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4.1 Introduction

Data centers are becoming increasingly popular for the provisioning of computing
resources. The cost and operational expenses of data centers have skyrocketed
with the increase in computing capacity [1]. Energy consumption is a growing
concern for data center operators. It is becoming one of the main entries on a data
center operational expenses (OPEX) bill [2,3]. The Gartner Group estimates energy
consumptions to account for up to 10% of the current OPEX, and this estimate is
projected to rise to 50% in the next few years [4]. However, computing-based energy
consumption is not the only power-related portion of the OPEX bill. High power
consumption generates heat and requires an accompanying cooling system that costs
in a range of $2–$5 million per year for classical data centers [5]. Failure to keep
data center temperatures within operational ranges drastically decreases hardware
reliability and may potentially violate the service level agreement (SLA) with the
customers.

From the perspective of energy efficiency, a cloud computing data center can
be defined as a pool of computing and communication resources organized in
the way to transform the received power into computing or data transfer work to
satisfy user demands. The first power saving solutions focused on making the data
center hardware components power efficient. Technologies, such as dynamic voltage
and frequency scaling (DVFS), and dynamic power management (DPM) [6], were
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extensively studied and widely deployed. Because the aforementioned techniques
rely on power-down and power-off methodologies, the efficiency of these techniques
is at best limited. In fact, an idle server may consume about two-thirds of its peak
load [7].

Because the workload of a data center fluctuates on a weekly (and in some
case on hourly) basis, it is a common practice to overprovision computing and
communicational resources to accommodate the peak load. In fact, the average load
accounts only for 30% of data center resources [8]. This allows putting the rest of
the 70% of the resources into a sleep mode for most of the time. However, achieving
the above requires central coordination and energy-aware workload scheduling
techniques. Typical energy-aware scheduling solutions attempt to: (a) concentrate
the workload in a minimum set of the computing resources and (b) maximize the
amount of resource can be put into sleep mode [9].

Most of the current state-of-the-art research on energy efficiency has pre-
dominantly focused on the optimization of the processing elements. However, as
recorded in earlier research, more than 30% of the total computing energy is
consumed by the communication links, switching and aggregation elements. Similar
to the case of processing components, energy consumption of the communication
fabric can be reduced by scaling down the communication speeds and cutting
operational frequency along with the input voltage for the transceivers and switching
elements [10]. However, slowing the communicational fabric down should be
performed carefully and based on the demands of user applications. Otherwise,
such a procedure may result in a bottleneck, thereby limiting the overall system
performance. A number of studies demonstrate that often a simple optimization
of the data center architecture and energy-aware scheduling of the workloads may
lead to significant energy savings. Reference [11] demonstrates energy savings of
up to 75% that can be achieved by traffic management and workload consolidation
techniques.

In this chapter, we survey power-saving techniques implemented at both com-
ponent and system levels. In energy efficiency optimization we focus on both com-
puting and communication fabrics. As the system level, energy-efficient network-
aware scheduling solutions are presented. Finally a simulation environment, named
GreenCloud, for advanced energy-aware studies of cloud computing data centers in
realistic setups is presented. GreenCloud is developed as an extension of a packet-
level network simulator ns-2 [12]. Unlike few existing cloud computing simulators
such as CloudSim [13] or MDCSim [14], GreenCloud extracts, aggregates, and
makes information about the energy consumed by computing and communication
elements of the data center available in an unprecedented fashion. In particular, a
special focus is devoted to accurately capture communication patterns of currently
deployed and future data center architectures.
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4.2 Simulating Energy-Efficient Data Centers

In this section, we present the main aspects of design of energy-efficient data cen-
ters, survey the most prominent architectures, and describe power-saving techniques
implemented by individual data center components.

4.2.1 Energy Efficiency

Only a part of the energy consumed by the data center gets delivered to the
computing servers directly. A major portion of the energy is utilized to maintain
interconnection links and network equipment operations. The rest of the electricity
is wasted in the power distribution system, dissipates as heat energy, and used
up by air-conditioning systems. In light of the above discussion, we distinguish
three energy consumption components: (a) computing energy, (b) communicational
energy, and (c) the energy component related to the physical infrastructure of a data
center.

The efficiency of a data center can be defined in terms of the performance
delivered per watt, which may be quantified by the following two metrics: (a) Power
Usage Effectiveness (PUE) and (b) Data Center Infrastructure Efficiency (DCiE)
[15,16]. Both PUE and DCiE describe which portion of the totally consumed energy
gets delivered to the computing servers.

