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ABSTRACT

This paper deals with some characteriza-
tions of two classes of non-conventional aggre-
gation operators. The first class consists of
the weighted averaging operators (OWA) in-
troduced by Yager while the second class cor-
responds to the weighted maximum and related
operators defined by Dubois and Prade. These
characterizations are established via solutions
of some functional equations.

1. Introduction

In fuzzy (valued) multicriteria decision mak-
ing problems it is typical that we have quanti-
tative judgments on the pairs of alternatives
concerning each criterion. These judgments
are very often expressed by the help of fuzzy
preference relations. Synthesizing (aggregat-
ing) judgments is an important part in order
to obtain an overall opinion (global preference
relation) on the pairs of alternatives. For more
details see Fodor and Roubens [6].

In addition to the classical aggregation op-
erations (e.g. weighted arithmetic means,
geometric means, root-power means, quasi-
arithmetic means, etc), two new classes have
been introduced in the eighties.

Dubois and Prade [4] defined and investi-
gated the weighted maximum and minimum
operators in 1986. The formal analogy with
the weighted arithmetic mean is obvious.

Yager [16] introduced the ordered weighted
averaging operators (OWA) in 1988. The ba-
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sic idea of OWA is to associate weights with a
particular ordered position rather than a par-
ticular element.

The same idea was used by Dubois et al. [5]
to introduce ordered weighted maximum (OW-
MAX) and minimum for modelling soft partial
matching.

The main difference between OWA and
OWMAX (resp. OWMIN) is in the un-
derlying non-ordered aggregation operation.
OWA uses arithmetic mean while OWMAX
(resp. OMIN) applies weighted maximum
(resp. weighted minimum). At first glance,
this does not seem to be an essential difference.
However, Dubois and Prade [4] proved that
OWMAX is equivalent to the median of the
ordered values and some appropriately choosen
additional numbers used instead of the original
weights.

Although several papers have dealt with dif-
ferent aspects of these operations, their char-
acterizations have not been known yet. The
main aim of the present paper is to deliver
these missing descriptions.

First we study the ordered weighted averag-
ing operators in details. We formulate some
natural properties which are obviously pos-
sessed by the OWA operators. Then we show
that those conditions are sufficient to charac-
terize the OWA family. Quasi-OWA aggrega-
tors are also introduced and a particular class
is characterized.

Then we investigate the weighted maximum
and minimum operators in the same spirit as in
case of OWA. Finally, ordered weighted max-
imum and minimum are characterized. For



more details and proofs see [8] and [7].

2. Ordered weighted averaging
aggregation operators (OWA)

The ordered weighted averaging aggregation
operator (OWA) was proposed by Yager [16]
in 1988. Since its introduction, it has been ap-
plied to many fields as neural networks (Yager
[14]), data base systems (Yager [15]), fuzzy
logic controlers (Yager [17]) and group decision
making (Yager [16], Cutello and Montero [2]).
Its structural properties (Skala [13]) and its
links with fuzzy integrals (Grabisch [9]) were
also investigated.

We consider a vector (x1, . . . , xm) ∈ Dm,
m > 1, and we are willing to substitute to that
vector a single value M (m)(x1, . . . , xm) ∈ D
where D ⊆ IR, using the aggregation operator
(aggregator) M .

An OWA aggregator M (m) associated to the
m non negative weights (ω

(m)
1 , . . . , ω(m)

m ) such

that
∑m

k=1 ω
(m)
k = 1 corresponds to

M (m)(x(1), . . . , x(m)) =
m∑

i=1

ω
(m)
i x(i),

x(1) ≤ · · · ≤ x(i) ≤ · · · ≤ x(m).

ω
(m)
1 is linked to the lowest value x(1), . . . , ω(m)

m

is linked to the greatest value x(m).
This class of operators includes

• min(x1, . . . , xm) if ω
(m)
1 = 1.

• max(x1, . . . , xm) if ω(m)
m = 1.

• any order statistics x(k) if ω
(m)
k = 1, k =

1, . . . ,m.

