GALOIS ACTION ON Q-ISOGENY CLASSES
OF ABELIAN L-SURFACES WITH QUATERNIONIC
MULTIPLICATION

SANTIAGO MOLINA

AssTrACT. We construct a projective Galois representations attached to an
abelian L-surface with quaternionic multiplication, describing the Galois action
on its Tate module. We prove that such representation characterizes the Galois
action on the isogeny class of the abelian L-surface, seen as a set of points of
certain Shimura curves.

1. INTRODUCTION

Let L be a number field. An abelian variety A/L is called a abelian L-variety
if for each o € Gal(L/L) there exists an isogeny p, : A°—A such that ¢ oy, =
to o Y7 for all ¥ € End(A). The current interest on abelian L-varieties began,
with L = Q, when K. Ribet observed that absolutely simple factors of the modular
Jacobians J;(N) are in fact abelian Q-varieties [2]. Actually, after the proof of
Serre’s conjecture on representations of Gal(Q/Q) [3, 3.2.47], every so-called building
blocks (namely those Q-varieties whose endomorphism algebra is a central division
algebra over a totally real number field F' with Schur index ¢ = 1 or ¢ = 2 and
t[F : Q] = dim A), is an absolutely simple factors up to isogeny of a modular
Jacobian Ji (N).

In the dimension one case, we can think elliptic L-curves as generalizations of
elliptic curves defined over L. Indeed, given an elliptic L-curve E (without Complex
Multiplication) we can define a projective representation

(1.1) p : Gal(L/L) — GL2(Qr)/Q;,

generalizing the classical representation on the Tate module of an elliptic curve over
L.

In the dimension two case, we have a similar situation with the so-called fake
elliptic curves or abelian surfaces with quaternionic multiplication (QM), namely,
pairs (A,?) where A is an abelian surface and ¢ is an embedding of a quaternion
order O into its endomorphism ring. If we set A = F x E with O = M5(Z) and the
obvious embedding into End(E X E), we recover the classical dimension one setting.
In this paper we shall construct a map p(4,,), attached to an abelian L-surface with
QM (A4,7), of the form

pag : Gal(L/L) — (O ® Ay)* /(End(4,7) ® Q)™

where A is the ring of finite adeles and End(A,1) is the set of endomorphisms
commuting every element of the image of 2. The f-adic component of p(4,,) will
coincide with the projective representation of (1.1) in the classical scenario. As well
as in this classical setting, the map p(4,,) will depend on the choice of a basis of
all Tate modules TyA. We will see that this choice is equivalent to the choice of an
isomorphism of O-modules ¢ : Ay — B/O (Lemma 2.2), where Ay, is the set of
torsion points of A and B = O ® Q is the corresponding quaternion algebra over
Q. Hence, once the choice of ¢ is provided, we will denote the corresponding map

as P(Ap):
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It is easy to deduce that, given an abelian L-surface with QM (A4,2), any pair
(A’,4") L-isogenious to (A,1) is also an abelian L-surface with QM. This implies
that the L-isogeny class of (A4,7) has a well defined action of Gal(L/L). The main
goal of this paper is to describe such Galois action by means of the map p(4,,). In
order to do that, we will consider the L-isogeny class of (A,1) as a set of L-rational
points of the certain Shimura curve Xr. By means of the moduli interpretation of
Xr, the Galois action on the isogeny class will be translated into a Galois action on
this set of infinitely many points. We will characterize this set of points as a double
coset space (Proposition 3.3) and finally, in Theorem 4.2, we give a description of
the Galois action by means of the map p(4,,)-

The article is structured as follows: In §2 we introduce abelian L-surfaces with
QM and the map p(4,,,), we give some of its properties distinguishing between
the Complex Multiplication (CM) case and the non-CM case. In §3 we introduce
Shimura curves Xr and their moduli interpretation, moreover, we characterize the
isogeny class of an abelian surface with QM as a double coset space with a concrete
embedding into Xp. In §4 we present our main result describing the Galois action
on the isogeny class of an abelian L-surface with QM (A,1) by means of the map
P(Ap)- In 85 we discuss about distinct moduli problems that the Shimura curve
Xr solves and the reinterpretation of our main result in these new terms. Finally,
in §6 we give a complete description of the CM case characterizing the map p(4.,,)
via Class Field Theory.