4.2.2 Data Center Architectures

Three-tier trees of hosts and switches form the most widely used data center
architecture [17]. It (see Fig. 4.1) consists of the core tier at the root of the tree, the
aggregation tier that is responsible for routing, and the access tier that holds the pool
of computing servers (or hosts). Earlier data centers used two-tier architectures with
no aggregation tier. However, such data centers, depending on the type of switches
used and per-host bandwidth requirements, could typically support not more than
5,000 hosts. Given the pool of servers in today’s data centers that are of the order
of 100,000 hosts [11] and the requirement to keep layer-2 switches in the access
network, a three-tiered design becomes the most appropriate option.

Although 10 Gigabit Ethernet (GE) transceivers are commercially available, in
a three-tiered architecture the computing servers (grouped in racks) are intercon-
nected using 1 GE links. This is due to the fact that the 10 GE transceivers: (a)
are too expensive and (b) probably offer more capacity than needed for connecting
computing servers. In current data centers, rack connectivity is achieved with
inexpensive Top-of-Rack (ToR) switches. A typical ToR switch shares two 10
GE uplinks with 48 GE links that interconnect computing servers within a rack.
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Fig. 4.1 Three-tier data center architecture

The difference between the downlink and the uplink capacities of a switch defines its
oversubscription ratio, which in the aforementioned case is equal to 48/20= 2.4 : 1.
Therefore, under full load, only 416 Mb/s will remain available to each of the
individual servers out of their 1 GE links.

At the higher layers of hierarchy, the racks are arranged in modules (see Fig. 4.1)
with a pair of aggregation switches servicing the module connectivity. Typical
oversubscription ratios for these aggregation switches are around 1.5:1, which
further reduces the available bandwidth for the individual computing servers to
277 Mbps.

The bandwidth between the core and aggregation networks is distributed using
a multi-path routing technology, such as the equal cost multi-path (ECMP) routing
[18]. The ECMP technique performs a per-flow load balancing, which differentiates
the flows by computing a hash function on the incoming packet headers. For a three-
tiered architecture, the maximum number of allowable ECMP paths bounds the total
number of core switches to eight. Such a bound also limits the deliverable bandwidth
to the aggregation switches. This limitation will be waved with the (commercial)
availability of 100 GE links, standardized in June 2010 [19].

But how the data center architecture will look like in the future? The most
promising trend in to follow a modular design. Traditional racks of servers will
be replaced with standard shipping containers hosting 10 times as many servers
as conventional data center in the same volume [20]. Each container is optimized
for power consumption. It integrates a combined water and air cooling system
and implements optimized networking solutions. These containers, being easy to
ship, can become plug-and-play modules in future roof-less data center facilities
[21]. Their current PUE is in the order of 1.2 [22] while the average PUE for
the industry is between 1.8 and 2.0 [1] depending on the reporting source. Some
skeptics addressing the problem of individual component failures and the overhead
of shipping the whole container back to the manufacturer. This can be addressed
by packing even more servers into self-contained container solutions requiring
no operational maintenance [23]. Whenever an individual component fails the
whole container can continue operation with only minor degradation in computing
capacity. To make it a reality, each container as well as the data center itself
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Fig. 4.2 Architecture of GreenCloud simulator

should follow a distributed design approach. But current data center architectures
are completely hierarchical. This way, for example, a failure in the rack switch
can disable all servers in the rack. A failure of the core or aggregation switches
may degrade operation or even disable a large number of racks. Therefore, fat-tree
architectures will be replaced with distributed approaches like DCell [24], BCube
[25], FiConn [26], or DPillar [27] in future data centers.

4.2.3 Simulator Structure

In this section we introduce GreenCloud simulator which offers fine-grained
simulation of modern cloud computing environments focusing on data center
communications and energy efficiency. GreenCloud is an extension to the network
simulator ns-2 [12]. It offers users a detailed fine-grained modeling of the energy
consumed by the elements of the data center, such as servers, switches, and links.
Moreover, GreenCloud offers a thorough investigation of workload distributions.
Furthermore, a specific focus is devoted on the packet-level simulations of com-
munications in the data center infrastructure, which provide the finest-grain control
and is not present in any cloud computing simulation environment. Reference [28]
provides more details on the GreenCloud simulator. Figure 4.2 presents the structure
of the GreenCloud extension mapped onto the three-tier data center architecture.
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4.2.4 Hardware Components and Energy Models

Computing servers are the staple of a data center that are responsible for task
execution. In GreenCloud, the server components implement single core nodes
that have a preset on a processing power limit in MIPS (million instructions per
second) or FLOPS (floating point operations per second), associated size of the
memory/storage resources, and contain different task scheduling mechanisms rang-
ing from the simple round-robin to the sophisticated DVFS and DNS approaches.

