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Abstract

In this paper, we develop a method based on local maximum entropy (LME) shape functions together
with enrichment functions used in partition of unity methods to discretize problems in linear elastic
fracture mechanics. We obtain improved accuracy relative to the standard extended finite element
method (XFEM) at a comparable computational cost. In addition, we keep the advantages of the LME
shape functions, such as smoothness and non-negativity. We show numerically that optimal convergence
(same as in FEM) for energy norm and stress intensity factors can be obtained through the use of
geometric (fixed area) enrichment with no special treatment of the nodes near the crack such as blending
or shifting.
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1 Introduction

Maximum entropy shape functions are a relatively new class of approximation functions, as they were first
introduced in [1] in the context of polygonal interpolation. The idea of these functions is to maximize the
Shannon entropy [2] of the basis functions, which gives a measure of the uncertainty in the approximation
scheme. The principle of maximum entropy (max-ent) was developed by Jaynes [3, 4], who showed that
there is a natural correspondence between statistical mechanics and information theory. In particular,
max-ent offers the least-biased statistical inference when the shape functions are viewed as probability
distributions subject to the approximation constraints (such as linear reproducing properties). However,
without additional constraints, the basis functions are non-local, which due to increased overlapping makes
them unsuitable for analysis using Galerkin methods. The large overlapping of the basis functions, generally
leads to more expensive numerical integration due to large number of evaluation points. It also produces a
non-sparse stiffness matrix, resulting in a linear system that is much more expensive to solve.
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The local maximum-entropy (LME) approximation schemes were developed in [5] using a framework
similar to meshfree methods. Here the support of the basis functions is introduced as a thermalization (or
penalty) parameter β in the constraint equations. When β = 0, then the max-ent principle is fully satisfied
and the basis functions will be least biased. For example, if only zero-order consistency is required, the shape
functions are Shepard approximants [6] with Gaussian weight function. When β is large, then the shape
functions have minimal support. In particular, they become the usual linear finite element functions defined
on a Delaunay triangulation of the domain associated with the given node set. In [5] it was shown that for
some values of β, the approximation properties of the maximum-entropy basis functions are greatly superior
to those of the finite element linear functions, even when the added computational cost due to larger support
is taken into account.

Subsequent studies, such as [7, 8, 9], show that maximum entropy shape functions are suitable for
solving a variety of problems such as thin shell analysis, compressible and nearly-incompressible elasticity
and incompressible media problems. Higher order approximations can also be obtained using the max-ent
framework, as shown in [10]. This class of methods is therefore related to the MLS-based meshless methods
(due to the node-based formulation) and isogeometric analysis (with whom it shares features such as weak
Kronecker delta and non-negativity), inheriting some advantages from both.

In this work, we propose a coupling of the LME shape functions with the extrinsic enrichments used in
partition of unity enriched methods for fracture, such as the extended finite element method (XFEM), see
[11, 12, 13].

There is a growing interest in modeling fracture mechanics with enrichment functions combined with
meshless methods [14, 15, 16], isogeometric analysis [17], or strain-smoothed FEM [18, 19]. Advantages
of the resulting methods include the possibility to model curved boundaries through higher order shape
functions. The resulting basis functions also have higher continuity, which is particularly advantageous
when the model problem requires it, such as the Kirchhoff-Love theory. Also in some enriched meshless
methods, no representation of the crack’s topology is needed as this is handled through cracking particles as
in [20] or weight-function enrichments as in [21, 22].

Here, we show that the enriched maximum entropy shape functions are suitable for this class of problems.
Moreover, this method is more accurate than standard XFEM and does not require the so-called blending
elements (the elements near the crack tip). When compared to usual meshfree methods for crack propaga-
tion, such as Element Free Galerkin (EFG), the method presented here can more easily deal with essential
boundary conditions, due to the fact that the shape functions satisfy a weak Kronecker delta property.
The shape functions are also very smooth (C∞), which results in an accurate numerical integration with a
relatively low number of integration points, especially for Gauss-Legendre quadrature [5, 8, 10]. Moreover,
smooth and non-negative basis functions, such as those used in isogeometric analysis are gaining impetus.

