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Outline

I Introduction
I Shells:

I chart
I shear-membrane-bending and membrane-bending models
I example forms

I Two proposals for discussion:
I geometry: chart object for describing shell geometry
I discretisation: projection/reduction operators for

implementation of generalised displacement methods

I Summary
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So far...

I dolfin manifold support already underway, merged into trunk
[Marie Rognes, David Ham, Colin Cotter]

I I have already implemented locking-free (uncurved) beams
and plate structures using dolfin manifold

I Next step: curved surfaces, generalised displacement methods
(?)

I Aim of my talk is to start discussion on the best path
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Why shells?

I The mathematics: Shells are three-dimensional elastic bodies
which occupy a ‘thin’ region around a two-dimensional
manifold situated in three-dimensional space

I The practical advantages: Shell structures can hold huge
applied loads over large areas using a relatively small amount
of material. Therefore they are used abundantly in almost all
areas of mechanical, civil and aeronautical engineering.

I The computational advantages: A three-dimensional problem
is reduced to a two-dimensional problem. Quantities of
engineering relevance are computed directly.
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Figure : British Museum Great Court. Source: Wikimedia Commons.
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Figure : Specialized OSBB bottom bracket. Source: bikeradar.com
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A huge field

There are many different ways of:

I obtaining shell models

I representing the geometry of surfaces on computers

I discretising shell models successfully

And therefore we need suitable abstractions to ensure generality
and extensibility of any shell modelling capabilities in FEniCS.
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Two methodologies

Mathematical Model approach:

1. Derive a mathematical shell model.

2. Discretise that model using appropriate numerical method for
description of geometry and fields.

Degenerated Solid approach:

1. Begin with a general 3D variational formulation for the shell
body.

2. Degenerate a solid 3D element by inferring appropriate FE
interpolation at a number of discrete points.

3. No explicit mathematical shell model, one may be implied.

J. S. Hale
Shells and FEniCS - FEniCS Workshop ’13 8



Mathematical model
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Mathematical model

shear-membrane-bending (smb) model

Find U ∈ Vsmb:

h3Ab(U, V) + hAs(U, V) + hAm(U, V) = F(V) ∀V ∈ Vsmb (1)

membrane-bending (mb) model

Find U ∈ Vmb:

h3Ab(U, V) + hAm(U, V) = F(V) ∀V ∈ Vmb (2)
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Discretisation

smb models vs mb models

I smb model takes into account the effects of shear; ‘closer’ to
the 3D solution for thick shells, matches the mb model for
thin shells.

I Boundary conditions are better represented in smb model;
hard and soft supports, boundary layers.

I smb U ∈ H1(Ω) vs mb U ∈ H2(Ω)
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Mathematical model

Let’s just take a look at the bending bilinear form Ab for the mb
model:

Ab(U, V) =
∫

Ω
ραβHαβγδ

b ργδ dA (3a)

ραβ := ϕ,αβ · t
1
j
(u,1 · (ϕ,2 × t)− u,2 · (ϕ,1 × t))

+
1
j
(u,1 · (ϕ,αβ × ϕ,2 − u,2 · (ϕ,αβ × ϕ,1))

− u,αβ · t

(3b)

Hαβγδ
b :=

Eh3

12(1− ν2)

(
ν(ϕ,α · ϕ,β) + . . .

)
(3c)
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Geometry

Continuous model

Terms describing the differential geometry of the shell mid-surface.
The mid-surface is defined by the chart function.

Discrete model

We do not (usually) have an explicit representation of the chart. It
must be constructed implicitly from the mesh and/or data from a
CAD model. There are many different ways of doing this.
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Geometry

Proposal 1

A base class Chart object which exposes various new symbols
describing the geometry of the shell surface. Specific subclasses of
Chart will implement a particular computational geometry
procedure. The user can then express their mathematical shell
model independently from the underlying geometrical procedure
using the provided high-level symbols.
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shell_mesh = mesh("shell.xml")

normals = MeshFunction (...)