The servers are arranged into racks with a ToR switch connecting it to the access
part of the network. The power model followed by server components depends on
CPU utilization. As reported in [2] and [7] an idle server consumes about two-thirds
of its peak load consumption. This is due to the fact that servers must constantly
manage memory modules, disks, I/O resources, and other peripherals. Moreover,
the power consumption increases with the level of CPU load linearly. As a result,
the aforementioned model allows implementation of power saving in a centralized
scheduler that can provision consolidation of workloads in a minimum possible
amount of the computing servers.

1. Another option for power management is dynamic voltage/frequency scaling
(DVFS) [10], which introduces a trade-off between computing performance
and the energy consumed by the server. The DVFS is based on the fact that
switching power in a chip decreases proportionally to V 2 × f , where V is the
voltage and f is the switching frequency. Moreover, voltage reduction requires
frequency downshift. This implies a cubic relationship from f in the CPU power
consumption. Note that server components, such as bus, memory, and disks do
not depend on the CPU frequency. Therefore, the power consumption of an
average server (see Fig. 4.3) can be expressed as follows [29]:

P = Pfixed +Pf × f 3, (4.1)

where Pfixed accounts for the portion of the consumed power which does not scale
with the operating frequency f , while Pf is a frequency-dependent CPU power
consumption.

Network switches and links form the interconnection fabric that delivers work-
loads to any of the computing servers for execution in a timely manner. The
interconnection of switches and servers requires different cabling solutions depend-
ing on the supported bandwidth, physical and quality characteristics of the link. The
quality of signal transmission in a given cable determines a trade-off between the
transmission rate and the link distance, which are the factors defining the cost and
energy consumption of the transceivers.

The twisted pair is the most commonly used medium for Ethernet networks that
allows organizing Gigabit Ethernet (GE) transmissions for up to 100 m with the
transceiver power consumed of around 0.4 W or 10 GE links for up to 30 m with the
transceiver power of 6 W. The twisted pair cabling is a low cost solution. However,
for the organization of 10 GE links it is common to use optical multimode fibers.
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Fig. 4.3 Computing server power consumption

The multimode fibers allow transmissions for up to 300 m with the transceiver power
of 1 W [30]. On the other hand the fact that multimode fibers cost almost 50 times
of the twisted pair cost motivates the trend to limit the usage of 10 GE links to the
core and aggregation networks as spending for the networking infrastructure may
top 10%–20% of the overall data center budget [31].

The number of switches installed depends on the implemented data center
architecture. However, as the computing servers are usually arranged into racks the
most common switch in a data center is ToR switch. The ToR switch is typically
placed at the top unit of the rack unit (1RU) to reduce the amount of cables
and the heat produced. The ToR switches can support either gigabit (GE) or 10
gigabit (10 GE) speeds. However, taking into account that 10 GE switches are more
expensive, current capacity limitation of aggregation and core networks gigabit rates
are more common for racks.

Similar to the computing servers early power optimization proposals for
interconnection network were based on DVS links [10]. The DVS introduced a
control element at each port of the switch that depending on the traffic pattern and
current levels of link utilization could downgrade the transmission rate. Due to the
comparability requirements only few standard link transmission rates are allowed,
such as for GE links 10 Mbps, 100 Mbps, and 1 Gbps are the only options.

On the other hand, the power efficiency of DVS links is limited as only a portion
(3%–15%) of the consumed power which scales linearly with the link rate. As
demonstrated by the experiments in [32] the energy consumed by a switch and all
its transceivers can be defined as:

Pswitch = Pchassis + nlinecards ×Plinecard +
R

∑
i=0

nports.r ×Pr, (4.2)
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where Pchassis is related to the power consumed by the switch hardware, Plinecard is
the power consumed by any active network line card, Pr corresponds to the power
consumed by a port (transceiver) running at the rate r. In Eq. (4.2), only the last
component appears to be dependent on the link rate while other components, such as
Pchassis and Plinecard remain fixed for all the duration of switch operation. Therefore,
Pchassis and Plinecard can be avoided by turning the switch hardware off or putting it
into sleep mode.

