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Abstract

The notion of entropy, recently generalized to ca-
pacities, is extended to bi-capacities and its main
properties are studied.
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1 Introduction

The well-known Shannon entropy [10] is a funda-
mental concept in probability theory and related
fields. In a general non probabilistic setting, it
is merely a measure of the uniformity (evenness)
of a discrete probability distribution. In a proba-
bilistic context, it can be naturally interpreted as
a measure of unpredictability.

By relaxing the additivity property of probability
measures, requiring only that they be monotone,
one obtains Choquet capacities [1], also known as
fuzzy measures [11], for which an extension of the
Shannon entropy was recently defined [4, 5, 7, 8].

The concept of capacity can be further general-
ized. In the context of multicriteria decision mak-
ing, bi-capacities have been recently introduced by
Grabisch and Labreuche [2, 3] to model in a flexi-
ble way the preferences of a decision maker when
the underlying scales are bipolar.

Since a bi-capacity can be regarded as a general-
ization of a capacity, the following natural ques-
tion arises : how could one appraise the ‘uni-
formity’ or ‘uncertainty’ associated with a bi-
capacity in the spirit of the Shannon entropy?

The main purpose of this paper is to propose a

definition of an extension of the Shannon entropy
to bi-capacities. The interpretation of this con-
cept will be performed in the framework of multi-
criteria decision making based on the Choquet in-
tegral. Hence, we consider a set N := {1, . . . , n}
of criteria and a set A of alternatives described
according to these criteria, i.e., real-valued func-
tions on N . Then, given an alternative x ∈ A, for
any i ∈ N , xi := x(i) is regarded as the utility
of x w.r.t. to criterion i. The utilities are further
considered to be commensurate and to lie either
on a unipolar or on a bipolar scale. Compared
to a unipolar scale, a biploar scale is character-
ized by the additional presence of a neutral value
(usually 0) such that values above this neutral
reference point are considered to be good by the
decision maker, and values below it are considered
to be bad. As in [2, 3], for simplicity reasons, we
shall assume that the scale used for all utilities is
[0, 1] if the scale is unipolar, and [−1, 1] with 0 as
neutral value, if the scale is bipolar.

This paper is organized as follows. The second
and third sections are devoted to a presentation of
the notions of capacity, bi-capacity and Choquet
integral in the framework of multicriteria decision
making. In the last section, after recalling the def-
initions of the probabilistic Shannon entropy and
of its extension to capacities, we propose a gen-
eralization of it to bi-capacities. We also give an
interpretation of it in the context of multicriteria
decision making and we study its main properties.

2 Capacities and bi-capacities

In the context of aggregation, capacities [1] and
bi-capacities [2, 3] can be regarded as generaliza-



tions of weighting vectors involved in the calcula-
tions of weighted arithmetic means.

Let P(N) denote the power set of N and let
Q(N) := {(A,B) ∈ P(N) ×P(N)|A ∩ B = ∅}.

Definition 2.1 A function µ : P(N) → [0, 1] is
a capacity if it satisfies :

(i) µ(∅) = 0, µ(N) = 1,

(ii) for any S, T ⊆ N , S ⊆ T ⇒ µ(S) ≤ µ(T ).

A capacity µ on N is said to be additive if µ(S ∪
T ) = µ(S) + µ(T ) for all disjoint subsets S, T ⊆
N . A particular case of additive capacity is the
uniform capacity on N . It is defined by

µ∗(T ) = |T |/n, ∀T ⊆ N.

The dual (or conjugate) of a capacity µ on N is a
capacity µ̄ on N defined by µ̄(A) = µ(N)−µ(N \
A), for all A ⊆ N .

Definition 2.2 A function v : Q(N) → R is a
bi-capacity if it satisfies :

(i) v(∅, ∅) = 0, v(N, ∅) = 1, v(∅, N) = −1,

(ii) A ⊆ B implies v(A, ·) ≤ v(B, ·) and v(·, A) ≥
v(·, B).

Furthermore, a bi-capacity v is said to be :

• of the Cumulative Prospect Theory (CPT)
type [2, 3, 12] if there exist two capacities µ1,
µ2 such that

v(A,B) = µ1(A)−µ2(B), ∀(A,B) ∈ Q(N).