• the arithmetic mean if ω
(m)
1 = · · · =

ω(m)
m = 1

m
.

• the median (x(m/2) + x(m/2)+1)/2 if

ω
(m)
(m/2) = ω

(m)
(m/2)+1 = 1

2
and m is even.

• the median x(m+1)/2 if ω
(m)
(m+1)/2 = 1 and

m is odd.

• the arithmetic mean excluding the two
extremes if ω

(m)
1 = ω(m)

m = 0 and ω
(m)
i =

1
m−2

, i 6= 1,m.

Well-known and easy to prove properties of
the OWA aggregators are summarized as fol-
lows (see also Yager [16], Cutello and Montero
[2]).

Any OWA aggregator is

• neutral (or symmetric or commutative):

M(x1, . . . , xm) = M(xi1 , . . . , xim)

for all (x1, . . . , xm) ∈ IRm, when
(i1, . . . , im) = σ(1, . . . , m), where σ rep-
resents a permutation operation;

• monotonic:

x′i > xi implies

M(x1, . . . , x
′
i, . . . , xm) ≥

M(x1, . . . , xi, . . . , xm);

• idempotent:

M(x, . . . , x) = x , for all x ∈ IR;

• compensative:

min
i=1,m

xi ≤ M (m)(x1, . . . , xm) ≤ max
i=1,m

xi.

Moreover, the following conditions, which are
non-usual in the literature of MCDM, are also
satisfied by any OWA aggregator.

• ordered linkage property (Marichal and
Roubens [11]):

For any given numbers {x1, . . . , x2m} or-
dered as x(1) ≤ x(2) ≤ · · · ≤ x(2m) we
have

M (m+1)(y1, y2, . . . , ym+1) =

M (m)(z1, z2, . . . , zm)

where yi = M (m)(x(i), . . . , x(m+i−1)) and
zi = M (m+1)(x(i), . . . , x(m+i)).

• stability for the same positive linear
transformation:

M (m)(rx1 + t, . . . , rxm + t) =

rM(x1, . . . , xm) + t,

for all (x1, . . . , xm) ∈ IRm, all r > 0, all
t ∈ IR.



• ordered stability for positive linear trans-
formations with the same unit and inde-
pendent zeroes:

M (m)(rx1 + t1, . . . , rxm + tm) =

rM(x1, . . . , xm) + T (t1, . . . , tm)

holds for all (x1, . . . , xm) ∈ IRm, all r >
0, all (t1, . . . , tm) ∈ IRm and for the or-
dered values x(1) ≤ x(2) ≤ . . . ≤ x(m),
t(1) ≤ t(2) ≤ . . . ≤ t(m).

Notice that, in general, OWA aggregators fail
to satisfy

• associativity:

M(M(x1, x2), x3) =

M(x1,M(x2, x3)),

M(M(x1, . . . , xm−1), xm) =

M(x1,M(x2, . . . , xm))

for all (x1, . . . , xm) ∈ IRm;

• decomposability: (Kolmogorov [10],
Nagumo [12])

M (m)(x1, . . . , xk, xk+1, . . . , xm) =

M (m)(x, . . . , x, xk+1, . . . , xm)

when x = M (k)(x1, . . . , xk), for all
(x1, . . . , xm) ∈ IRm.

In addition, associativity and decomposability
together imply the ordered linkage property,
while the converse is not true in general.

Now we turn to the characterization of OWA
operators, i.e., we choose two sets of sufficient
conditions from the above list of necessary con-
ditions.

3. Characterization of the OWA
aggregator

A foundational paper of Aczél, Roberts and
Rosenbaum [1] shows that the general solution
of a functional equation related to the stability
for positive linear transformations (case ]5) :

M(rx1 + t, . . . , rxm + t) =

rM(x1, . . . , xm) + t, r > 0,

where M is a mapping from IRm → IR given
by

M(x1, . . . , xm) =

S(x)f
(

x1−A(x)
S(x)

, . . . , xm−A(x)
S(x)

)
+ A(x)

if S(x) 6= 0 and

M(x1, . . . , xm) = x

if S(x) = 0 (⇔ x1 = x2 = · · · = xm = x),
where S2(x) =

∑
i(xi − A(x))2 and A(x) rep-

resents the arithmetic mean; f is an arbitrary
function from IRm to IR.