4.2.5 Jobs and Workloads

Workloads are the objects designed for universal modeling of various cloud user
services. In grid computing the workloads are typically modeled a sequence of jobs
that can be divided into a set of tasks. The tasks can be dependent requiring an
output from other tasks to start execution or be independent. Moreover, due to the
nature of grid computing applications (biological, financial, or climate modeling)
the number of jobs available prevail the number of computing resources available.
While the main goal is in minimization of the time required for the computing of
all jobs which may take weeks or months the individual jobs do not have a strict
completion deadline.

In cloud computing, incoming requests are typically generated for such applica-
tions like web browsing, instant messaging, or various content delivery applications.
The jobs tend to be more independent, less computationally intensive, but have a
strict completion deadline specified in SLA. To cover the vast majority of cloud
computing applications, we define three types of jobs:

• Computationally Intensive Workloads (CIWs) model high-performance comput-
ing (HPC) applications aiming at solving advanced computational problems.
CIWs load computing servers considerably, but require almost no data transfers
in the interconnection network of the data center. The process of CIW energy-
efficient scheduling should focus on the server power consumption footprint
trying to group the workloads at the minimum set of servers as well as to route the
traffic produced using a minimum set of routes. There is no danger of network
congestion due to the low data transfer requirements, and putting the most of
the switches into the sleep mode will ensure the lowest power of the data center
network.

• Data-Intensive Workloads (DIWs), on the contrary, produce almost no load at the
computing servers, but require heavy data transfers. DIWs aim to model such
applications like video file sharing where each simple user request turns into a
video streaming process. As a result, the interconnection network and not the
computing capacity becomes a bottleneck of the data center for DIWs. Ideally,
there should be a continuous feedback from network switches to the central



4 Simulation and Performance Analysis of Data Intensive and Workload . . . 55

workload scheduler. Based on such a feedback, the scheduler will distribute the
workloads taking current congestion levels of the communication links. It will
avoid sending workloads over congested links even if certain server’s computing
capacity will allow accommodating the workload. Such scheduling policy will
balance the traffic in the data center network and reduce average time required
for a task delivery from the core switches to the computing servers.

• Balanced Workloads (BWs) aim to model the applications having both computing
and data transfer requirements. BWs load the computing severs and communi-
cation links proportionally. With this type of workloads the average load on the
servers is proportional to the average load of the data center network. BWs can
model such applications as geographic information systems which require both
large graphical data transfers and heavy processing. Scheduling of BWs should
account for both servers’ load and the load of the interconnection network.

The execution of each workload object requires a successful completion of its
two main components: (a) computing and (b) communicational. The computing
component defines the amount of computing that has to be executed before a given
deadline on a time scale. The deadline aims at introducing Quality of Service (QoS)
constraints specified in SLA. The communicational component of the workload
defines the amount and the size of data transfers that must be performed prior,
during, and after the workload execution. It is composed of three parts: (a) the size of
the workload, (b) the size of internal, and (c) the size of external to the data center
communications. The size of the workload defines the number of bytes that after
being divided into IP packets is required be transmitted from the core switches to the
computing servers before a workload execution can be initiated. The size of external
communications defines the amount of data required to be transmitted outside the
data center network at the moment of task completion and corresponds to the task
execution result. The size of internal to the data center communications defines the
amount of data to be exchanged with another workload that can be executed at the
same or a different server. This way the workload interdependencies are modeled.
In fact, internal communication in the data center can account for as much as 70%
of total data transmitted [11].

Figure 4.4 captures energy consumption measured in a DVFS- and DNS-enabled
data center running different types of workloads. An efficient and effective method-
ology to optimize energy consumption of interdependent workloads is to analyze the
workload communication requirements at the moment of scheduling and perform a
coupled placement of these interdependent workloads—a co-scheduling approach.
The co-scheduling approach will reduce the number of links/switches involved into
communication patterns.

