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Dissipation in small systems: Landau-Zener approach
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We establish a stochastic thermodynamics for a Fermionic level driven by a time-dependent force and
interacting with initially thermalized levels playing the role of areservoir. The driving induces consecutive avoided
crossings between system and reservoir levels described within Landau-Zener theory. We derive the resulting
system dynamics and thermodynamics and identify energy, work, heat, entropy, and dissipation. Our theory
perfectly reproduces the numerically exact quantum work statistics obtained using a two point measurements
approach of the total energy and provides an explicit expression for the dissipation in terms of diabatic transitions.
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I. INTRODUCTION

The study of quantum mechanical (QM) diabatic tran-
sitions, also called Landau-Zener (LZ) transitions, played
a major role in many areas of quantum physics since the
seminal work of Refs. [1-4] (see, e.g., the introduction of
Ref. [5]). They occur between the time-dependent eigenstates
of quantum systems driven by time-dependent forces and are
often interpreted as a signature of dissipative processes [6-9].
In this paper, we investigate their connection to dissipation
within the framework of quantum fluctuation relations such as
the quantum Jarzynski relation [10,11].

In an open system driven by a time-dependent force, the
second law states that dissipation or entropy production is the
sum of the change in the system von Neumann entropy, plus
the heat entering the reservoir divided by its initial temperature
which represents the change in entropy in the reservoir if
it were ideal (i.e., always at equilibrium). This is shown in
Refs. [12-14] and in the weak coupling limit (where the
reservoir is ideal) in Refs. [15—17]. A reversible transformation
occurs when entropy production can be neglected. There are
different ways to generate such transformations. One consists
in slowly driving an open system weakly coupled to an ideal
reservoir so that it will remain at any time very close to
equilibrium. Since heat and entropy change are identical to first
order away from equilibrium, entropy production is of second
order and thus negligible. No notion of QM adiabaticity enters
atthis level. Another way consists in detaching the system from
the reservoir and only considering a driven isolated system
where the unitary dynamics leaves the system von Neumann
entropy invariant and where no heat is exchanged. The second
law is then empty and the first law trivial (the energy change
is the mechanical work done by the driving). Once again, QM
adiabaticity plays no role here.

Let us now consider the framework of the quantum
Jarzynski relation derived for driven isolated systems initially
prepared in a canonical equilibrium (using, for instance, a weak
interaction with an ideal reservoir which is removed when
the driving starts acting) [18,19]. In this case, fluctuations
in entropy production are expressed as dissipative work (i.e.,
the mechanical work minus the difference in equilibrium free
energy difference corresponding to the final and the initial
system Hamiltonian). But this dissipation actually only occurs
if one reconnects the system to its reservoir after the driving
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ends. This means that in this framework we are actually
dealing with a specific class of driven open systems where
the driving and the relaxation phase occur separately. The
first phase is the driven nondissipative dynamics that brings
the isolated system to a nonequilibrium state at the expense
of mechanical work. The second is the nondriven dissipative
dynamics starting at the end of the first phase when the system
is reconnected to the ideal reservoir and ending when it has
reached equilibrium. The resulting dissipation is the relative
entropy distance between the nonequilibrium state produced
at the end of the first phase and the equilibrium state reached
at the end of the second one which equals the dissipative work
[13,20,21].

A special situation occurs if we consider a cyclic driving. If
during the first phase the dynamics is QM adiabatic, the final
state of the system will coincide with its initial equilibrium
state, and no dissipation will occur during reconnection.
However, for a cyclic driving generating QM-diabatic tran-
sitions, this will not be the case and dissipation will ensue.
Consequently, for cyclic drivings the absence of dissipation
is directly linked to QM adiabaticity. For noncyclic drivings
the situation is different. Whether or not the transformation is
QM adiabatic, a final nonequilibrium state will generically be
produced. In this case the resulting dissipation has thus again
little to do with the amount of QM-diabatic transitions.