1.1. Notation. Let Z denote the completion of Z, hence Z = @(Z/NZ). Let Ay
denote the ring of finite adeles, namely Ay = 7 ® Q. Note that Q/Z = lignZ/NZ7
therefore

End(Q/Z) = Hom(lim(Z/NZ),Q/Z) = lim Hom(Z/NZ,Q/Z)

= lim Hom(Z/NZ,Z/NZ) = §im(Z/NZ) = L.

Let B be an indefinite quaternion algebra over Q of discriminant D, and let O be an
Eichler order in B. Let G be the group scheme over Z such that G(R) = (O°??PQR)*
for all rings R, where O°PP is the opposite algebra to O. Note that the group G(Ay)
does not depend on the Eichler order O chosen since it is maximal locally for all
but finitely many places.

Write O = O ® Z, then me have the isomorphism O = @1((’) /NO). Moreover
lim(O/NO) = B/O as O-modules. By the same argument as above, this implies
that Endp(B/O) = O°PP. Hence we can identify G(As) = (Endp(B/0) @ Q)*.

Throughout this paper, we will denote End” := End ® Q.

2. ABELIAN L-SURFACES WITH QUATERNIONIC MULTIPLICATION

An abelian surface with QM by O is a pair (A,2) where A is an abelian surface
and ¢ is an embedding O — End(A), optimal in sense that +(B) N End(A) = +(0).
If the order O is clear by the context, we will call them just QM-abelian surfaces.
Let us consider the subring

End(A4,:) = {) € End(A4) : Ao(o) =1(0)o A, for all o € O}.

If A is defined over C, End(A4,2)° can be either Q or an imaginary quadratic field
K, in this last situation we say that (A,+) has complex multiplication (CM).

Definition 2.1. Let M/L/Q be number fields. A abelian L-surface with QM by O

is an abelian surface with QM by O (A, 1) over M such that, for all o € Gal(M/L),

there exist an isogeny p, : A° — A, such that p, 01(0)” =12(0) o u, for all 0 € O.
Given an abelian L-surface with QM we shall construct a map

P(Ang) - Gal(L/L) — G(Ay)/End’(A,1)*
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that describes the Galois action on the Tate module. In order to do this, we will
fix an isomorphism ¢ : A;, — B/O. The following result shows that to choose
such an isomorphism ¢ is equivalent to choose a basis {1, @2, ©3, 4} of the Tate
module T(A) = Hom(Ay,,, Q/Z).

Lemma 2.2. Given a basis {@;}i=1..4 of T(A), there exists a Z-basis {€;}i=1...4 of
O such that
Aoy — BJO; P Y7 gi(Pe
i=1--4
is a O-module isomorphism. Analogously, given a O-module isomorphism ¢ :
Aior — B/O, any Z-basis {e;}i=1..4 of O provides a basis {p;}i=1...a of T(A)
satisfying ¢(P) = 3i_; ¢i(P)e;

Proof. Since {¢;}i=1...4 is a basis, the map Ao, — (Q/Z)* is an isomorphism. Then
there exists a unique sequence {P, }neny C Ator such that o;(Py,) = %611 Since A
has QM by O, we know that A[n] ~ O/nO. Thus there exists e; € O such that
@i(1(e;)Py) = %6} (in particular e; = 1). We claim that {e;};—1...4 form a Z-basis
for 0. Indeed, for any o € O, there exists n; € Z such that ¢;(1(a)P,) = 7%, thus

pill@)P) =i (1| D nies LT 2 =0
j=1---4 j=1--4
Since {@;}i=1..4 form a basis and P, generates A[n] as O-module, we conclude
o= Zj:1~-4 nje; and {e;};—1..4 form a Z-basis for O.
Finally, we consider the well defined morphism ¢ and let & =3 =14 M5€5 € O,
then

e((a)P,) = Z nje; (1(ej)Py) e; = Z 5]el = Z nie; = op(Py).
ij=1.-4 it T4

Since P, generates A[n] as a O-module, we conclude that ¢ is a O-module isomor-
phism.