C = FunctionSpace(shell_mesh , "CG", 2)

chart = Chart(shell_mesh , C,

method="patch_averaged")

chart = Chart(shell_mesh , C,

method="CAD_normals", normals=normals)

...

b_cnt = chart.contravariant_basis ()

b_cov = chart.covariant_basis ()

dA = chart.measure ()

a = chart.first_fundamental_form ()

...

A_b = ...
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Current discretisation options

mb model:

I H2(Ω) conforming finite elements

I DG methods

smb model:

I straight H1(Ω) conforming finite elements

I mixed finite elements (CG, DG)

I generalised displacement methods
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A quick note

For simplicity I will just talk about the smb model reduced to
plates, the chart function is the identity matrix; considerably
simpler asymptotic behaviour but concepts apply to shells also.
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Locking
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Locking

Inability of the basis functions to represent the limiting Kirchhoff
mode.
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Move to a mixed formulation
Treat the shear stress as an independent variational quantity:

γh = λt̄−2(∇z3h − θh) ∈ Sh

Discrete Mixed Weak Form

Find (z3h, θh, γh) ∈ (V3h,Rh,Sh) such that for all
(y3h, η, ψ) ∈ (V3h,Rh,Sh):

ab(θh; η) + (γh;∇y3 − η)L2 = f (y3)

(∇z3h − θh; ψ)L2 − t̄2t̄2

λ
(γh; ψ)L2 = 0

t̄2

t̄2

J. S. Hale
Shells and FEniCS - FEniCS Workshop ’13 19



Move back to a displacement formulation

Linear algebra level: Eliminate the shear stress unknowns a priori
to solution [

A B
BT C

]{
u
γ

}
=

{
f
0

}
(5)

To do this we can rearrange the second equation and then if and
only if C is diagonal/block-diagonal we can invert cheaply giving a
problem in original displacement unknowns:

(A + BC−1BT)u = f (6)
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Currently, this can be done with CBC.Block TRIA0220, TRIA1B20
[Arnold and Brezzi][Boffi and Lovadina]
https://answers.launchpad.net/dolfin/+question/143195 David Ham, Kent Andre-Mardal, Anders Logg, Joachim
Haga and myself

A, B, BT, C = [assemble(a), assemble(b),

assemble(bt), assemble(c)]

K = collapse(A - B * LumpedInvDiag(C) * BT)
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Move back to a displacement formulation

Variational form level:

γh = λt̄−2Πh(∇z3h − θh) (7)

Πh : V3h ×Rh → Sh (8)

giving:

ab(θh; η) + (Πh(∇z3 − θ);∇y3 − η)L2 = f (y3) (9)
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Proposal 2

A new class Projection in UFL that signals to FFC that a
projection between FunctionSpace objects is required. This
requires additions in DOLFIN, UFL, FFC and FIAT.
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MITC7
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...

V_3 = FunctionSpace(mesh , "CG", 2)

R = VectorFunctionSpace(mesh , "CG", 2, dim=2) +

VectorFunctionSpace(mesh ,"B", 3, dim=2)

S = FunctionSpace(mesh , "N1curl", order=2)

Pi_h = Projection(from=R, to=S)

...

U = MixedFunctionSpace([R, V_3])

theta , z_3 = TrialFunctions(U)

eta , y_3 = TestFunctions(U)

a_s = inner(grad(z_3) - Pi_h(theta), grad(y_3)

- Pi_h(eta))*dx

J. S. Hale
Shells and FEniCS - FEniCS Workshop ’13 25



Summary

I A big field with lots of approaches; need appropriate
abstractions (inc. other PDEs on surfaces)

I Proposal 1: Expression of geometric terms in shell models
using a natural form language which reflects the underlying
mathematics

I Proposal 2: Effective discretisation options for the
implementation of generalised displacement methods
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Thanks for listening.
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