To establish an explicit expression relating dissipation to
LZ transitions, we need to go beyond these frameworks and
consider driven systems coupled to reservoirs made of a finite
number of levels initially at equilibrium. As the driving moves
the system levels, they will cross the reservoir levels and a rich
dynamics will ensue. We consider the simplest case of a single
system level and treat the crossing dynamics within LZ theory.

II. MODEL

We assume that we have control over the energy ¢,
of a single Fermionic level which constitutes the system.
The reservoir is made of L initially equilibrated Fermionic
levels with energy ¢; (i = 1, ...,L), thermal occupation f; =
fe) = 1/(PE=" 4 1), and spacing Ag;. = i1 — &;. As
usual, 87! = kT and T and u are respectively the reservoir
temperature and chemical potential. As the system level is
raised, consecutive avoided crossings between the system level
and the reservoir levels will occur (see Fig. 1). The raising
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FIG. 1. Illustration of a possible trajectory when the system level
€, is driven at constant speed € across equally spaced reservoir levels
&;. Open (solid) circles denote empty (occupied) levels.

speed at the crossing 7 is denoted €; and is assumed to remain
constant until the next crossing i 4+ 1 (i.e., the raising speed
varies slowly between adjacent crossings). The time to go
from crossing i to i + 1 is thus given by Aty = Ag;1/é;
and the time at which the crossing with level i occurs
is t; = le_:ll Atjy for i > 1 and 7, = 0. The gap between
the two levels at an avoided crossing i is denoted §; and
characterizes the system-reservoir interaction strengths. It is
always assumed smaller than the spacing between the reservoir
levels Ag;+ > §;, so that the system-reservoir dynamics can
be treated sequentially (i.e., one reservoir level at a time)
and within LZ theory [22]. The probability of a QM-diabatic
(resp. QM-adiabatic) transition at the crossing i is given by
R; = exp {—m8?/(2hé;)} (resp. 1 — R;). This probability has
been shown to be accurate for times after the crossing longer
than tl.lz = Jh/é max[l,«/(SiZ/(héi)] [23,24]. This means that
we demand that Az, > ti'Z, which, together with Ag; > §;,
implies overall that our treatment requires Ag;, > «/hé;,5;.

III. DYNAMICS

If p; is the occupation of the system level just before
the avoided crossing with ¢;, the occupation of the system
level a time 1 after the avoided crossing is given by p; =
Ripi + (1 — R;) f(g;). As the system energy is raised until
just before the next crossing at energy &;.1, the probability
does not change and thus p;;; = p;. The evolution of the
system occupation can therefore be rewritten as a Markov
chain with transition probabilities at the crossing i, M; =
(1 = R)(1 — f;) to empty the system level by filling the
reservoir one, and M;” = (1 — R;) f; to fill the system level
and empty the reservoir one:

pirt = (1= M7))pi + M (1 = p)). (D
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FIG. 2. System level occupation p for model (2) with a protocol
€, = ét = t. The system level crosses the L = 9 reservoir levels with
energy &, =i €{l,....9} overatimer =10and y =0.2, u =3,
B = 1.2. The staircase red curve is obtained by solving the stochastic
model (1) and the continuous blue curve by solving the numerically
exact quantum system for p = (cfc¢), with an initial factorized state

where the reservoir is in the grand-canonical state and the system
level is occupied with probability 1.

We proceed with two important remarks. First, the state of
the reservoir changes as the system level sequentially crosses
its levels. Second, our stochastic model neglects the coherences
generated by the quantum dynamics [22]. However, our
scheme is expected to hold as long as a given reservoir level
is not crossed twice. In this way, its nonequilibrium state
and its coherences resulting from the first interaction will not
influence the system dynamics anymore. This is confirmed by
Fig. 2, where we compare the system occupation predicted
by our stochastic dynamics (1) with that predicted using
a numerically exact system-reservoir quantum mechanical
calculation, which is performed as follows. The Hamiltonian
used is