Analogously, given a O-module isomorphism ¢ : A, — B/O and given a Z-basis
{€i}i=1...a of O, we define the morphism ¢;(P) = z;, where p(P) =Y., , z;e;.
It is clear that {(;};=1...4 provides a Z-basis of Hom(A;r, Q/Z). O

Since A/M is an abelian L-surface with QM, we can fix isogenies i, : A7 — A,
for all o € Gal(L/L). We denote p(a,, ,)(c) the element in End(B/0) satisfying

(o (P7)) = @(P)p(a,p)(0), forall Pe Ay
We compute that, for all o € O,
(p(P)) Pane)(0) = @lue(((@)P)7)) = o(po(1(a)”(P7))) = o(U@)ps (P7))
ap(pie(P7)) = o (p(P)p(a)(9)) -
Thus p(a,,4)(0) € Endo(B/0O). Since pi, has finite kernel, we deduce that p(4 (o) €
Endg,(B/0O)*. Once we identify Endy(B/0)* with G(A}), we have a map

PAnp) " Gal(E/L) — G(Af).
This map may depend on the choice of the isogenies u,, nevertheless we can con-
sider the quotient G(Af)/End’(A,7)*, where End’(A4,7)* is embedded in G(A ;) by
means of the natural embedding
©* :End’(A4,1)* < G(Af) = End)(B/0)*; e*N) =X =gpodop L
Hence the composition with the quotient map, gives rise to a map of the form:
P(Ang)  Gal(L/L) — G(Ay)/End’(A4,2)*.

Lemma 2.3. The map p(a,,) s independent on the choice of the isogenies fis .
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Proof. Let p. : A° — A be another isogeny. Then )\, := mp; opy €
End’(A,2)*. We denote by P(A,p) the element in G(Ay) obtained using pg in-

stead of u,. Thus we have:
(P)P(ang) (@) = ous(P7) = ¢(Ae (1 (P?))) = (1o (P7))A;
= @(P)P(An,p)(0)A;-
Thus pf 4, 1(0) = Pa,e)(0)A; and
ﬁI(A,z,ap) (U)EDdO(A, Z) X = ﬁ(A,z,Lp) (U)Endo (A7 Z) x 5
which proves our assertion. O

Note that G(A)/End’(A,2)* is a group in the non-CM case. Nevertheless, in
the CM case, End(4,7)" = K an imaginary quadratic field, hence K* it is not
normal in B(Ajf)*.

The embedding End(A, 1) < O°PP gives rise to an embedding of groups, End(A, 1) <
G(R), for all rings R. Let us denote by N4/Z be the normalizer group scheme of
End(A4,2) in G, namely, the group scheme over Z such that N4 (R) is the normal-
izer of End(A,1) in G(R). Note that Ny = G, in the non-CM case. Moreover, if
(A,2) has CM by the imaginary quadratic field K, then Na(Q) = K> U jK*, with
§? € Q* and jk = kj for all k € K*. In any case Na(Af)/End’(4,2)* is now a
group.

Lemma 2.4. The map p(a,,.,,) factors through

N
P(A,10)

P(Ang) : Gal(L/L) =% Na(Ay)/End”(4,2) < G(Ay)/End’(A,2)*
Moreover, the map p&ﬂ#) is a group homomorphism.

Proof. On the one side, for all ¢ € Gal(L/L) and A € End(A4,1) we have

P(Ane) ()N P () ! € End(A,2)°.
Indeed,

(degﬂa>(p(P)ﬁ(A,z,@)(U))‘*ﬁ(A,z,ap)(U)_l = (deg No)‘p()‘(MU(PU)))ﬁ(A,Z,go)(0)_1
)

= ot Apa (P )

= (i) (P))

*

= @) (o))

where clearly (u},/)\ug)‘fl € End®(A, 7). Therefore PAnp)(0) € Na(Ay).
On the other side, one checks that
P (OT) " P(a0,0) (0)P(A0,0) (T)
acts on TA® Q := (H; T,A) ® Q in the same way as does

can(0,7) = (1/ deg(pior)) ob iy, € (End(A,1) ®z Q)* = End’(A,)*.

