il UGS

Laboratory for Advanced Software Systems

A Formal Approach For Engineering Resilient
Car Crash Management System

Yasir Imtiaz Khan
Laboratory for Advanced Software Systems
University of Luxembourg
6, rue R. Coudenhove-Kalergi, Luxembourg

TR-LASSY-12-05

February 2012

Contents

1

2

Introduction 3
Related Work 4
Introduction to Crises Management System (Car Crash Case Study) 5
3.1 UseCasescarCrash 5

3.1.1 Use Case 1: Capture Crisis 6

3.1.2 Use Case 2: Assign Mission, 6

3.1.3 UseCase 3: Send Report 6
3.2 Formal Language Representation of Car Crash Management System 6
3.3 Interesting Properties L o 7
3.4 Entities 8
3.5 APN Model carCrash.V1 8
3.6 DREF Satisfiability Model 9
3.7 APN Model crashCrash.V2 10
3.8 APN ModelcrashCrash.V3 10
Evolution Satisfiability Function 12
Discussion 12
Appendix 16
6.1 Algebraic specifications for carCrash.V1 16
6.2 Algebraic specifications for carCrash.V2 & carCrash.V3 18
6.3 Algebraic specifications for Properties 19

Date Version Description Author(s)
2012/02/22 0.1 Initial draft of this document | Yasir Imtiaz Khan
2012/03/07 0.2 Second draft of this document | Yasir Imtiaz Khan

Table 1: Revision History

1 Introduction

"The dependability of a computer system abstractly characterises its trustworthiness” [Guelfi,
2011]. The trustworthiness basically means the degree of user confidence that system will oper-
ate as they expect and system will not fail in its normal use. Informally dependability concepts
are organized into three categories, which are attributes (availability, reliability, safety, confiden-
tiality, integrity, maintainability), threats (faults, failures, errors) and means (fault prevention,
fault tolerance, fault removal, fault forecasting) [Avizienis et al., 2004]. Resilience in informa-
tion and communication technological systems was introduced around the seventies and has been
most intensively used within the research community in the very few last years. By reviewing
the important references, we notice that word resilience, is used with a variety of definitions and
at different levels [Black et al., 1997, Mostert et al., 1995, Svobodova, 1984].

We have proposed a formal framework called DREF designed to ease the development of depend-
able systems from a software engineering perspective. This framework provides a mathematical
definition of resilience and related concepts. The intention is also that framework should allow
for being refined such that more detailed definitions of its concepts using different mathematical
structures may be introduced in a consistent way with the framework [Guelfi, 2011].

In DREF the fundamental concepts are: entities, properties, satisfiability functions, nominal
satisfiability, tolerance threshold and evolution. Entities are anything that is of interest to be
considered. It might be e.g. a program, a database, a person, a hardware element, a devel-
opment process, or a requirement document. Properties are the basic concepts to be used to
characterise entities. It might be e.g. an informal requirement, a mathematical property or
any entity that aims at being interpreted over entities. The fact that a property is satisfied by
an entity is defined by a satisfiability function having the real numbers as co-domain. In our
context, we want to consider entities whose existence (i.e. definition) may vary. Thus change is
the difference between two definitions of two entities distributed over a common evolution axis.
The intention is to allow for comparison of entities relatively to evolution axes. At the modeling
level DREF model is to be composed of 3+1 categories of models. The first three are dedicated
to the nominal view, tolerance view, the fail view and the fourth provide satisfiability view.
Intuitively, the general concept of resilience is as a property of an evolution process that is
considered to improve capabilities thus avoiding failures and reducing degradations. Roughly it
is the existence of a change toward improvement that reduces failures and tolerance needs. In
this work, we have prime focus on building a resilient system based on DREF concepts. The
generic problem we address in this report is to find a solution that allows for flexible handling
of dependability or resilience in a scientific framework supported by software engineering tools
and techniques. In order to achieve object, we are using case study of Car Crash management
system. In particular entities are system models defined in term of Algebraic Petri Nets (APN)
[Reisig, 1991] and properties are defined in terms of safety properties i.e. invariants regarding
places in the APN as defined by the model checker AIPiNA [Buchs et al., 2010].