L L
Hit)=ecle+Y aclei+y ) (cla+clo. @

i=1 i=1

where €, = t¢ is the site energy for the dot, ¢/ and c are its
creation and destruction operators, and € is a constant. The
system level and the ¢; level (with creation and destruction

operators c;f and ¢;) are coupled with a strength y such that
the gaps between the levels are given by §; = 2y. Since this is
a noninteracting many-body system, all its properties can be
obtained from single-body quantities. We thus numerically
solved its exact dynamics by mapping the time-dependent
single-body Schrodinger equation into a system of ordinary
differential equations, using a Runge-Kutta method (RK4).
We consider two important limiting regimes of the dy-
namics (1). The QM-adiabatic regime occurs for slow driving
rates Ae > 8 > +/hé when no LZ transition occurs because
R; — 0 and as a result M;" = f; and M, =1 — f;. In this
regime, the system instantaneously thermalizes by exchanging
its probability with the reservoirs. If before the crossing the
system is occupied with probability p; and the reservoir
level with probability f;, then after the crossing the system
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occupation becomes p;;; = f; and the reservoir one p;. In
turn, the QM-diabatic regime occurs for fast driving rates
in terms of LZ theory, Ae > hé > 8. In this case a LZ
transition always occurs at the crossing because R; — 1 and
as aresult M;" = M, = 0. The system and the reservoir thus
remain unaffected by the crossings, p;+1 = p;-.

IV. THERMODYNAMICS

The system average particle number, internal energy, and
Shannon entropy just before the crossing with the reservoir
level i are given, respectively, by

N; = pi, E; =¢;p;,
Si = —kppiInp; — k(1 — p;)In(1 — p;). (3

Across the avoided crossing i, the system occupation may
change and induce as a result a change in particle number,
entropy, as well as energy in the form of heat. In between the
crossing with i and i 4 1, the occupation remains unchanged
and as a result the particle number and the entropy do not
change. However, if the level is filled, the energy will change
under the form of mechanical work (due to changes in the
energy level) by an amount Ag; . The average work, W, =
Wi + W{,, done on the system in going from i to i +1
(denoted i+ in short) thus consists of the mechanical work
W = (&i11 — &)piy1 generated by the driving and the chem-
ical work W7 = u(p;11 — pi) needed to transfer particles
from the reservoir to the system. The corresponding average
heat entering the system is Q;y = (¢; — w)(pi+1 — pi)- In
accordance with the first and second laws of thermodynamics,
the energy and entropy change can be written as

AE, = Ei — E; = Wi, + Qi4, 4)
ASH_ = Si+1 - Si == Ei-‘r + Qi+/T' (5)
Using the local detailed balance property of LZ rates,

M;" /M = e P~ the entropy production can be shown
to be nonnegative and reads

M1 — p;)
M; pi

M; p;

M1 — p;)

Ei-‘r = kBMi+(1 - pi)ln

+kpM; p;In —kgD(pis1lpi) = 0, (6)
where D(p|p) = pln[p/p'1+ (1 = p)In[(1 — p)/(1 —
p)] >0 denotes the relative entropy. The detailed
calculations for a general stochastic thermodynamics
in discrete time are given in the Appendix. Combining
the first and second laws, the entropy production
can also be rewritten as 7%, = W;;, — AQ;;, where
AQ;y = Q41 — ; is the change in nonequilibrium grand
potential 2; = E; — uN; — TS;. Introducing the dissipated
mechanical work Wl.dfs = Wi - AQ?i with the equilibrium
grand potential qu = kpT In(1 — f;), and realizing that
Q- Q?q =kgT D(p;| f;), we find that entropy production
can now be expressed as

dj_ss

Ez+ - T

— kg D(pit1| fi+1) + kg D(pil fi) =2 0. (7)
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FIG. 3. Entropy production (6) as a function of the rate of QM-
diabatic transitions R and of the initial system level occupation p;
before the crossing, for f; = 0.75.

The second (third) term on the right-hand side measures the
distance from equilibrium right before crossing i 4 1 (7).