In particular, the quotient p(4, ,)(c) is a group homomorphism. O

Remark 2.5. Assume that the discriminant D = 1, thus the quaternion algebra
B = M5(Q). An abelian surface with QM by O = M3(Z) is the product A = E x E,
where E is an elliptic curve. In the particular case that E is defined over L (thus
clearly A = E x E is an abelian L-surface with QM), the representation pa, )
is just the quotient modulo End®(A,2)* = End®(E)* of the classical action on the
Tate module
pE: Gal(L/L) — GLo(Z) = HGLQ(Zg) — GLa(Af).
¢
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3. SHIMURA CURVES AND ISOGENY CLASSES

Assume that Oy is a maximal order in B, let I' be an open subgroup of @()X =
G(Z). We say that two Op-module isomorphisms ¢, ¢’ : Ay — B/Oy are T'-
equivalent if there exists a v € T' such that ¢’ = ¢vy. The Shimura curve Xr,
is the compactification of the coarse moduli space of triples (A,1, @), where (A, 1)
are abelian surfaces with QM by Oy and ¢ is a I'-equivalence class of Op-module
isomorphisms ¢ : A = B /Oo. The curve Xr is defined over some number

field Ly. If k is a field of characteristic zero, given P € Xr(k) corresponding to
the isomorphism class of a triple (A,7,$)/k, its Galois conjugate P? € Xr(k), for
o € Gal(k/k), corresponds to the isomorphism class of (47,17, @), where
07 A7, = B/Oo;  ¢7(Q7) = #(Q).

Thus, a k-rational point P on Xt corresponds to the isomorphism class of a triple
(A,1,®)/k which is isomorphic to all its Gal(k/k)-conjugates.

The complex points of the Shimura curve are in correspondence with the double
coset space

Xe(€) = (\GA)/G@ U fewns), T ={( 4, 1) €CLam®)}.

The triple (Ag,14,®4) over C corresponding to g = (goo,gy) € G(A) is Ay =
(B ® R),../1,,, where I,, = Oggy N B and (B ® R), = My(R) with complex
structure hg__

hg.. : C = Ma(R); ng;( . ! )goo;

the embedding 2, : Oy — End(Ay), is given by 14(a)(b® z) = ab® z; and @, is the

[-equivalence class of ¢, : (Ag)ior = B/Iy, — B/Og, py(b) = ngTl. We compute

that

EndO(Ag, )" = {y€Autp(BOR): vl ®Q=1I;, ®Qand yhy = hg_ 7}
= {ye€GR): yB=Bandvh, v ' =h,_}

= {7€GQ: yhg v =he}

{7 €G(Q): 9195 €T}

Remark 3.1. In most of the literature, objects classified by the Shimura curve Xr
are triples (A, ,1), where (A, 1) is an abelian surface with QM by Oy as above and 1

is a D-equivalence class of Og-module isomorphisms 1 : T(A) = Hom(Asor, Q/Z) =

Oy. Tt is clear that this interpretation is equivalent to ours, since for any ¢ : A, =
B/Oy we have the corresponding isomorphism

¢ : T(A) = Hom(Ayor, Q/Z) = Hom(B/0y,Q/Z) ~ Oy.

Remark 3.2. In the particular case that I' = Ty = ker(G(Z) — G(Z/NZ)), to
give a I'-equivalence class of isomorphisms ¢ : Ay — B/Qy is equivalent to give
an isomorphism ¢y : A[N] = Oy/NQOy, namely, a level-N-structure. This is the
classical Shimura curve situation.

We say that two triples (A,, @) and (A’,+/,¢’) are isogenious if there exist an
isogeny ¢ : A’ — A, satisfying ¢ o /() = 2(a) 0 ¢, for all @« € O. We denote by
¢ : (A,7') = (A,1) the isogeny with the corresponding compatibility with respect
to 2 and /.

Let P € Xr(C) be a point corresponding to (A4,2,#). Let us denote by [P]
the C-isogeny class of (A,2,$)/C in Xr, namely, the set of points Q@ € Xp(C)
parametrizing triples (A’;+/, @) /C where (A’,+') is isogenious to (A4,1).
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Proposition 3.3. Let P = [g] = [goo, 1] € (TwcI\G(A))/G(Q) C Xr(C). Then we
have the following bijection

Vg : T\G(Af)/End’(Ag,19) [Pl g5 = [g00, 97]-

Proof. The non-CM case is described in [1, Lemma 1], we give here a proof that
works in any case. Recall that (Ag_, 2., @) is the triple corresponding to P.
For any gy € G(Ay), there exists n € Z such that I,,n C Oy, therefore we have the
isogeny

Agoo!]f = (B ®R)gm/lgf — (B ®R)gm/00 =Agy., br—rnb,

which is clearly compatible with the embeddings 7, and 12, _,, since the inclusion
I;,m C Oy is a monomorphism of Og-modules. This implies [goo, g7] € [P], for all
gr € G(Ay).