As shown in the figure 1, we are using AIPiNA model checker for the verification of interesting
properties with respect to entities. At first we formally specify Car Crash system to Algebraic
Petri Nets and interested properties to AIPiNA property language. The AIPiNA model checker
uses as models Algebraic Petri Nets. Specifications in AIPiNA are composed of two parts: an

Car Crash Interesting
Management System Properties
(CCMS) I
Modelling Formalization
APN AIPIiNA
CCMS Model Property Language
Input Input
l 5 AIPiNA ¢ I
Model Checker
Satisfiability wit
Respect to Entity &
Property

Figure 1: DREF satisfiability model

algebraic specification, which is a set of abstract definitions of sorts and associated operations;
a Petri Net, which is represented graphically. AIPiNA and is able to decide on the satisfaction
of invariant properties on those nets. The invariants are expressed as conditions on the tokens
contained by places in the net at any state of the nets semantics. Invariants are built using first
order logic, the operations defined in the algebraic specification and additional functions and
predicates on the number of tokens contained by places.

The report is structured as follows: in section 2 we have discussed related work regarding
dependability and resilience. In this section, we have discussed definitions regarding resilience or
dependability according to various authors. Section 3 contains description about our case study.
Use case formalism is uded for the behavioral description of case study. In sub sections algebraic
petrinet models are discussed for different versions of Car Crash management system. In section
4, we have provided evolution satisfiability function; intention is to allow for comparison of
entities or properties relative to an evolution axis. In section 5 we discuss open questions that
arises from this research. Appendix is provided in section 6. In appendix section, we have
provided all the algebraic specifications for the carCrash management system and screen shots
from AIPiNA property checking results.

2 Related Work

In information and communication technological systems literature, resilience has been defined
at various levels. In dependable computing community the most agreed definition of resilience
is, the persistence of service delivery that can be justifiably be trusted, when facing changes
and mainly regarded as fault tolerance [Lepri, 2008]. Informally, ability of a system to provide
resilience and second, it is the ability to justify the provided resilience. Pragmatically resilient
systems can be viewed as open distributed systems that have capabilities to dynamically adapt,
in a predictable way, to unexpected and harmful events, including faults and errors. Engineering

such systems is a challenging issue, which implies reasoning explicitly and in a consistent way
about functional and non-functional characteristics of systems.

In [Guelfi, 2011] introduced an abstract and generic terminology defined mathematically to be
used when speaking about dependability and resiliency (called DREF). This formal framework
is defined from a software engineering perspective, which means that we define its components
such that they are useful for the development or improvement of analysis, architectural design,
detailed design, implementation, verification and maintenance phases. This formal framework
provides the necessary elements in accordance with a model driven engineering perspective that
enable the definition of a new modeling language for dependable and resilient systems. In DREF
the fundamental concepts are: entities, properties, satisfiability functions, nominal satisfiability,
tolerance threshold and evolution. Entities are anything that is of interest to be considered. It
might be e.g. a program, a database, a person, a hardware element, a development process, or
a requirement document. Properties are the basic concepts to be used to characterise entities.
It might be e.g. an informal requirement, a mathematical property or any entity that aims
at being interpreted over entities. The fact that a property is satisfied by an entity is defined
by a satisfiability function having the real numbers as co-domain. In DREF forseen events are
ensured by the evolution of the satisfiability function while unforseen events are provided by the
explicit definition of the satisfiability over the evolution axis.

3 Introduction to Crises Management System (Car Crash Case
Study)

Generally Crisis management System is the process by which an organization deals with a major
event that threatens to harm the organization, its stakeholders, or the general public. Crisis
management involves identifying, assessing, and handling the Crisis situation. The scope of this
work is limited to one particular kind of Crisis management system, which is the Car Crash
Crisis management system. According to Wikipedia Car Crash is defined as:

”A car accident or car crash is an incident in which an automobile collides with anything
that causes damage to the automobile, including other automobiles, telephone poles, buildings or
trees, or in which the driver loses control of the vehicle and damages it in some other way, such
as driving into a ditch or rolling over. Sometimes a car accident may also refer to an automobile
striking a human or animal” [Kienzle et al., 2009).

In this technical report we are using a particular kind of Car Crash management system. In
order to to keep the case study manageable, we shall use a simplified model of Car Crash man-
agement system. We used textual use cases formalism for discovering and recording behavioral
requirements.

3.1 Use Cases carCrash

In principle use-case scenario is a story about how someone or something external to the software
(known as an actor) interacts with the system. The actors involved in our case study are:
Coordinator: A person in charge of recording the Crisis information.