When µ1 = µ2 the bi-capacity is further said
to be symmetric, and asymmetric when µ2 =
µ̄1

• additive if it is of the CPT type with µ1, µ2

additive, i.e. for any (A,B) ∈ Q(N)

v(A,B) =
∑

i∈A

µ1(i) −
∑

i∈B

µ2(i).

Note that an additive bi-capacity with µ1 =
µ2 is both symmetric and asymmetric since
µ̄1 = µ1.

As we continue, to indicate that a CPT type bi-
capacity v is constructed from two capacities µ1,
µ2, we shall denote it by vµ1 ,µ2

Let us also consider a particular additive bi-
capacity on N : the uniform bi-capacity. It is
defined by

v∗(A,B) =
|A| − |B|

n
, ∀(A,B) ∈ Q(N).

3 The Choquet integral

When utilities are considered to lie on a unipo-
lar scale, the importance of the subsets of (inter-
acting) criteria can be modeled by a capacity. A
suitable aggregation operator that generalizes the
weighted arithmetic mean is then the Choquet in-
tegral [6].

Definition 3.1 The Choquet integral of a func-
tion x : N → R

+ represented by the profile
(x1, . . . , xn) w.r.t a capacity µ on N is defined
by

Cµ(x) :=
n

∑

i=1

xσ(i)[µ(Aσ(i)) − µ(Aσ(i+1))],

where σ is a permutation on N such that xσ(1) ≤
· · · ≤ xσ(n), Aσ(i) := {σ(i), . . . , σ(n)}, for all i ∈
{1, . . . , n}, and Aσ(n+1) := ∅.

When the underlying utility scale is bipolar, Gra-
bisch and Labreuche proposed to substitute a bi-
capacity to the capacity and proposed a natural
generalization of the Choquet integral [3].

Definition 3.2 The Choquet integral of a func-
tion x : N → R represented by the profile
(x1, . . . , xn) w.r.t a bi-capacity v on N is defined
by

Cv(x) := Cνv

N+
(|x|)

where νv
N+ is a game on N (i.e. a set function on

N vanishing at the empty set) defined by

νv
N+(C) = v(C ∩ N+, C ∩ N−), ∀C ⊆ N,

and N+ := {i ∈ N |xi ≥ 0}, N− := N \ N+.



As shown in [3], an equivalent expression of Cv(x)
is :

Cv(x) =
∑

i∈N

|xσ(i)|
[

v(Aσ(i) ∩ N+, Aσ(i) ∩ N−)

−v(Aσ(i+1) ∩ N+, Aσ(i+1) ∩ N−)
]

, (1)

where Aσ(i) := {σ(i), . . . , σ(n)}, Aσ(n+1) := 0,
and σ is a permutation on N so that |xσ(1)| ≤
· · · ≤ |xσ(n)|.

4 Entropy of a bi-capacity

4.1 The concept of probabilistic entropy

The fundamental concept of entropy of a proba-
bility distribution was initially proposed by Shan-
non [9, 10]. The Shannon entropy of a probabil-
ity distribution p defined on a nonempty finite set
N := {1, . . . , n} is defined by

HS(p) :=
∑

i∈N

h[p(i)]

where

h(x) :=

{

−x lnx, if x > 0,

0, if x = 0,

The quantity HS(p) is always non negative and
zero if and only if p is a Dirac mass (decisivity
property). As a function of p, HS is strictly con-
cave. Furthermore, it reaches its maximum value
(ln n) if and only if p is uniform (maximality prop-
erty).

In a general non probabilistic setting, HS(p) is
nothing else than a measure of the uniformity of p.
In a probabilistic context, it can be interpreted as
a measure of the information contained in p.

4.2 Extension to capacities

Let µ be a capacity on N . The following entropy
was proposed by Marichal [5, 7] (see also [8]) as an
extension of the Shannon entropy to capacities :

HM (µ) :=
∑

i∈N

∑

S⊆N\i

γs(n)h[µ(S ∪ i) − µ(S)].

Regarded as a uniformity measure, HM has
been recently axiomatized by means of three ax-
ioms [4] : the symmetry property, a boundary

condition for which HM reduces to the Shannon
entropy, and a generalized version of the well-
known recursivity property.

A fundamental property of HM is that it can be
rewritten in terms of the maximal chains of the
Hasse diagram of N [4], which is equivalent to :

HM(µ) =
1

n!