We now consider the thermodynamics of the QM-adiabatic
regime. If just before the crossing the system has been prepared
in an arbitrary occupation p;, using (6) and (7), we find that
the dissipation occurring at the crossing is X;+ = kg D(p;| fi)
and the dissipative work done on the system to lift the level
from i to i+ 1 is Wﬂss = kgT D(f;|fi+1).- If the system
is initially prepared at equilibrium, p; = f; and the first
crossing is perfectly reversible: ;. = 0. However, the instan-
taneous thermalization of the level implies that the subsequent
crossings (i > 1) will be such that p; = f;_; and p;y+; = f;
and an amount X;; = kg D(f;_i|f;) will be dissipated at
every crossing. We therefore conclude that in general QM
adiabaticity does not imply thermodynamic reversibility. This,
however, becomes true in the limit Ag,§,é — 0 where the
inequality Ae > & > +/hé is maintained. Indeed, in this case
¥+ as well as Widfs both tend to zero proportionally to
order Ae” while heat and entropy change become equal,
to order Ae. We now turn to the thermodynamics of the
QM-diabatic regime. In this case, the level rises without
changes in its initial occupation probability p;. As a result
no dissipation occurs (X = 0), and no entropy or heat is
produced. Only work is done to lift the energy of the level
and W = kT 3, (D(pil fit1) — D(p1l fi)-

The dissipation (6) or (7) across a transition is represented
in Fig. 3 as a function of the rate of QM-diabatic transitions, R,
and of the initial system level occupation p; before the crossing
and for f; = 0.75. As announced, the dissipation vanishes
when R — 1 (QM-diabatic limit) independently of p; or when
R — 0 (QM-adiabatic limit) if p; = f;.

V. MECHANICAL WORK FLUCTUATIONS

We can use our stochastic thermodynamic description of
the system to study mechanical work fluctuations. Thanks
to the local detailed balance property of the rates, the work
fluctuation theorem can be derived following a procedure
almost identical to that detailed in Refs. [25-27] and reads
In P(w™)/P(—w™) = B(w™ — AQ). P(w™) denotes the
probability that the external force performs a mechanical
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FIG. 4. Forward P(w™) [backward P(—w™)] work distribution
calculated using LZ theory, in black (red), and using the full quantum
dynamics, in brown (blue). The vertical line marks the value of AQ°%4.
Same parameters as Fig. 2.

work w™ when driving the system (initially at equilibrium)
according to a given forward protocol. P(w™) denotes the
same probability when the driving protocol is time reversed
and the system is initially at equilibrium with respect to the
final value of the forward driving protocol. In Fig. 4, these
two distributions obtained using our stochastic model are
shown to be in excellent agreement with those obtained using
the numerically exact quantum dynamics in the total system
with Hamiltonian (2). In this latter case, the mechanical work
is obtained from the energy changes resulting from a two
point projective measurement of the total system energy at the
beginning and at the end of the process [10,11,18,19].

VI. CONTINUOUS TIME LIMIT

We now consider that we operate close to the QM-diabatic
regime where Ae > Vhé > 8 and we assume that the
coupling §;, the driving €;, and the reservoir density of states
d = 1/Ae vary smoothly with i. In this regime, the rate of
QM-diabatic transition can be expanded as R~ 1 — 2—1%
Introducing the reservoir density of states d; = 1/Asg;
and remembering that At = 1/(¢;d;), the dynamics
(pi+1 — pi)/ Aty = (fi — pi)(1 — R;)/At; 4 can be treated as
a continuous time master equation d;p = wr(1 — p) —w ™ p
with Fermi golden rule rates

2
wt = ZAE) (;’;d(e”f(e», (8)
5 )d(e,
= TR e ©)

These rates satisfy local detailed balance and thus a consistent
stochastic thermodynamics ensues [28-30]. Note that their
explicit dependence on the driving speed €; has disappeared.
The restriction to be close to the QM-diabatic regime, however,
puts the limit of reversible transformations outside the realm of
validity of this description. It is interesting to note that exactly
the same dynamics can be derived by assuming that the system
is weakly coupled to a continuous reservoir in the Born-
Markov secular approximation [31]. However, in this case
the above restriction does not hold and the limit of reversible
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transformations is reachable. This may indicate that the
restriction Ae > § could be loosened as also suggested by the
results of Ref. [32].