System Administrator: An in charge person for managing Crisis.

SuperObserver: A skilled person dispatched to the crisis scene. In our case there are two
Superboservers which are fire fighter and lifter.

3.1.1 Use Case 1: Capture Crisis

Scope: Car Crash Crisis Management System Primary

Actor: Coordinator

Intention: The Coordinator intends to record a Crisis based on the information obtained from
Capture data (Capture data can be a Fire on the Crisis location or Blockage of traffic).

Main Success Scenario:

Coordinator records Crisis and sends it to System.

1. Coordinator sends information to System as recorded.

Use case ends in success.

3.1.2 Use Case 2: Assign Mission

Scope: Car Crash Crisis Management System Primary

Actor: System Administrator

Intention: The System Administrator intends to assign a mission to Superobserver .
Main Success Scenario:

System Administrator assigns Superobserver to execute the mission.

1. System Administrator assigns a Crisis to Superobserver to execute Crisis mission.

Use case ends in success.

3.1.3 Use Case 3: Send Report

Scope: Car Crash Crisis Management System Primary
Actor: Superobserver
Intention: Send report to System after execution of the mission.

1. Superobserver sends report about executed Crisis mission.

Use case ends in success.

3.2 Formal Language Representation of Car Crash Management System

A petri net is a well-known mathematical modeling language for the description of distributed
system, where Algebraic petri nets are evolution of petri nets. Algebraic petri nets has two
aspects:

The control part, which is handled by a Petri Net.

The data part, which is handled by one or many AADTsS.

In petri nets places hold resources also known as tokens and transitions are linked to places by
input and output arcs, which can be weighted. Normally a petri net has a graphical concrete
syntax consisting of circles for places, boxes for transitions and arrows to connect the two. The
semantics of a P/T petri net involves the sequential non-deterministic firing of transitions in

the net where firing a transition means consuming tokens from the set of places linked to the
input arcs of the transition and producing tokens into the set of places linked to the output arcs
of the transition. We will be using concepts from the modelling world to represent and reason
about the notions of entity, property and satisfaction, in particular: Algebraic Petri Nets as a
modelling langage to represent entities and more generally evolving systems; the AIPiINA model
checker to model decidable properties and compute their satisfaction on APN models.

3.3 Interesting Properties

In order to prove a system to be dependable we have following set of properties, which are
availability, reliability, safety, confidentiality, integrity, maintainability [Avizienis et al., 2004].
In formal verification, we verify that a system meets a desired property by checking that a math-
ematical model of the system meets a formal specification that describes the property. In general
property is safety property, which assert that the system always stays within some allowed re-
gion. Intuitively, a property is a safety property if every violation occurs after a finite execution
of the system. We can use this fact in order to base model checking of safety properties on a
search for finite bad prefixes. Such a search can be performed using a simple forward or back-
ward symbolic reachability check [Kupferman et al., 1999]. From the dependability perspective
safety property is defined as ”the ability of the system to operate without catastrophic failure”
[Sommerville, 2001]. Informally, safety property of a system is a judgment of how likely it is
that the system will cause harm to environment or people.

In AIPiNA model checking all properties that are verified are reachability properties: a property
is a Boolean expression that can be valid or not on a single state of the Petri Net state space.
If the property does not hold for at least one state in the state space, we say that the property
is invalid, and one counterexample is returned. AIPiNA does not return trace of the transitions
fired to reach the counterexample, only counterexample is returned. In AIPiNA, an important
aspect to note is, reachability properties do not include properties defined in temporal logics,
as CTL or LTL. AIPiNA property language is inspired from language used in Helena; property
language is mainly composed of expressions. There are three types of expressions, which are
Boolean expressions, Natural expressions and Term expressions. AIPiNA property language is
equivalent to first order logic [Buchs et al., 2010].

In our case, we are interested in the safety property, i.e.

"The Crisis can exist only if it has validated Crisis reporting and Superobserver”

An important safety threat, which we will take into an account in this case study, is that
invalid Crisis reporting and Superobservers can be hazardous. Invalid Crisis reporting is the
situation that results from wrongly reported Crisis. Execution of Crisis mission based on wrong
reporting can waste both human and physical resources. In principle it is essential to validate
Crisis that it is reported correctly. Practically Superobservers are assigned to execute Crisis
mission according to their skills, for example, if there is a fire situation then it is obligatory to
assign a fire fighter. It is critical to validate Superobserver for the safe execution of mission.
What we mean from validate Superobserver is to assign a particular Superobserver(according to
his skill) to the Crisis. System should prevent from the situation where it has any one of them
is invalid.