Conversely, any isogeny (Ag_g,,19:_g;) = (Ag.., 24, ) induces an equality of com-
plex structures (B®R), = (B®R),_, that implies that g/, = ['«goo. Therefore
the corresponding point [g., g7] has a representant of the form [go, g}] in the double
coset space (I'cI'\G(A))/G(Q).

We conclude that we have a surjective map

N\G(Af) — [Py g5 — [900> 91);

and the result follows from the fact that [goc, 9] = [900, 9%] In (T I\G(A))/G(Q)
if and only if there exists 8 € G(Q) such that gy = ¢} and g8 € 'scgoo, hence
ﬂ 6 EndO(Agocﬂlgoo)X' |:|

Remark 3.4. Let us consider the natural map

Xr 2 (ToT\G(A)/G(Q) 5 To\GR)/G(Q),  [9ocs 95— [g5c]-
Then it is clear that, if P = [gs,gy], the isogeny class [P] is the fiber of 1) over
[900]-

4. GALOIS ACTION ON ISOGENY CLASSES

Assume now that (A,?) is an abelian L-surface with QM by Oy, let (4,1, 9) be

a triple corresponding to the point P € Xr(Q). First we show that any (A’,7)
isogenous to (A4,7) is an abelian L-surface with QM.

Lemma 4.1. Let (A,1)/L be an abelian L-surface with QM and assume that (A’,') /L
is isogenous to (A,1). Then (A’,7')/L is an abelian L-surface with QM.

Proof. Let o € Gal(L/L). Since (A,7) is a L abelian surface with QM, there exists

an isogeny (A%,17) %3 (A,1). Fix an isogeny (A’,7') 2 (A,2). Thus by conjugating

¢ by o and composing with ¢ oy, one obtains
(A)7,()7) 5 (A7,07) £ (4,0) 25 (4',7).
Hence (A’,7')/L is an abelian L-surface with QM. O

Note that, since P and so (4,12) are defined over Q, the C-isogeny class coincide
with the Q-isogeny class [P]. Moreover, the above lemma implies that Gal(L/L)
acts on [P]. Indeed, if Q € [P] corresponds to (A’,7,¢’) and o € Gal(L/L), then
Q° parametrizes ((A")7, ()7, (¢')7). Since (A’,7’) is an L-abelian surface with QM
by the lemma, there exists pu. : ((4")7,(+')7) — (A’,7). This implies ((A")7, (¢')?)
is isogenous to (A,1), hence Q° € [P]. The main theorem of this section relates this
action with the map p(4,,,) introduced in §2 by means of the characterization of
[P] given in Proposition 3.3.
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Theorem 4.2. Assume that P = [gx, 1] € Xr corresponds to a triple (A,1,¢),
where (A,1)/Q is an abelian L-surface with QM and ¢ is the I'-equivalent class of
the natural isomorphism

("2 Ator = ((B ®R)gm/00)t0r — B/007
Then the map p(a ., : Gal(L/L) — G(Ay)/End®(A,2)* constructed by means of
© satisfies
Y90 (95)7 = Vg (97P(2,0.0) (7)) € [P],
for all g, € G(Ay) and o € Gal(L/L).

Remark 4.3. Note that, by Lemma 2.4, the image p(a,, (o) lies in the com-
mutator of End’(4,7) in G(Ay), thus the product 9rP(Aap) (o) is well defined in
I\G(Af)/End’(4,1).