VII. CONCLUSIONS

We established a stochastic thermodynamics for a single
system level interacting with a finite set of initially thermalized
reservoir levels. This enabled us to derive an explicit expres-
sion for dissipation in terms of rates of QM-diabatic transitions.
Thermodynamically reversible transformations require QM
adiabaticity but also a vanishing reservoir level spacing as
well as a vanishing system-reservoir interacting strength. Our
treatment can be immediately generalized to multiple system
levels as long as the system energies do not cross. This
latter case with crossings would require some more care. We
emphasize that our study is very different from other studies
which considered the crossing dynamics between system
levels in contact with continuous reservoirs [5,33-36].
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APPENDIX: STOCHASTIC THERMODYNAMICS
IN DISCRETE TIME

The stochastic process considered in the paper is a special
case of a Markov chain in discrete time satisfying local detailed
balance. We now derive stochastic thermodynamics for this
general case. We consider discrete times i = 0,1,2,... and a
finite state space m = 0,1,2,...,M. The probability to find
the system in state m at time 7 is denoted p,,(i) and evolves
according to the Markov chain

P+ 1) =Y My (i) pu (i),

m’

(AL)

where the transition matrix satisfies Zm M, (i) = 1. We
further decompose the latter into contributions from different
reservoirs v =1,2,...,R: My (i) =), M,(,:’,L,(i). We also
introduce the time-dependent energy e, (i) and the number of
particles, n,,, of state m and assume that the transition matrix
satisfies local detailed balance

Mo @) (en) = ew (@) = (@)t = )
M (i) T,(i)

where T, and u, are the temperature and chemical potential of
reservoir v and kg = 1. The model considered in our paper has
two states: m = 0 when the level is empty and m = 1 whenitis
occupied with probability pyo = 1 — p (respectively p; = p).
Furthermore, np = 0,¢y = 0,n; = 1, and ¢;(i) = €(@).

The average system energy and number of particles are
given by

. (A2)

E(@) =) en(i)pm(i),

m

NG@) =Y 1y pui).

m

(A3)

(A4)
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The energy and particle current entering the system from
IeServoir v are

Ig(i) = Z(em(i) — ew ()M, ()pw (i),  (AS)

m,m’

Iy i) =Y (= nu)My (Dpwr (i), (A6)

and the average heat entering the system from reservoir v is

Q"(0) = Ig(i) — o Iy (D). (A7)
The average work done on the system is made of mechanical
and chemical work:

W(l) = Wmech(i) + Wchem(i)v
Wineen(i) = ) _(em(i + 1) — en()pm(i + 1), (A8)

m

Wenem(i) = Y o Iy ).
The first law of thermodynamics ensues and is given by
AEG@) =EG+1)— EG)=W@)+Y_0"(). (A9
We now define the Shannon entropy of the system:

SG) == pu(i)In pu(i). (A10)

The second law of thermodynamics reads
oM @)
T,

v

ASG) =S +1) = Si)=)_

v

+X3), (All)
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where the entropy flow is given by

0] RPN ()
=— M. (i) py (i) In —22 Al12
; T, U;ﬂ e @) P (i) 10 M,(,:/)m() ( )
and the entropy production is defined as
M(V), . (i
S = Y MO @Opwi)In—aOPw @ 5

M (pui +1)

This quantity is non-negative as can be shown using the
inequality —In X > X — 1. Indeed,
My Dol +1)
Mo ()P ()
= 3 (M, 0)pui + 1) = MO, (D)pw(D)) = 0.

v,m,m’

OIS M,&f,i,/a)pmf(i)(

v,m,m’

It is zero when detailed balance is satisfied, i.e., when

M ()P (i) = M) (D) pmli + 1). (A14)
The entropy production can also be rewritten as

M(V), D) o (i

D= Y MY )pu(dhn w

v,m,m’ Mm’m(l)pm(l)

m( +1
=3 pati+ Hn 22T @+ (A15)
—~ Pm(i)

The first term is the non-negative term that survives in the
continuous time limit (see, e.g., Ref. [37]) while the second
one is negative and vanishes. A similar expression was also
found in Refs. [38,39].
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