∑

σ∈ΠN

HS(pµ
σ), (2)

where ΠN denotes the set of permutations on N
and, for any σ ∈ ΠN ,

pµ
σ(i) := µ({σ(i), . . . , σ(n)})

− µ({σ(i + 1), . . . , σ(n)}), ∀i ∈ N.

The quantity HM (µ) can therefore simply be seen
as an average over ΠN of the uniformity values
of the probability distributions pµ

σ calculated by
means of the Shannon entropy. As shown in [4],
in the context of aggregation by a Choquet inte-
gral w.r.t a capacity µ on N , HM (µ) can be in-
terpreted as a measure of the average value over
all x ∈ [0, 1]n of the degree to which the argu-
ments x1, . . . , xn contribute to the calculation of
the aggregated value Cµ(x).

To stress on the fact that HM is an average of
Shannon entropies, we shall equivalently denote
it by HS as we go on.

It has also been shown that HM = HS satis-
fies many properties that one would intuitively
require from an entropy measure [4, 7]. The most
important ones are :

1. Boundary property for additive mea-
sures. For any additive capacity µ on N , we
have

HS(µ) = HS(p),

where p is the probability distribution on N
defined by p(i) = µ(i) for all i ∈ N .

2. Boundary property for cardinality-
based measures. For any cardinality-based
capacity µ on N (i.e. such that, for any
T ⊆ N , µ(T ) depends only on |T |), we have

HS(µ) = HS(pµ),



where pµ is the probability distribution
on N defined by pµ(i) = µ({1, . . . , i}) −
µ({1, . . . , i − 1}) for all i ∈ N .

3. Decisivity. For any capacity µ on N ,

HS(µ) ≥ 0.

Moreover, HS(µ) = 0 if and only if µ is
a binary-valued capacity, that is, such that
µ(T ) ∈ {0, 1} for all T ⊆ N .

4. Maximality. For any capacity µ on N , we
have

HS(µ) ≤ lnn.

with equality if and only if µ is the uniform
capacity µ∗ on N .

5. Increasing monotonicity toward µ
∗. Let

µ be a capacity on N such that µ 6= µ∗ and,
for any λ ∈ [0, 1], define the capacity µλ on
N as µλ := µ + λ(µ∗

N − µ). Then for any
0 ≤ λ1 < λ2 ≤ 1 we have

HS(µλ1
) < HS(µλ2

).

6. Strict concavity. For any two capacities
µ1, µ2 on N and any λ ∈ ]0, 1[, we have

HS(λ µ1+(1−λ) µ2) > λ HS(µ1)+(1−λ) HS(µ2).

4.3 Generalization to bi-capacities

For any bi-capacity v on N and any N+ ⊆ N , as
in [3], we define the game νv

N+ on N by

νv
N+(C) := v(C ∩ N+, C ∩ N−), ∀C ⊆ N,

where N− := N \ N+.

Furthermore, for any N+ ⊆ N , let pv
σ,N+ be the

probability distribution on N defined, for any i ∈
N , by

pv
σ,N+(i) :=

|νv
N+(Aσ(i)) − νv

N+(Aσ(i+1))|
∑

j∈N |νv
N+(Aσ(j)) − νv

N+(Aσ(j+1))|
(3)

where Aσ(i) := {σ(i), . . . , σ(n)}, for all i ∈ N , and
Aσ(n+1) := ∅

We then propose the following simple definition
of the extension of the Shannon entropy to a bi-
capacity v on N :

HS(v) :=
1

2n

∑

N+⊆N

1

n!

∑

σ∈ΠN

HS(pv
σ,N+) (4)

As in the case of capacities, the extended Shannon

entropy HS(v) is nothing else than an average of
the uniformity values of the probability distribu-
tions pv

σ,N+ calculated by means of HS.

In the context of aggregation by a Choquet inte-
gral w.r.t a bi-capacity v on N , let us show that,

as previously, HS(v) can be interpreted as a mea-
sure of the average value over all x ∈ [−1, 1]n

of the degree to which the arguments x1, . . . , xn

contribute to the calculation of the aggregated
value Cv(x).

In order to do so, consider an alternative x ∈
[−1, 1]n and denote by N+ ⊆ N the subset of
criteria for which x ≥ 0. Then, from Eq. (1), we
see that the Choquet integral of x w.r.t v is simply
a weighted sum of |xσ(1)|, . . . , |xσ(n)|, where each
|xσ(i)| is weighted by

νv
N+(Aσ(i)) − νv

N+(Aσ(i+1)).