Figure 4.5 shows a typical distribution of energy consumption between data
center components obtained via simulations.
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4.3 Energy-Efficient Scheduling

4.3.1 Network Congestion

Utilizing a communication fabric in data centers entails the concept of running
multiple types of traffic (LAN, SAN, or IPC) on a single Ethernet-based medium
[33]. On one side, the Ethernet technology is cheap, easy to deploy, and relatively
simple to manage, on the other side, the Ethernet hardware is less powerful and
provisions for small buffering capacity. A typical buffer size in an Ethernet network
is in the order of 100s of KB. However, a typical buffer size of an Internet router is
in the order of 100s of MB [34]. Small buffers and the mix of high-bandwidth traffic
are the main reasons for network congestion.

Any of the data center switches may become congested either in the uplink
direction or in the downlink direction or both. In the downlink direction, the
congestion occurs when individual ingress link capacities overcome individual
egress link capacities. In the uplink direction, the mismatch in bandwidth is
primarily due to the bandwidth oversubscription ratio, which occurs when the
combined capacity of server ports overcomes a switch’s aggregate uplink capacity.

Congestion (or hotspots) may severely affect the ability of a data center
network to transport data. Currently, the Data Center Bridging Task Group (IEEE
802.1) [35] is specifying layer-2 solutions for congestion control, termed IEEE
802.1Qau specifications. The IEEE 802.1Qau specifications introduce a feedback
loop between data center switches for signaling congestion. Such a feedback allows
overloaded switches to hold off heavy senders from sending with the congestion
notification signal. Such a technique may avoid congestion-related losses and keep
the data center network utilization high. However, it does not address the root of
the problem as it is much more efficient to assign data-intensive jobs to different
computing servers in the way that jobs avoid sharing common communication
paths. To benefit from such spatial separation in the three-tiered architecture (see
Fig. 4.1), the jobs must be distributed among the computing servers in proportion
to their communication requirements. Data-intensive jobs, like ones generated by
video sharing applications, produce a constant bit-stream directed to the end-user
as well as communicate with other jobs running in the data center. However, such
a methodology contradicts the objectives of energy-efficient scheduling, which tries
to concentrate all of the active workloads on a minimum set of servers and involve
minimum number of communication resources. This trade-off between energy
efficiency, data center network congestion, and performance of individual jobs is
resolved using a unified scheduling metric presented in the subsequent section.

4.3.2 The DENS Methodology

The DENS methodology minimizes the total energy consumption of a data center by
selecting the best-fit computing resources for job execution based on the load level
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and communication potential of data center components. The communicational
potential is defined as the amount of end-to-end bandwidth provided to individual
servers or group of servers by the data center architecture. Contrary to traditional
scheduling solutions [36] that model data centers as a homogeneous pool of com-
puting servers, the DENS methodology develops a hierarchical model consistent
with the state-of-the-art data center topologies. For a three-tier data center, DENS
metric M is defined as a weighted combination of server-level fs, rack-level fr, and
module-level fm functions:

M = α× fs +β× fr + γ× fm, (4.3)

where α, β, and γ are weighted coefficients that define the impact of the correspond-
ing components (servers, racks, and/or modules) on the metric behavior. Higher
values of α favor the selection of highly loaded servers in lightly loaded racks.
Higher values of β will prioritize computationally loaded racks with low network
traffic activity. Higher values of γ favor selection of lightly loaded modules. The
γ parameter is an important design variable for job consolidation in data centers.
Taking into account that α+β+ γ must equal unity, the values of α = 0.7, β = 0.2,
and γ = 0.1 are selected experimentally to provide a good balance in the evaluated
three-tier data center topology. The details of the selection process are presented
in [37].

The factor related to the choice of computing servers combines the server load
Ls(l) and its communication potential Qr(q) that corresponds to the fair share of the
uplink resources on the ToR switch. This relationship is given as:

fs(l,q) = Ls(l)× Qr(q)φ

δr
, (4.4)

where Ls(l) is a factor depending on the load of the individual servers l, Qr(q)
defines the load at the rack uplink by analyzing the congestion level in the switch’s
outgoing queue q, δr is a bandwidth over provisioning factor at the rack switch, and
φ is a coefficient defining the proportion between Ls(l) and Qr(q) in the metric.
Given that both Ls(l) and Qr(q) must be within the range [0,1] higher φ values will
decrease the importance of the traffic-related component Qr(q). Similar to the case
of computing servers, which was encapsulated in Eq. (4.4), the factors affecting
racks and modules can be formulated as:

fr(l,q) = Lr(l)× Qm(q)φ

δm
= Qm(q)φ

δm
× 1

n

n
∑

i=1
Ls(l), (4.5)

fm(l) = Lm(l) = 1
k

k
∑
j=0

Lr(l), (4.6)

where Lr(l) is a rack load obtained as a normalized sum of all individual server
loads in the rack, Lm(l) is a module load obtained as a normalized sum of all of
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the rack loads in this module, n and k are the number of servers in a rack and the
number of racks in a module respectively, Qm(q) is proportional to the traffic load
at the module ingress switches, and δm stands for the bandwidth over provisioning
factor at the module switches. It should be noted that the module-level factor fm

includes only a load-related component l. This is due to the fact that all the modules
are connected to the same core switches and share the same bandwidth using ECMP
multi-path balancing technology.