We have safety property in the following composed property:

o Crisis can exist only if it has valid Crisis reporting
o Crisis can exist only if it has valid Superobserver

piredCrsiiDnty
[Fire, Blockage]

[$cd

[cR@ed)]

carCrash V1
[sobs(YK, Fire), sobs(NG, Blockage)]

senderisis

[system(getcrises($s), true)]

-

[1p@ec)]

Figure 2: carCrash.V1

3.4 Entities

In order to illustrate a resilient system we will present APN models for three entities represent-
ing an evolving system which models of safe Car Crash management system. Formally we have
set of entities that are:

Set of Entities

Ent = {carCrash.V1,carCrash.V2, carCrash.V3}

3.5 APN Model carCrash.V1

We start with the first entity, which we will call carCrash.V1. The APN model can be ob-
served in figure 2 and represents the semantics of the operation of a first version of Car Crash
management system. This behavioral model contains labeled places and transitions. In the
carCrash.V1 figure 2, in place CapturedCrisisData there can be two tokens of type Fire and
Blockage. These tokens are used to mention which type of data has been captured. The output
arc of recordcrises contains variable $cd of sort crisesR. Place named RecordedCrises in our
model takes this variable as its token with term cR($cd). The transition recordcrises enables
to record Crisis based on the capture data. The transition sendcrises takes $rc variable as an
input arc from Recordcrises place and the output arc contains term system ($rc,false) of sort
sys. Initially every Crisis is set to false with its captured data. The sendcrises transition pass
recorded Crisis to system for further operations.

The transition assigncrisis contains two input arcs with $sob & $s variables and the output
arc contains term assignerisis ($sob, $s) of sort crises. The output arc of transition sendreport
contains term rp ($ec). This enables to send report about the executed Crisis mission.

Entity Properties Sat

validCr 0

carCrash.V1

validSob 0

z Sat(Prop, Ent)
= dom sar)

eSar= =t
Ipl

gSar, =222 ~0

Figure 3: Table Property satisfaction for the carCrash.V1 System

3.6 DREF Satisfiability Model

DREF satisfiability model with respect to Car Crash management system can be formally de-
fined as:

Set of Entities

Ent = {carCrash.V1,carCrash.V2, carCrash.V 3}

Set of Properties
Prop = {”The Crisis can ezist only if it has validated Crisis reporting and Superobserver”}

In our case entities are logical structures and properties are logical formula. Satisfiablity func-
tion would be:

Sat: Lstruct x Lspec — R U {1}

s.t. Sat(lstruct,p)=

1 if lstruct = p

0 if lstruct = p

1 else

where

Istruct € Lstruct A p € Lspec

We have formal representation of our first entity in APN as described in section 3.4. We can
now express above defined properties in AIPiNA property language for model checking. The
syntax to express properties in

AIPiNA is:

Fist Property Syntaz:
Prop1 : forall($sy in ExecuteCrises : isvalidcrisis($sy)= true);

Second Property Syntax:
Prop2 : forall($sy in ExecuteCrises : isvalidsobs($sy)=true);

In figure 3, we have shown table for the property satisfaction for the carCrash.V1 and its
measure with respect to DREF satisfiability function.

carCrash V2

[sobs(YK, Fire), sobs(G, Blockage)]

pfiredCnisisDaty
[Fire, Blockage]
[$cd

[cR@ed)]

[$s0b]

assignesnisis

isvaliderisis($s)=true

sendcrisis

[assignerises($sob, $5)]
[system(getcrises($s), true)]

