On nonstrict means

János C. Fodor
Department of Computer Science
Eötvös Loránd University, Budapest
Múzeum krt. 6-8, H-1088 Budapest, Hungary
Jean-Luc Marichal
Ecole d'Administration des Affaires
University of Liège
7, boulevard du Rectorat - B31
B-4000 Liège 1, Belgium
e-mail : marichal@vm1.ulg.ac.be

Keywords : fuzzy logical connectives; preference modelling; MCDM; aggregation functions; nonstrict mean values.

Abstract

We investigate a class of aggregation operators : the well-known mean values. Kolmogoroff [6] and Nagumo [8] established a fundamental result about mean values. In their definition a mean value M is a sequence of functions: $$
M^{(1)}\left(x_{1}\right)=x_{1}, M^{(2)}\left(x_{1}, x_{2}\right), \ldots, M^{(m)}\left(x_{1}, \ldots, x_{m}\right), \ldots,
$$ each function of this sequence having to satisfy the following conditions: $M^{(m)}\left(x_{1}, \ldots, x_{m}\right)$ must be a function $[a, b]^{m} \rightarrow[a, b]$ which is continuous, symmetric, strictly increasing on each argument, and idempotent, that is $M^{(m)}(x, \ldots, x)=x$. The elements of this sequence are linked by a pseudo-associativity called the decomposability property by several authors (see [3, Chapter 5]): $$
M^{(m)}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{m}\right)=M^{(m)}\left(M_{k}, \ldots, M_{k}, x_{k+1}, \ldots, x_{m}\right)
$$

for all $k \in\{1, \ldots, m\}$, with $M_{k}=M^{(m)}\left(x_{1}, \ldots, x_{k}\right)$.
The result of Kolmogoroff-Nagumo is the following one :
Theorem 1 An aggregation operator $M: \bigcup_{m=1}^{\infty}[a, b]^{m} \rightarrow[a, b]$ is continuous, symmetric, strictly increasing, idempotent and decomposable iff for all $m \in N_{0}$,

$$
M^{(m)}\left(x_{1}, \ldots, x_{m}\right)=f^{-1}\left[\frac{1}{m} \sum_{i} f\left(x_{i}\right)\right]
$$

(generalized mean) where f is any continuous strictly monotonic function on $[a, b]$.
On the other hand, Aczél [1] (see also [2]) proved that a function $M(x, y):[a, b]^{2} \rightarrow$ $[a, b]$ of two variables is continuous, symmetric, strictly increasing on each argument, idempotent and fulfils the bisymmetry equation

$$
M\left[M\left(x_{11}, x_{12}\right), M\left(x_{21}, x_{22}\right)\right]=M\left[M\left(x_{11}, x_{21}\right), M\left(x_{12}, x_{22}\right)\right]
$$

if and only if

$$
M(x, y)=f^{-1}\left[\frac{f(x)+f(y)}{2}\right]
$$

(generalized mean) where f is any continuous strictly monotonic function on $[a, b]$.
As we can see, the decomposability and bisymmetry properties play similar roles and as Horváth [5] showed, the result of Aczél is a trivial consequence of the one of KolmogoroffNagumo.

Our purpose is to describe the family of continuous, symmetric, increasing, idempotent and decomposable aggregation operators thus relaxing strict increasing monotonicity of M into weak increasing monotonicity.

For example, letting $\mathcal{D}_{a, b, \theta}$ be the set of aggregation operators $M: \bigcup_{m=1}^{\infty}[a, b]^{m} \rightarrow[a, b]$ which are continuous, symmetric, increasing, idempotent, decomposable and such that $M(a, b)=\theta, \theta$ being a given number in $[a, b]$, we have the following result:

Theorem 2 An aggregation operator $M: \bigcup_{m=1}^{\infty}[a, b]^{m} \rightarrow[a, b]$ is continuous, symmetric, increasing, idempotent and decomposable iff there exists two numbers α and β fulfilling $a \leq \alpha \leq \beta \leq b$, such that, for all $m \in N_{0}$,

$$
\begin{aligned}
\text { i) } & M\left(x_{1}, \ldots, x_{m}\right)=M_{a, \alpha, \alpha}\left(x_{1}, \ldots, x_{m}\right) \quad \text { if } \max _{i} x_{i} \in[a, \alpha] ; \\
\text { ii) } & M\left(x_{1}, \ldots, x_{m}\right)=M_{\beta, b, \beta}\left(x_{1}, \ldots, x_{m}\right) \quad \text { if } \min _{i} x_{i} \in[\beta, b] ; \\
\text { iii) } & M\left(x_{1}, \ldots, x_{m}\right)=f^{-1}\left[\frac{1}{m} \sum_{i} f\left[\text { median }\left(\alpha, x_{i}, \beta\right)\right]\right] \quad \text { otherwise, }
\end{aligned}
$$

where $M_{a, \alpha, \alpha} \in \mathcal{D}_{a, \alpha, \alpha}, M_{\beta, b, \beta} \in \mathcal{D}_{\beta, b, \beta}$ and where f is any continuous strictly monotonic function on $[\alpha, \beta]$.

The sets $\mathcal{D}_{a, \alpha, \alpha}$ and $\mathcal{D}_{\beta, b, \beta}$ can also be described.
We also show that the linkage between decomposability and bisymmetry noted above still holds if we relax strict increasing monotonicity.

References

[1] J. Aczél (1948), On mean values, Bulletin of the American Math. Society, 54: 392400.
[2] J. Aczél (1966), Lectures on Functional Equations and Applications, (Academic Press, New York).
[3] J. Fodor and M. Roubens (1994), Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht: 107-126.
[4] L. Fuchs (1950), On mean systems, Acta Math. Acad. Sci. Hung.1: 303-320.
[5] J. Horváth (1947), Sur le rapport entre les systèmes de postulats caractérisant les valeurs moyennes quasi arithmétiques symétriques, C. R. Acad. Sci. Paris, 225: 12561257.
[6] A.N. Kolmogoroff (1930), Sur la notion de la moyenne, Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez.,12: 388-391.
[7] C.H. Ling (1965), Representation of associative functions, Publ. Math. Debrecen, 12: 189-212.
[8] M. Nagumo (1930), Uber eine Klasse der Mittelwerte, Japanese Journal of Mathematics, 6: 71-79.