It is also true that the weighted mean cor-
responds to monotonic and idempotent aggre-
gators which satisfy the (SPLU)-property (see
[1], case ] 9).

From results obtained by Marichal and
Roubens [11], we know that neutral, continu-
ous, stable for the same positive linear transfor-
mations and associative (resp. decomposable)
operators are characterized by the min or max
operators (resp. min or max or A(x)).

Weaker property than associativity or de-
composability is needed to be able to charac-
terize the OWA operators which include min,
max and the arithmetic means. This interme-
diate property is related to the ordered linkage
property.

Theorem 1 The class of ordered weighted
averaging aggregators corresponds to the oper-
ators which satisfy the properties of neutral-
ity, monotonicity, stability for the same pos-
itive linear transformations and ordered link-
age.

Another characterization of OWA operators
corresponds to the following proposition.

Theorem 2 The class of ordered weighted
averaging operators corresponds to the aggrega-
tors which satisfy the properties of neutrality,
monotonicity, idempotency and stability for
positive linear transformations with the same
unit, independent zeroes and ordered values.

Proofs of these results and some related is-
sues can be found in [8].



4. Decomposable quasi-OWA
aggregators

The quasi-arithmetic mean was first consid-
ered and characterized by Kolmogorov [10] and
Nagumo [12]. It corresponds to the aggregator

M(x1, . . . , xm) = f−1

[
1

m

∑

i

f(xi)

]

where f is a continuous strictly monotonic
function.

It is natural to consider the quasi-OWA op-
erators

M(x1, . . . , xm) = f−1

[∑

i

ω
(m)
i f(x(i))

]
.

These aggregators have still to be character-
ized but one can prove the following proposi-
tion.

Proposition 1 Any decomposable quasi-
OWA operator corresponds to the min or max
or the quasi-arithmetic mean.

5. Weighted maximum and minimum

Using the concept of possibility and necessity
of fuzzy events [18, 3], one can evaluate the
possibility that a relevant goal is attained, and
the necessity that all the relevant goals are at-
tained by the help of the following formulas
(see [4] for more details) weighted maximum:

max
i=1,m

{min(wi, xi)}, wi ∈ [0, 1], max
i=1,m

wi = 1

(1)
and

weighted minimum:

min
i=1,m

{max(wi, xi)}, wi ∈ [0, 1], min
i=1,m

wi = 0.

(2)
The analogy between the weighted arith-

metic mean and the weighted maximum is ob-
vious: product corresponds to minimum, sum
does to maximum. It is emphasized in [4] that
weighted maximum and minimum operators
can be calculated as medians, i.e., the quali-
tative counterparts of means. More formally,
the following result is true (only the weighted
maximum is recalled).

Proposition 2 Let (a1, . . . , am) ∈ [0, 1]m

and (b1, . . . , bm) ∈ [0, 1]m be such that a1 ≤
a2 ≤ . . . ≤ am and 1 = b1 ≥ b2 ≥ . . . ≥ bm.
Then

max
i=1,m

{min(ai, bi)} =

median(a1, . . . , am, b1, . . . , bm).

It is easy to see that weighted maximum sat-
isfies idempotency and monotonicity. More-
over, it fulfils also (with T (m) = M (m))

• stability for maximum (SMAX):

M (m)(x1 ∨ t1, . . . , xm ∨ tm) =

M (m)(x1, . . . , xm) ∨ T (m)(t1, . . . , tm)

for all (x1, . . . , xm) ∈ [0, 1]m,
(t1, . . . , tm) ∈ [0, 1]m.