SisReport

Figure 4: carCrash.V2

3.7 APN Model crashCrash.V2

The second entity which we will call carCrash.V2 is an evolution of the first version carCrash.V2
in figure. In this version, we have added guard condition on the transition assigncrises, which
is:

isvalidcrisis($s)=true

In the carCrash.V2 figure 4, in place CapturedCrisisData there can be two tokens of type
Fire and Blockage. These tokens are used to mention which type of data has been captured. The
output arc of recordcrises contains variable $cd of sort crisesR. Place named RecordedCrises in
our model takes this variable as its token with term cR($cd). The transition recordcrises enables
to record Crisis based on the capture data. The transition sendcrisis takes $rc variable as an
input arc from RecordedCrisis place and the output arc contains term system ($rc, false) of sort
sys. The sendcrises transition pass recorded Crisis to system for further operations. Initially ev-
ery Crisis is set to false with its captured data. The output arc of validatecrises contains system
(geterisis ($s), true) term which sends validated Crisis to system. The transition assigncrises
has guard isvalidcrisis ($s)=true which enables to block invalid Crisiss reporting to be executed
for the mission. Transition assigncrisis contains two input arcs with $sob & $s variables and
the output arc contains term assigncrisis ($sob, $s) of sort crises. The output arc of transition
sendreport contains term rp (&ec). This enables to send report about the executed Crisis mis-
sion. In figure 5, we have shown table for the property satisfaction for the carCrash.V2 and its
measure with respect to DREF satisfiablity function.

3.8 APN ModelcrashCrash.V3

The third entity which we will call carCrash.V3 is an evolution of the version carCrash.V2. In
this evolution, we have added another guard to block invalid Superobservers on the transition

10

Entity Properties Sat

validCr 1

carCrash.V2

validSob 0

> Sar(Prop.£nn)

gSatm Szt

I pl

Figure 5: Table Property satisfaction for the carCrash.V2 System

pruredCrisisDatg
[Fire, Blockage]

[$cd |

[cR@ed)]

carCrash V3
[sobs(YK, Fire), sobs(NG, Blockage)]

[$s0b]

assigncrisis

sendcrisis

@ & ($s0b, geterisestype(¥s))=true

[system(getcrises($s), true) |

Figure 6: carCrash.V3

assigncrises, which is:

isvalidsob($sob, getcrisestype($s))=true
In the carCrash.V3 figure 6, in place CaptureData there can be two tokens of type Fire and
Blockage. These tokens are used to mention which type of data has been captured. The output
arc of recordcrises contains variable $cd of sort crisesR. Place named RecordedCrises in our
model takes this variable as its token with term cR($cd). The transition record crises enables to
record Crisis based on the capture data. The transition sendcrisis takes $rc variable as an input
arc from Recordcrises place and the output arc contains term system ($rc, false) of sort sys. The
sendcrisis transition pass recorded Crisis to system for further operations. Initially every Crisis
is set to false with its captured* data. The output arc of validatecrises contains system (getcrisis
($s), true) term which sends validated Crisis to system. The transition assigncrises has two
guards; first one is isvalidcrisis ($s)=true which enables to block invalid Crises reporting to be
executed for the mission and the second one is isvalidsob($sob, getcrisestype($s))=true which is
uded to block invalid Superobservers to execute Crisis mission. In prinicple, if Superobserver is

11

Entity Properties Sat

validcr 1

carCrash.V3

validSob 1

2 Sar(Prop, Ent)

gSar= Sl

I pl

1+1
gSar, = ——=1

e 2

Figure 7: Table Property satisfaction for the carCrash.V3 System

$YK then it is mandatory to assign it to Fire. Transition assigncrisis contains two input arcs
with $sob & $s variables and the output arc contains term assigncrises ($sob, $s) of sort crises.
The output arc of transition sendreport contains term rp ($ec). This enables to send report
about the executed Crisis mission.

In figure 7, we have shown table for the property satisfaction for the carCrash.V3 and its measure
with respect to DREF satisfiablity function.

4 Evolution Satisfiability Function

The intention is to allow for comparison of entities or properties relative to an evolution axis.
Concerning ICT systems, the commonly used axes are the time axis (that can be considered as
discrete or continuous) related to systems versioning or related to system status.

If we consider the Car Crash management framework (entity carCrash), we have three versions
of the framework. While the first is that described in 3.4, in the second version described in 3.7,
we have introduced some transitions and guard conditions. In the final version described in 3.8,
we have added only a guard condition.

Now we tend to introduce an evolution axis representing the three successive versions of the car-
Crash framework. The evolution axis is then the set {carCrash.V'1, carCrash.V2, carCrash.V3}
and it concerns the entity carCrash. Here as shown in Graph 1 evolution function is with respect
to overall properties. From the Graph 1, it is clear that system under observation is improving
its capabilities with successive versions.