Proof. Recall that the abelian surface corresponding to g (gs) is given by the
complex torus A,, = (B&R),_/I,,, where I, = BNOyg;. Moreover, considering a
representative of I'g fEndO(A, 1)* such that ngl € Oy, the Oy-stable isogeny between
A and Ay, is given by

bg; A= (BR), /Oy — (B&R), /I, = Ay, br—D.
Also recall that a representative of ¢, is given by

Pg; : (Ag)ior = (BOR)g /Iy )tor = B/Ig; — B/Op, b+ byt

Thus one checks that g, o ¢y, = gpgjil : Agor — B/Op.
For any o € Gal(L/L), the point 1,__ (g5)° corresponds to the triple (A7, 15,,27,)-
We have the following isogenies

o

Pqy o g5
(A9 20 ) +— (A7,17) =5 (A1) — (Agf,zgf),

gr’ gr
thus (A7 7 ) and (A,¢) are linked by the isogeny ¢g, o pY. This implies that, for
all P'€ Ay, we have o(P)ia (Y. (65)7) " = 05, (98, (1 (P))), hence
(1o (PO )Yyt (g (97)7) ™" = deg(po)py, (67, (P7))
P(P)p(ane) (0)0y L (g (97)7) ™" = deglpo) @], (b, (P)7)
deg (o) pg, (09, (P))
= deg(uo)p(P)g;

We conclude g7p(a,1,0)(0) = 95t (Vg (97)7), thus ¥y (950(a,0,0)(0) = Py (95)7
O

5. CHANGE OF MODULI INTERPRETATION

In section §2, we defined an abelian L-surface (A,:) with QM by any Eichler
order O and defined the corresponding representation p4, ) attached to a fixed
O-module isomorphism ¢ : A, — B/O. Nevertheless, we used a maximal order
Oy to define the Shimura curve X and to describe its moduli interpretation as the
space classifying triples (Ao, 1, §o), where (Ag,29) has QM by Op. In this section
we shall change this moduli interpretation for some of this Shimura curves Xt in
order to classify abelian surfaces with QM by O.

Thus from now on O will be an Eichler order in B of level N and Oy a maximal
order such that O C Oy. Fix the embedding A : O < Oy. Let ' be now an open
subgroup of O* = (0O ® Z)*. Since O is an open subset of G(Z) = OF by means
of A, the subgroup I is also an open subgroup of G(Z) Thus we can consider the
Shimura curve Xr.
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Proposition 5.1. We have an equivalence of moduli interpretations for the Shimura
curve Xr. It either classifies:
(i) Triples (Ao,0,%0), where (Ag,10) is an abelian surface with QM by Oy
and @q is a T-equivalence class of Op-module isomorphisms g : (Ao)tor —
B/0Oy.
(ii) Triples (A,1, @), where (A,1) is an abelian surface with QM by O and @ is
a T-equivalence class of O-module isomorphisms ¢ : Azor — B/O.

In order to prove this proposition we will need the following lemma. Note that
the embedding A : O — Oy gives rise to a morphism A : B/O — B/QOy.

Lemma 5.2. There exists a one-to-one correspondence between triples (A,, ),
where (A,1) is an abelian surface with QM by O and ¢ is a O-module isomorphism
¢ : Ator = B/O, and triples (Ao, 10, ¢0), where (Ag,10) is an abelian surface with
QM by Oy and pg is a Op-module isomorphism @g : (Ag)ter — B/Op. A triple
(4,2, ) corresponds to (Ag, 1, o) if there exists an isogeny ¢ : A — Ay, such that
woop=Aoy and por(a) =1 (M) o @, for all « € O.

Proof. Given (4,1, ¢), let us consider the subgroup C := ¢~ (ker(B/O A B/0y)) C
Aior. Therefore, we can construct the abelian surface 4g = A/C and the corre-
sponding isogeny ¢ : A — Ag. Since O C Oy, for all a« € O, we have a(ker ) C
ker A\, hence, 1(a)C' C C and the embedding ¢ gives rise to an embedding 1o : O <
End(Ap). Moreover, the O-module isomorphim ¢ gives rise to a O-module isomor-
phism ¢ that fits into the following commutative diagram:

Ator %’ B/O

| )
(AO)tor = Ator/c L B/Oo

Hence ppo¢ = Aop. Moreover, the fact that (Ag)tor =~ B/Op as O-modules implies
that 19 can be extended to an embedding ¢y : Oy — End(Ag). Thus (Ag,) has
QM by Oy. We have constructed the triple (Ay, 29, po) corresponding to (A, 1, p).