Clearly, these weights are not always positive, nor
do they sum up to one. From the monotonic-
ity conditions of a bi-capacity, it follows that the
weight corresponding to |xσ(i)| is positive if and
only if σ(i) ∈ N+.

Depending on the evenness of the distribution of
the absolute values of the weights, the utilities
x1, . . . , xn will contribute more or less evenly in
the calculation of Cv(x).

A straightforward way to measure the evenness of
the contribution of x1, . . . , xn to Cv(x) consists in
measuring the uniformity of the probability distri-
bution pv

σ,N+ defined by Eq. (3). Note that pv
σ,N+

is simply obtained by normalizing the distribution
of the absolute values of the weights involved in
the calculation of Cv(x).

Clearly, the uniformity of pv
σ,N+ can be measured

by the Shannon entropy. Should HS(pv
σ,N+) be

close to lnn, the distribution pv
σ,N+ will be ap-

proximately uniform and all the partial evalua-
tions x1, . . . , xn will be involved almost equally in
the calculation of Cv(x). On the contrary, should
HS(pv

σ,N+) be close to zero, one pv
σ,N+(i) will be

very close to one and Cv(x) will be almost pro-
portional to the corresponding partial evaluation.

Let us now go back to the definition of the ex-
tended Shannon entropy. From Eq. (4), we clearly



see that HS(v) is nothing else than a measure of
the average of the behavior we have just discussed,
i.e. taking into account all the possibilities for σ
and N+ with uniform probability. More formally,
for any N+ ⊆ N , and any σ ∈ ΠN , define the set

Oσ,N+ := {x ∈ [−1, 1]n | ∀i ∈ N+, xi ∈ [0, 1],

∀i ∈ N−, xi ∈ [−1, 0[, |xσ(1) | ≤ · · · ≤ |xσ(n)|}.

We clearly have
⋃

N+⊆N

⋃

σ∈ΠN
Oσ,N+ = [−1, 1]n.

Let x ∈ [−1, 1]n be fixed. Then there exist N+ ⊆
N and σ ∈ ΠN such that x ∈ Oσ,N+ and hence
Cv(x) is proportional to

∑

i∈N xσ(i) pv
σ,N+(i).

Starting from Eq. (4) and using the fact that
∫

x∈O
σ,N+

dx = 1/n!, the entropy HS(v) can be

rewritten as

HM (µ) =
1

2n

∑

N+⊆N

∑

σ∈ΠN

∫

x∈O
σ,N+

HS(pv
σ,N+) dx

=
1

2n

∫

[−1,1]n
HS(pv

σx,N+
x

) dx,

where N+
x ⊆ N and σx ∈ ΠN are defined such

that x ∈ Oσx,N+
x

.

We thus observe that HS(v) measures the average
value over all x ∈ [−1, 1]n of the degree to which
the arguments x1, . . . , xn contribute to the calcu-
lation of Cv(x). In probabilistic terms, it corre-
sponds to the expectation over all x ∈ [−1, 1]n,
with uniform distribution, of the degree of contri-
bution of arguments x1, . . . , xn in the calculation
of Cv(x).

4.4 Properties of HS

We first present two lemmas giving the form the
probability distributions pv

σ,N+ for CPT type bi-
capacities.

Lemma 4.1 For any bi-capacity vµ1,µ2
of the

CPT type on N , any N+ ⊆ N , and any σ ∈ ΠN ,
we have

p
vµ1,µ2

σ,N+ (i) =
[

µ1(Aσ(i) ∩ N+) − µ1(Aσ(i+1) ∩ N+)

+µ2(Aσ(i) ∩ N−) − µ2(Aσ(i+1) ∩ N−)
]

/
[

µ1(N
+) + µ2(N

−)
]

, ∀i ∈ N.

Lemma 4.2 For any CPT type asymmetric bi-
capacity vµ1,µ2

on N , any N+ ⊆ N , and any σ ∈
ΠN , we have

p
vµ1,µ2

σ,N+ (i) = µ1(Aσ(i) ∩N+)− µ1(Aσ(i+1) ∩N+)

+ µ̄1(Aσ(i) ∩ N−) − µ̄1(Aσ(i+1) ∩ N−),

for all i ∈ N .