Here in Graph 2, evolutions have been shown with respect to individual properties. For the
property validCr there is an improvement in the carCrash.V2 and it is preserved in the car-
Crash.v3. There is no improvement for the validSob property in the first two versions but in
carCrash.V3 it shows an improvement.

5 Discussion

In this work we have presented a pragmatic way to evaluate satisfiability of resilient system with
respect to certain decidable properties. In order to make a system resilient, one has to measure
its satisfactiability at its current state with respect to interesting properties and then based on
this evaluation modification can be done to make it resilient. What we mean from evaluation
is to check whether system satisfy interesting properties or not. One of the possible ways to

12

Satisfiability

(gSat)
evolution)

1 o Properties
Q validcr
O validSob

0.5
=#=gvolution
0

carCrash.V1 carCrash.v2 carCrash.V3

Entities

Figure 8: Graph Evolution Satisfiability Function with respect to overall Properties

Satisfiability
(gSat)
1
Properties
0.5 =o=validCr
@ validSob
0 - 3

carCrash.vl carCrash.V2 carCrash.V3

Entities

Figure 9: Graph Evolution Satisfiability Function with respect to individual Properties

13

evaluate is by model checking. Now based on the results, which we obtain from model checking,
modification is performed. If a system is unable to satisfy interesting property one has to modify
it by putting or removing some features, assertions or guard conditions etc. In principal this
process will be iterated until we get our interesting properties satisfied.

This proposal raises many questions. We will start by discussing the question that it is unde-
sirable to check repeatedly interesting properties, which have been verified in earlier versions of
system. In order to overcome this situation there must be property preservation mechanism.
There is work regarding this property preservation issue, for example in [Guelev, 2004] the au-
thors described a method for checking whether a system with a feature continues to satisfy a
property that held of a base system. On the other way, given a discrete evolution (enty, enty1),
we can impose a particular kind of structural inclusion of ent; into entygi ;. This structural
inclusion ensures that the behavior of enty1 regarding safety properties expressed over enty, is
included in the behavior of enty.

Another important question arises is that what would be an appropriate modification or refine-
ment to an evolving system so that it satisfies properties. This issue can be interlinked with
the property preservation mechanism. Because it is important to know before modification that
what you will gain and what you will loose in terms of properties.

Finally, the research we present in this work is oriented at: pragmatically defining the evaluation
of satisfiability of resilient system with respect to certain decidable properties. We have selected
APN (Algebraic Petri Nets) for the behavioral description of our system. For the evaluation of
interesting properties, we use AIPiNA model checker. AIPiNA property language is equivalent
to first order logic. With respect to modification of given discrete evolution (enty, entyi1) we
used guard conditions, new places to net etc. Complete description is provided in sections 3.2
to 3.8.

Acknowledgments

The author would like to thank Prof. Nicolas Guelfi, Laboratory for Advance Software Systems,
University of Luxembourg, for his support and guidance.
The author would like to thank Dr. Matteo Risoldi , Laboratory for Advance Software Systems,

University of Luxembourg, for his kind assistance and motivation.
This work was sponsored by the FNR CORE Project MOVERE, ref.C09/IS/02

References

[Guelfi, 2011] Guelfi N., (2011). ”A Formal Framework for Dependability and Resilience from a
Software Engineering Persepective”. Cent.Eur.J.Comp.Sci ISBN: 1(3) 2011 294-328.

[Lucio et al., 2011] Lcio L., Guelfi N., ” A precise definition of operational resilience”. Tech. Rep.
TR-LASSY-11-02, Laboratory for Advanced Software Systems, University of Luxembourg,
2011.

[Komatsubara, 2006] Komatsubara A., (2006). ”When resilience does not work. Resilience En-
gineering Concepts and Precepts. Ashgate.

[Hollnagel et al., 20006] Hollnagel L., Woods D., Leveson N.,(2006). ”Resilience Engineering in
Nutshel”. Resilience Engineering Concepts and Precepts. Ashgate.

[Avizienis et al., 2001] Avizienis A., Laprie J.C., Randell B., (2001). ”"Fundamental concepts
of dependability”. Tech. rep., Computer Science Department, University of California, Los
Angeles, USA, 2001.

14

[Avizienis et al., 2004] Avizienis A., Laprie J.C., Randell B., Landwehr C.E., (2004). ”Basic
Concepts and Taxonomy of Dependable and Secure Computing”. IEEE Trans. Dependable
Sec. Comput., 2004, 1(1), 11-33.