Finally, given (Ay, 10, ©o), let us consider CV := ¢y * (ker(B/Oy i B/0)), where
AV : B/Og — B/O is given by X\ (b) = [Og : O]A"1(b). We define A := Ay/CV,
thus the isogeny with kernel C'V is the dual isogeny of some ¢ : A — Ag that fits into
the above commutative diagram for some O-module isomorphism ¢. We construct

the triple (A,1,¢) corresponding to (Ao, 2, @o) as in the previous situation.
O

Due to this previous lemma we can easily prove the above proposition:

Proof of Proposition 5.1. We know that the Shimura curve Xr classify triples (Ag, 2, Po)
as in (7). By the above Lemma, given a representative g of the I'-equivalence class
@0, there exists a triple (4,1, ¢), where ¢ is a O-module isomorphism. It is clear
that the I'-equivalence class @ corresponds to a I'-equivalence class @. O

Definition 5.3. A triple with QM by O is a triple (4,1,¢), where (A,?) is an
abelian surface with QM by O and ¢ is a O-module isomorphism ¢ : A, — B/O.
A L-triple with QM by O is a triple (4,1, ¢) with QM by O such that (A,:) is an
abelian L-surface with QM.
We denote the one-to-one correspondence of Lemma 5.2 by
Ago : {Triples with QM by O} — {Triples with QM by Oy}

Note that, given a triple (A, 1, ) with QM by O, one can construct the projective
representation B
P(Ang) t Gal(L/L) — G(Ay)/End’(A4,2)*.
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The following result relates the representations attached to triples associated by the
correspondence Agf’.

Lemma 5.4. Let (A,1,¢) be a L-triple with QM by O. Assume that Ago (A2, ) =

(Ao, 20, p0), then we have that (Ao, 10, po) is a L-triple with QM by Op and
P(A,0) = P(Aoy10,00)>

when we identify G(Ay) = End(B/O)* = Endg, (B/Og)* by means of A.

Proof. We know that there exists an isogeny ¢ : A — Ag, such that pgo¢p = Aoy

and ¢ o 1(a) = 19(A(a)) o ¢, for all & € O. Since (4,1) is an abelian L-surface

with QM, there exists isogenies y, : A° — A, for all o € Gal(L/L), such that
e ©2(0)7 = 1(0) o s for all o € O. The composition

10 A3 O g By g 0y A,
satisfies
Ko ©0(X(0))7 = dops0(¢7)" 01(A(0))7 = ¢o s 01(0)7 0 (¢7)
= ¢o1(0)opso(¢7) =19(A\0))opl, foralloecO,

thus 2 o1g(a)? = 19(a) o p? for all a € Op. This implies that (Ag,19) is an abelian
L-surface with QM. -
Moreover, for all o € Gal(L/L) and P € (Ao)tor, we have

0o(Ha(P7)) = @o(¢o s o (¢7)"(P7)) = Ae(ke (¢ (P)7)))
= AN@(9"(P)P(Anp)(0) = deg(8)o(P)p(a,,0) (0)-
This implies p(4,1,)(0) = P(Ag,10,00)(T)- |

Remark 5.5. As a consequence of this lemma, we obtain that Theorem 4.2 also
applies if we change the maximal order Oy by a not necessarily maximal Eichler
order O, considering the moduli interpretation (i¢) of Proposition 5.1.

6. COMPLEX MULTIPLICATION ABELIAN K-SURFACES WITH QM

In this section we shall deal with the Complex Multiplication (CM) case. Hence,
only for this section, we assume that the abelian surface (A4, 2) with QM by O has also
CM by K, so is to say End®(A4,2) = K an imaginary quadratic field. The following
result describes the projective representation p&)lm (and therefore p(4 ) in the

CM case:

Proposition 6.1. Assume that End(A,:) = Ok, an order in K. We have the
following results
(i) Any abelian surface (A',2") with QM by O and CM by K is isogenious to
(A,1).
(i) We can chose a representative of the isomorphism class of (A,2) defined
over Q. Moreover, it is an abelian Q-surface with QM. B
(iil) Given any isomorphism ¢ : Aior — B/O, the restriction to Gal(K/K)
of the corresponding projective representation pé\g“o) factors through the
inverse of the Artin map Art : Ax f/KX — Gal(K%/K), namely, we
have the following commutative diagram

N
P(A,1,0)

Gal(Q/Q) Na(Ag)/ K>

Art!

Gal(K/K) — Gal(K%/K) 4>A}<(’f/KX.
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(iv) The representation pé\;\ 1) Jactors through Gal(K%/K) x Gal(K/Q) send-

ing the generator of Gal(K/Q) to the class jK*, where j € Na(Q) is any
element satisfying j2 € Q* and jk = kj, for all k € K*.