• stability for minimum with the same unit
(SMINU):

M (m)(r ∧ x1, . . . , r ∧ xm) =

r ∧M (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ [0, 1]m, r ∈ [0, 1].

In a sense, the converse is also true, as we
state in the following theorem.

Theorem 3 Suppose that M is a nonde-
creasing function from [0, 1]m to [0, 1] such that
M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1. Then
M satisfies SMAX and SMINU if and only
if there exist weights w1, . . . , wm ≥ 0 with
max wi = 1 such that

M(x1, . . . , xm) = max
i=1,...,m

{min(wi, xi)}.

By duality, we can introduce the correspond-
ing stability conditions in the case of the
weighted minimum as follows:

• stability for minimum (SMIN):

M (m)(x1 ∧ t1, . . . , xm ∧ tm) =

M (m)(x1, . . . , xm) ∧ T (m)(t1, . . . , tm)

for all (x1, . . . , xm) ∈ [0, 1]m,
(t1, . . . , tm) ∈ [0, 1]m.



• stability for maximum with the same unit
(SMAXU):

M (m)(r ∨ x1, . . . , r ∨ xm) =

r ∨M (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ [0, 1]m, r ∈ [0, 1].

Obviously, the weighted minimum (2) satis-
fies both conditions. We state that the con-
verse is also true in the following sense.

Theorem 4 Suppose that M is a nonde-
creasing function from [0, 1]m to [0, 1] such that
M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1. Then
M satisfies SMIN and SMAXU if and only
if there exist weights w1, . . . , wm ≥ 0 with
max wi = 1 such that

M(x1, . . . , xm) = min
i=1,...,m

{max(wi, xi)}.

6. Ordered weighted minimum and
maximum

Suppose that (x1, . . . , xm) ∈ [0, 1]m and or-
der these numbers increasingly: x(1) ≤ x(2) ≤
. . . ≤ x(m). The ordered weighted maximum
(OWMAX) operator associated to the m non-
negative weights (w1, . . . , wm) with max wi = 1
corresponds to

M(x1, . . . , xm) = max
i=1...,m

{min(wi, x(i))}, (3)

see [5].
The weight w1 is linked to the lowest value

x(1), . . . , wm is linked to the greatest value x(m).
This class of operators includes

• min(x1, . . . , xm) if w1 = 1 and wi = 0 for
i ≥ 2;

• max(x1, . . . , xm) if wm = 1;

• any order statistics xk if wk = 1 and wi =
0 for i > k;

Obviously, any OWMAX operator is neutral,
nondecreasing, idempotent and compensative.
In addition, SMAX and SMINU are also sat-
isfied for the ordered values x(1) ≤ . . . ≤ x(m),
t(1) ≤ . . . ≤ t(m) as follows:

M(x(1) ∨ t(1), . . . , x(m) ∨ t(m)) =

M(x(1), . . . , x(m)) ∨ T (t(1), . . . , t(m)),

M(r ∧ x(1), . . . , r ∧ x(m)) =

r ∧M(x(1), . . . , x(m)).

Fortunately, the converse is also true in the
following form.

Theorem 5 A nondecreasing function M :
[0, 1]m → [0, 1] with M(0, . . . , 0) = 0 and
M(1, . . . , 1) = 1 satisfies SMAX and SMINU
for ordered elements if and only if there exist
weights 1 = w1 ≥ . . . ≥ wm ≥ 0 such that

M(x1, . . . , xm) =

median{w2, . . . , wm, x(1), . . . x(m)}.

Notice that we can obtain similar charac-
terization when using SMIN and SMAXU for
ordered values. We formulate the statement
without proof as follows.

Theorem 6 A nondecreasing function M :
[0, 1]m → [0, 1] with M(0, . . . , 0) = 0 and
M(1, . . . , 1) = 1 satisfies SMIN and SMAXU
for ordered elements if and only if there exist
weights 1 ≥ w1 ≥ . . . ≥ wm = 0 such that

M(x1, . . . , xm) =

median{w1, . . . , wm−1, x(1), . . . x(m)}.
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