[Black et al., 1997] Black P.E., Windley P.J., (1997). ” Verifying resilient software”. 1997, 262-
266.

[Mostert et al., 1995] Mostert D.N.J., von Solms S.H., (1995).” A technique to include computer
security, safety, and resilience requirements as part of the requirements specification”. J. Syst.
Softw., 1995, 31(1), 45-53.

[Svobodova, 1984] Svobodova L., (1984). ”Resilient distributed computing”. IEEE Trans. Soft-
ware Eng., 1984, 10(3), 257-268.

[Buchs et al., 2010] Buchs D., Hostettler S., Marechal A., Risoldi M., (2010). ”Alpina: A sym-
bolic model checker”. In Petri Nets, volume 6128 of Lecture Notes in Computer Science.
Springer, 2010.

[Marechal et al., 2010] Marechal A., Bucs D., (2010)). "Property specification language for
algebraic Petri nets”. Technical report # 216 http://alpina.unige.ch.

[Reisig, 1991] Reisig W., (1991). ”Petri nets and algebraic specifications”. Theoretical Computer
Science, 80:134, 1991.

[Lucio, 2011] Lucio L., (2011). ”Model of an evolving confidential filesystem” 1. http://hera.uni.
lu/levi.lucio/operational resilience/evolving filesystem.zip.

[SMV, 2010] Smv Group., (2010). ” Alpina model checker”. http://alpina.unige.ch.2010.

[Lepri, 2008] Laprie J.C., (2008). ”"From dependability to resilience ”. In Proceedings of the
IEEE/I- FIP International Conference on Dependable Systems and Networks, DSN - Fast
Abstracts. IEEE/IFIP, 2008.

[Wirsing, 1990] Wirsing M., (1990) ”Algebraic specification ”. In: Handbook of Theoretical
Computer Science, Volume B, Formal Models and Semantics B, 675-788, 1990.

[Guelev, 2004] Guelev P D., Ryan M., Schobbens P., (2004). ”Model-checking the Preservation
of Temporal Properties upon Feature Integration ”.In Proceedings of the Fouth International
Workshop on Automated Verification of Critical Systems (CONCUR Workshop AVoCS 2004),
pages 311-324.

[Kupferman et al., 1999] Kupferman B., Vardi Y M.m (1999) ”Model checking of safety proper-
ties 7. Computer Aided Verification, Proc. 11th Int. Conference. Lecture Notes in Computer
Science Springer-Verlag, 172183.

[Sommerville, 2001] Sommerville 1., (2001). ”Software Engineering, 6th Edition ”. Pearson Ed-
ucation Ltd.

[Kienzle et al., 2009] Kienzle J., Guelfi N., Mustafiz S., (2009) ” Crisis Management Systems A
Case Study for Aspect-Oriented Modeling 7. SOCS-TR-2009.3

[Dearnley, 1976] earnley P. A., An Investigation Into Database Resilience(1976). Comput. J.,
19(2), pp. 117-121, 1976.

15

6 Appendix

In this appendix we present algebraic specifications for the carCrash case study.

6.1 Algebraic specifications for carCrash.V1

Adt boolean
Sorts bool;

Generators
true : bool;
false : bool;

Operations
not : bool —> bool;
and : bool, bool —> bool;
or : bool, bool —> bool;
xor : bool, bool —> bool;
implies : bool, bool —> bool;

Axioms
//not
not (true) = false;
not (false) = true;
//and
and (true , $boolVar) = $boolVar;
and (false , $boolVar) = false;
//or
or (true, $boolVar) = true;
or (false, $boolVar) = $boolVar;
//xor
xor (true, $boolVar) = not($boolVar);
xor (false , $boolVar) = $boolVar;
//implies
implies(false, $boolVar) = true;
implies (true, $boolVar) = $boolVar;
Variables

boolVar : bool;

Adt capturedata

Sorts
capture;

Generators

Fire:capture;
Blockage: capture;

Adt observers

Sorts
obs;
Generators
YK: obs;
NG: obs;

import” observers. adt”
import” capturedata .adt”
Adt SuperObserver

16

Sorts
Sobs;
Generators

sobs: obs,capture—>Sobs;
Operations

getsob : Sobs—obs;
Axioms

getsob (sobs ($obs, $ct))=30bs;
Variables

obs:obs;
ct:capture;

import ”capturedata .adt”