Proof. We have just seen that abelian surfaces with QM by O over C are classified
by the non-cuspidal points of X .. Assume that (A,2) with CM by K corresponds
t0 [9oo, 9f] € (TowO*\G(A))/G(Q). Thus the complex structure on its tangent
space is given by an embedding h,_ : C — B°P? @ R. On the other side, we have
the natural embedding ¢4,y : End(A,1) — Endo(H1(A,Z)) = Endo(I,,) = O,
giving rise to ¥(a,,) : Ox — O°P, satisfying

Pa(K)NOPP =End’(A,1) NEndo(ta) = End(A,1) = 1(a.,)(Ok).

Since any pair ¥4, (k), k € K, and hy__(z), z € C commute in Endo(H1(A4,7Z) ®
R) = B?? @ R, we have that hgy_ is the extension of scalars of ¢4 ).

Given another pair (A’,2") with CM by K corresponding to [g, g%], by Skolem-
Noether, there exists g € G(Q), such that (4 ,) = g_lz/)(AJ)g. This implies that
9o, = 9 'hg.g and g, = geog, hence [g, g} = [9oo, 959~ "] We conclude that
(A’,7') is isogenious to (A,1) by Proposition 3.3. This proves (i).

Let o € Aut(C) and assume that (A,12) corresponds to the double coset [goo, 1].
The pair (A%,:7) satisfies End(A4,2) = End(A47,47), thus it correspond to a point
(90, 95] € Xpx by (i). Fix a O-module isomorphism ¢ : A;,. — B/O. The choice
of a representative gy such that I,, C O fixes a O-module isomorphism ¢’ : A7, —
B/O and an isogeny i, : (A%,27) — (A4,1) such that ¢(us(Q)) = ¢’ (Q)gy. Since
A¢_ is isomorphic to Ay, by means of the O-module isomorphism P +— P?, we

tor

have that ¢(u, (P?)) € o(P)O* g;. We compute that, for every A € End(4,1),

1Y Mo (P7))T = (uYoXops)” (P),  (uYoXop,)”  €End(A,1),

Therefore the map ¢(P) — ¢(ue(P?)) is in the commutator of O in @. This
implies that we can choose a representative of [g;] € O*\G(Ay) in the commu-
tator Na(Af) of End(A,1) in G(As). Hence we can suppose that g € O* N
Na(Af)\Na(Af)/K*. This double coset space is the semi-direct product of Z/2Z
and @]X(\AIX( #/K* = Cl(Ok), which is of couse finite. Thus the set of isomorphism
classes {(A7,17) : 0 € Aut(C)} is finite. This implies that (4,:) admits a model
over Q. By (ii) we deduce that (A,7) is an abelian Q-surface with QM, this proves
(i2).

Part (ii1) follows directly from Theorem 4.2 and Shimura’s Reciprocity Law [4,
Main Theorem IJ.

Finally, note first that the class jK* is an element in N4(Ay)/K* of order 2 and
Na(Ap)/K* = A /K* x(jK*). Let 0. € Aut(C) denote complex multiplication
automorphism. Since (4,1) is defined over Q, the automorphism o. acts as an
element in Gal(Q/Q) on Q-rational points of (A4,7). Recall that A = (B®R),_ /O,
where the complex structure on (B ®R),_ is given by hgy_, the scalar extension of
Yan + Ok — O°P. Complex conjugation must be the unique automorphism ~ on
(B®R) such that yohy_(z) = hy, (27¢)o07, for all z € C*. Therefore 7 corresponds
to conjugate by j since 4,y (k)j 1 bj = j T pa,y(k7°)bj, for all b € B, k € K*.
This implies that A7 = (B®R),_ ;/O = (B®R),_ /Oj and we have the following
diagram:

Hoc

P—P°c g,
Ator Ator Ator

e
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Thus (e, (P7¢)) = ¢(P)j, which implies p(4,,)(0.) = jK*. Since pé\;\ 1,p) TNADS €X-
haustively Gal(K /K) to Aj ¢/ K> by (iii), and Gal(Q/Q)/Gal(K/K) ~ Gal(K/Q),
which is generated by the image of 0., part (iv) follows. a
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