The fact that an idle server consumes energy that is almost two-thirds of its
peak consumption [7] suggests that an energy-efficient scheduler must consolidate
data center jobs on a minimum possible set of computing servers. On the other
hand, keeping servers constantly running at peak loads may decrease hardware
reliability and consequently affect the job execution deadlines [38]. To address the
aforementioned issues, we define the DENS load factor as a sum of two sigmoid
functions:

Ls(l) =
1

1+ e−10(l− 1
2 )

− 1

1+ e−
10
ε (l−(1− ε

2 ))
. (4.7)

The first component of Eq. (4.7) defines the shape of the main sigmoid, while the
second component is a penalizing function aimed at the convergence towards the
maximum server load value (see Fig. 4.6). The parameter ε defines the size and
the incline of this falling slope. The server load l is within the range [0,1]. For the
tasks having deterministic computing load the server load can be computed as the
sum of computing loads of all of the running tasks. Alternatively, for the tasks with
predefined completion deadline, the server load l can be expressed as the minimum
amount of computational resource required from the server to complete all the tasks
right-in-time.



60 D. Kliazovich et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Q
(q

)

Queue size, q/Qmax

Fig. 4.7 Queue selection by DENS metric

Being assigned into racks, computing servers share the same ToR switch their
uplink communication demands. However, defining a portion of this bandwidth used
by a given server or a flow at the gigabit speeds during runtime is a computationally
expensive task. To circumvent the aforementioned undesirable characteristic, both
Eqs. (4.4) and (4.5) include a component that is dependent on the occupancy level
of the outgoing queue Q(q) at the switch and scales with the bandwidth over
provisioning factor δ.

Instead of relying on the absolute size of the queue, the occupancy level q is
scaled with the total size of the queue Qmax within the range [0,1]. The range
corresponds to none and full buffer occupancy. By relying on buffer occupancy,
the DENS metric reacts to the growing congestion in racks or modules rather than
transmission rate variations. To satisfy the aforementioned behavior, Q(q) is defined
using inverse Weibull cumulative distribution function:

Q(q) = e
−
(

2q
Qmax

)2

. (4.8)

The obtained function, illustrated in Fig. 4.7, favors empty queues and penalizes
fully loaded queues. Being scaled with the bandwidth over provisioning factor δ in
Eqs. (4.4) and (4.5) it favors the symmetry in the combined uplink and downlink
bandwidth capacities for switches when congestion level is low. However, as
congestion grows and buffers overflow, the bandwidth mismatch becomes irrelevant
and immeasurable.

Figure 4.8 presents the combined fs(l,q) as defined in Eq. (4.4). The obtained
bell-shaped function favors selection of servers with the load level above average
located in racks with the minimum or no congestion. Reference [37] provides more
details about DENS metrics and its performance in different operation scenarios.
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4.4 Conclusions

The cost and operating expenses of data centers are becoming a growing concern
as cloud computing industry is booming. The challenge of energy efficiency
allows maintaining the same data center performance while the level of energy
consumption is reduced. This can not only significantly reduce costs of operating
the IT equipment and cooling but also increase server density enlarging the capacity
of existing data center facilities.

To understand the optimization space we surveyed energy consumption models
of computing servers, network switches, and communication links. Thereafter, main
techniques for energy efficiency, like DVFS or dynamic shut-down, are studied
at both the component and system levels. It is demonstrated that approaches
for centralized coordination and scheduling are required to achieve satisfactory
optimization levels. Such coordination should combine traditional scheduling ap-
proaches with the awareness of the state of communication equipment and network
traffic footprints. Furthermore, the characteristics of the incoming workloads must
be taken into account. Currently, GreenCloud simulator and presented energy-
aware scheduling approaches are being extended to cover scenarios which include
geographically distributed data centers and renewable sources of energy.
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