUp action. The barrier is checked for being
completely Up. If the barrier is completely up, the motor is stopped and the
opened event is sent.

After the instance MoC of the activity diagram is given in ccsl and the sce-
nario is correctly defined, the concurrency model is executed by TimeSquare.
In Figure 4 we see the execution of one of the branches which corresponds to
the closing of the barrier.

Fig. 5. Timing output of the simulation of TFSM and fUML composition

2.3 Composition of the Models

We are able to model and simulate each subsystem in isolation. Now the models
for subsystems have to be composed to simulate and verify the overall system.
The composition is expressed through constraints between the following pairs
of events: [doClosed startIt, doClose occurs], [doOpen occurs, doOpen startIt],
[Closed occurs, Sendclose startIt] and [Opened occurs, Sendopen startIt]. The
instance DSEs of each model is used to compose the behavioral semantics of the
models. The constraints between the instance DSEs provides the composition.
In this example we decided to specify a strong synchronization between the pairs
of the events (a rendez-vous semantics). For instance, the doClosed occurs event
coincides with the doClose startIt event. The same strong synchronization is
specified between the rest of the event pairs.

We manually created a ccsl specification which includes the TFSM, the
fUML and the composition constraints. For the events TrainComing occurs and
TrainFarEnough occurs, we keep the scenario created before. The ccsl speci-
fication of the two composed models was executed in TimeSquare. Figure 5
shows the timing diagram of the composed models. Although we only have the



coincides constraint in this example, other types of constraints like causality can
be specified for the composition of the models.

The composition constraints also constrain the possible behaviors of the indi-
vidual models. This is the case for the doOpen startIt and doClose startIt events
in the activity diagram. The fUML behavioral semantics does not constrain these
events and their concurrent occurrences are allowed. After the composition, these
events are synchronized with the doOpen occurs and doClose occurs events in
the TFSM model. The TFSM behavioral semantics does not allow the concur-
rent occurrence of the doOpen occurs and Close occurs events. Consequently, the
TFSM constrains the doClose startIt and doOpen startIt events and the concur-
rent occurrences of them are no longer possible. Figure 5 shows the alternation
for the doClose startIt and doOpen startIt events. The resulting behavior of the
overall model is then a subset of the union of both possibles behaviors.

3 Conclusion

In this paper we presented the model of a Rail Crossing Management System.
The system is composed of two subsystems modeled in different DSMLs: the
Barrier Detection Controller (BDC) given in TFSM and the Barrier Motor Con-
troller (BMC) given as an activity diagram in fUML. We presented a simple
approach to compose these models with their behavioral semantics. A DSML is
defined as a tuple composed of the Abstract Syntax (as), the Domain Specific
Actions (dsa), Model of Computation (moc) and Domain Specific Events (dse).
The DSE of each DSML has been used as a crude behavioral interface for the
composition. The composition constrains the behavior of each MoC so that the
final behavior is a subset of the union of both possible behaviors.

Currently, the composition is done manually at the model level and we are
investigating the reification of the composition with operators specified at the
language level.

References

1. Deantoni, J., Mallet, F.: ECL: the Event Constraint Language, an Extension of
OCL with Events. Research report RR-8031, INRIA (July 2012)

2. Mallet, F., DeAntoni, J., Andr, C., de Simone, R.: The Clock Constraint Specifi-
cation Language for building timed causality models. Innovations in Systems and
Software Engineering 6 (2010) 99106

3. Deantoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In:
TOOLS. Volume 7304 of LNCS., Springer (May 2012) 3441