We now state four important properties of HS.

Property 4.1 (Additive bi-capacity) For

any additive bi-capacity vµ1,µ2
on N , HS(vµ1,µ2

)
equals

1

2n

∑

N+⊆N

∑

i∈N

h

[

µ1(i ∩ N+) + µ2(i ∩ N−)
∑

j∈N+ µ1(j) +
∑

j∈N− µ2(j)

]

Proof. Let vµ1,µ2
be an additive bi-capacity on

N . Then, using Lemma 4.1, for any N+ ⊆ N ,
any σ ∈ ΠN , any i ∈ N , we obtain that

|ν
vµ1,µ2

N+ (Aσ(i)) − ν
vµ1,µ2

N+ (Aσ(i+1))|

= µ1(σ(i) ∩ N+) + µ2(σ(i) ∩ N−).

It follows that, for any N+ ⊆ N ,

HS(p
vµ1,µ2

σ,N+ ) =
∑

i∈N

h

[

µ1(i ∩ N+) + µ2(i ∩ N−)
∑

j∈N+ µ1(j) +
∑

j∈N−
µ2(j)

]

,

for all σ ∈ ΠN , from which we get the desired
result. �

Property 4.2 (Add. sym./asym. bi-capacity)
For any additive asymmetric/symmetric bi-
capacity vµ1,µ2

on N ,

HS(vµ1,µ2
) = HS(p),

where p is the probability distribution on N de-
fined by p(i) := µ1(i) for all i ∈ N .

Proof. The result follows from Property 4.1. �

Property 4.3 (Decisivity) For any bi-capacity
v on N ,

HS(v) ≥ 0.

Moreover, HS(v) = 0 if and only, for any x ∈
[−1, 1]n, only one partial evaluation is used in the
calculation of Cv(x).



Proof. From the decisivity property satisfied by
the Shannon entropy, we have that, for any prob-
ability distribution p on N , HS(p) ≥ 0 with equal-
ity if and only if p is Dirac.

Let v be a bi-capacity on N . If follows that

HS(v) ≥ 0 with equality if and only if, for any
N+ ⊆ N , any σ ∈ ΠN , pv

σ,N+ is Dirac, which is
clearly equivalent to having, for any x ∈ [−1, 1]n,
only one partial evaluation contributing in the cal-
culation of Cv(x). �

Property 4.4 (Maximality) For any bi-
capacity v on N , we have

HS(v) ≤ lnn.

with equality if and only if v is the uniform ca-
pacity v∗ on N .

Proof. From the maximality property satisfied
by the Shannon entropy, we have that, for any
probability distribution p on N , HS(p) ≤ lnn
with equality if and only if p is uniform.

Let v be a bi-capacity on N . It follows that

HS(v) ≤ lnn with equality if and only if, for any
N+ ⊆ N , and any σ ∈ ΠN , pv

σ,N+ is uniform.

It is easy to see that if v = v∗, then HS(v) = lnn.

Let us show that if HS(v) = lnn, then necessarily
v = v∗.

To do so, consider first the case where N+ ∈
{∅, N}. From the normalization condition
v(N, ∅) = 1 = −v(∅, N), it easy to verify that,
for any σ ∈ ΠN ,

∑

j∈N

|νv
N+(Aσ(j)) − νv

N+(Aσ(j+1))| = 1.

It follows that, if, for any σ ∈ ΠN , pv
σ,N+ is uni-

form, then, for any σ ∈ ΠN ,

|νv
N+(Aσ(i)) − νv

N+(Aσ(i+1))| =
1

n
, ∀i ∈ N.

This implies that,

v(i, ∅) =
1

n
= −v(∅, i), ∀i ∈ N. (5)

Consider now the case where N+ ∈ 2N \ {∅, N}.

If HS(v) = lnn, we know that, for any σ ∈ ΠN ,

pv
σ,N+ is uniform. From Eq. (5), we have that, for

any σ ∈ ΠN ,

|νv
N+(Aσ(n)) − νv

N+(Aσ(n+1))| =
1

n
.

Since, for any σ ∈ ΠN , pv
σ,N+ is uniform, we ob-

tain that

|νv
N+(Aσ(i)) − νv

N+(Aσ(i+1))| =
1

n
, ∀i ∈ N.

�
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