Adt RecordCrises

Sorts
crisesR;
Generators
cR: capture—>crisesR;
Operations
getcapturetype:crisesR—>capture;
Axioms

getcapturetype (cR(8%cd))= $cd;
Variables
cd:capture;

import” boolean .adt”
import” RecordCrises . adt”
import” capturedata .adt”

Adt
system
Sorts
Sys;
Generators

system : crisesR , bool—>sys;
Operations

getcrisestype :sys—>capture;

getcrises :sys—>crisesR;

Axioms
getcrises (system ($cr,8b))= $cr;
getcrisestype (system ($cr,$b))= getcapturetype(S$cr);
Variables
cr:crisesR;
b:bool;

import ”RecordCrises .adt”
import”system . adt”
import” SuperObserver . adt”
import” capturedata .adt”

Adt Executecrises

Sorts
crises;

Generators

17

assigncrises:Sobs,sys—>crises;
Operations
getcrisestype:crises —>capture;

Axioms
getcrisestype (assigncrises ($sob,$sy))= getcrisestype (3sy);
Variables
r:crisesR;
sob: Sobs;
Sy :8ys;

import ” Executecrises.adt”
import ”boolean.adt”

Adt Report
Sorts
report ;
Generators

rp: crises—>report;

6.2 Algebraic specifications for carCrash.V2 & carCrash.V3

Here we present algebraic specification for the two entities which are carCrash.V2 and car-
Crash.V3. We are presenting only those specifications, which are modified as compared to
previous version.

import” boolean .adt”
Adt capturedata

Sorts
capture;

Generators

Fire:capture;
Blockage: capture;

Operations
equal : capture , capture —>bool;

Axioms

Fire , Fire)=true;
Blockage , Blockage)=true;
Fire , Blockage)=false;
Blockage ,Fire)=false;

equal
equal
equal
equal

Py

import” boolean . adt”
import” observers. adt”
import” capturedata .adt”
Adt SuperObserver

Sorts
Sobs;
Generators

sobs: obs,capture—>Sobs;
Operations
isvalidsob: Sobs,capture—>bool;
getsob : Sobs—>obs;
Axioms
isvalidsob (sobs($obs, $ct),$ct2)= equal ($ct,$ct2);
getsob (sobs ($obs, $ct))=3obs;

18

Variables
obs:obs;
b:bool;
ct:capture;
ct2:capture;

import” boolean . adt”
import” RecordCrises . adt”
import” capturedata .adt”

Adt
system
Sorts
Sys;
Generators

system : crisesR , bool—>sys;
Operations

isvalidcrisis :sys—>bool;

getcrisestype:sys—>capture;

getcrises :sys—>crisesR;

Axioms
isvalidcrisis (system ($cr, false))= false;
isvalidcrisis (system(3cr,true))= true
getcrises (system (3cr ,$b))= $cr;
getcrisestype (system ($cr,$b))= getcapturetype(S$cr);
Variables
r:crisesR;
b:bool;

import ”RecordCrises .adt”
import”system . adt”
import” SuperObserver . adt”
import” boolean .adt”
import” capturedata .adt”

Adt Executecrises

Sorts
crises;

Generators
assigncrises:Sobs,sys—>crises;
Operations
getcrisestype:crises —>capture;
isvalidcrisis:crises—>bool;
Axioms
getcrisestype (assigncrises ($sob,$sy))= getcrisestype (3sy);
isvalidcrisis (assigncrises (3sob,$sy))= isvalidcrisis ($sy);
Variables
cr:crisesR;
sob:Sobs;
Sy :8ys;

6.3 Algebraic specifications for Properties

In this section we are presenting algebraic specifications for the interesting properties.

import” carcrash .apnmm”
import” boolean . adt”
import” Handlecrises. adt”
import”system . adt”

Expressions
Propl: forall ($sy in ExecuteCrisis : isvalidcrisis($sy)= true);

19

Check
@Propl ;

Variables
sy:crises;

import” carcrash .apnmm”
import” boolean .adt”
import” Handlecrises. adt”
import”system . adt”

Expressions
Prop2: forall ($sy in ExecuteCrisis : isvalidsobs ($sy)= true);

Check
@QProp2 ;

Variables
sy:crises;

20