The paper is organized as follows: in the next section we will briefly describe the LME approximants.
Then we will introduce the coupling between LME and XFEM, with particular reference to implementation
issues such as numerical integration. Next we examine the accuracy of the method through several numerical
examples, which indicate that the convergence rates for the energy norm of the error and the stress-intensity
factors, are O(h) and O(h2) respectively. Some concluding remarks are stated in the last section.

2 Local Maximum Entropy (LME) Approximants

LME meshfree approximants, introduced in [5], are related to other convex approximation schemes, such as
natural neighbor approximants [23], subdivision approximants [24], or B-spline and NURBS basis functions
[25]. The LME basis functions will be denoted by pa(x), a = 1, ..., N with x ∈ Rd, d is the dimension
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of the physical domain. They are non-negative and are required to satisfy the zeroth-order and first-order
consistency conditions:

pa(x) ≥ 0, (1)
N∑
a=1

pa(x) = 1, (2)

N∑
a=1

pa(x)xa = x. (3)

In the last equation, the vector xa identifies the positions of the nodes associated with each basis function.
Consider a set of nodes X = {xa}a=1,...,N , which we will call the node set. The convex hull of X is the set

convX := {x ∈ Rd|x = Xλ, λ ∈ RN+ ,1 · λ = 1} (4)

Here RN+ is the non-negative orthant, 1 denotes the vector in RN whose entries are one, and X is the d×N
matrix whose columns are the co-ordinates of the position vectors of the nodes in the node set X [5]. Convex
approximants, which are in the span of convex basis functions, can only exist within the convex hull of X(or
subsets of it) and satisfy a weak Kronecker delta property at the boundary of the convex hull of the nodes.
This means that the shape functions corresponding to the interior nodes vanish on the boundary. With this
property, the imposition of essential boundary conditions in the Galerkin method is straightforward.

The principle of maximum entropy comes from statistical physics and information theory, which consider
the measure of uncertainty or information entropy [2]. Consider a random variable χ : I → Rd, where I
is the index set I = {1, ..., N} and χ(a) = xa gives to each index the position vector of its corresponding
node. Since the shape functions of a convex approximation scheme are non-negative and add to one, we
regard {p1(x), ..., pN (x)} as the corresponding probabilities. The statistical expectation or average of this
random variable, as regarding equation (3), is x. According to this interpretation, the approximation of a

function u(x) ≈
∑N
a=1 pa(x)ua from the nodal values {ua}a=1,...,N is understood as an expected value u(x)

of a random variable µ : I → R where µ(a) = ua.
The main idea of max-ent is to maximize the Shannon’s entropy, H(p1, p2, ..., pN ), subject to the consis-

tency constraints as follows:

(ME) For a fixed x maximize (5)

H(p1, p2, ..., pN ) = −
N∑
a=1

pa log(pa)

subject to pa ≥ 0, a = 1, ..., N
N∑
a=1

pa = 1

N∑
a=1

paxa = x

Solving the (ME) problem produces the set of basis functions, pa := pa(x), a = 1, ..., N . However, these basis
functions are non-local, i.e. they have support in all of convX, and are not suitable for use in a Galerkin
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approximation because it would lead to a full, non-banded matrix. Nevertheless, they have been used in [1]
as basis functions for polygonal elements.

Another optimization problem which takes into account the locality of the shape functions is Rajan’s
form of the Delaunay triangulation [26]. This can be stated as the following linear program:

(RAJ) For a fixed x minimize (6)

U(x, p1, p2, ..., pN ) =

N∑
a=1

pa |x− xa|2

subject to pa ≥ 0, a = 1, ..., N
N∑
a=1

pa = 1

N∑
a=1

paxa = x

It is easy to see that U(x, p1, p2, ..., pN ) is minimized when the shape functions p1, ..., pN decay rapidly as the
distance from the corresponding nodes xa increases. There, the shape functions that satisfy (RAJ) problem
will have small supports, where the support can be defined up to a small tolerance ε by

supp(pa) = {x : pa(x) > ε}

The main idea of LME approximants is to compromise between the (ME) problem and the (RAJ) problem
by introducing parameters βa that control the support of the pa. Therefore we write:

For a fixed x minimize (7)
N∑
a=1

βapa |x− xa|2 +

N∑
a=1

pa log(pa)

subject to pa ≥ 0, a = 1, ..., N
N∑
a=1

pa = 1

N∑
a=1

paxa = x

The non-negative parameters βa can in general be functions of the position x. This convex optimization
problem is solved efficiently by a duality method as described in [5]. Finally, the shape functions are written
in the form:

pa(x) =
1

Z(x, λ∗(x))
exp[−βa |x− xa|2 + λ∗(x) · (x− xa)]

where

Z(x, λ) =

N∑
b=1

exp[−βb |x− xb|2 + λ · (x− xb)]
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is a function associated with the node set X and λ∗(x) is defined by

λ∗(x) = arg min
λ∈Rd

log Z(x, λ)

The local max-ent shape functions are as smooth as β(x) and pa(x, βa) is a continuous function of β ∈
[0,+∞) [5]. For example LME shape functions are C∞ if β is constant. In this paper we choose β = γ

h2 ,
where h is a measure of the nodal spacing and γ is constant over the domain. In this case the shape functions
are smooth and their degree of locality is controlled by the parameter γ. A plot of the LME functions for
γ = 1.8 and a particular choice of nodes is given in Figure 1. In general, the optimal β is not obvious and
this will be discussed later in this paper.
As we mentioned before, LME shape functions satisfy a weak Kronecker delta property at the boundary of

Figure 1: Local max-ent shape functions in 2D.

the convex hull of the nodes. Therefore, the shape functions that correspond to interior nodes vanish on the
boundary.

3 Brief on extrinsic enrichments for Partition of Unity Methods

3.1 Description

The main idea of Partition of Unity (PU) enrichment as used here is to extend the max-ent approximation
space with some additional enrichment functions. The proposed method is based on a local partition of unity
and uses an extrinsic enrichment to model the discontinuity. The max-ent approximation can be decomposed
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into a standard part and an enriched part:

uh(x) =
∑
I∈W

pI(x)uI +
∑
J∈Wb

pJ(x)χ(φ(x))aJ+

∑
K∈Ws

pK(x)

4∑
k=1

Bk(x)bkK

Here the first term is the standard approximation part and the second and the third terms are the enriched
parts. W is the set of nodes in the entire discretization and Wb and Ws are the sets of enriched nodes.
pI are the shape functions and χ and Bk are the enrichment functions. Normally, χ is selected as a step
or Heaviside function and is used to enrich the nodes where the supports of the LME shape functions are
completely cut by the crack. Bk are branch functions and are used to enrich the shape functions whose
supports include the crack tip. In this paper we use a geometric (fixed area) enrichment, and therefore we
obtain optimal convergence rate (O(h2)) without a special treatment of the so-called ”blending” area around
the crack tip. Branch functions are defined as follows (in polar coordinate relative to the crack tip):

B1(r, θ) =
√
r sin

θ

2
(8)

B2(r, θ) =
√
r cos

θ

2
(9)

B3(r, θ) =
√
r sin

θ

2
cos θ (10)

B4(r, θ) =
√
r cos

θ

2
cos θ, (11)

where r =
∥∥x− xtip

∥∥.
φ(x) is the signed distance from the point x to the crack segment and aI and bkI are additional degrees

of freedom [27]. The signed distance function is defined as:

φ(x) = min
xΓ∈Γ

‖x− xΓ‖ sign(n · (x− xΓ))

Here Γ is the curve of discontinuity, xΓ is an arbitrary point on Γ and n is normal vector to Γ (see Figure
2). If we choose χ as a Heaviside function, then

H(φ(x)) =

{
1 if φ(x) > 0

−1 if φ(x) < 0
(12)

This enrichment function captures the jump across the crack faces.
In order to model a curved crack, the signed distance function can be approximated by the same shape

functions as the displacement. Assume t is a vector tangent to the curved crack, directed towards the crack
tip. We approximate φ by:

φ̃(x) =
∑
I

pI(x)φI , x ∈ Ωφ (13)

Here φI are the nodal values of φ, pI are the shape functions and Ωφ, is the domain of definition for φ, given
by:

Ωφ := {x|t · ∇r(x) > 0} (14)
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Figure 2: Signed distance function.

So, the approximated crack position is considered as:

Γ := {x|φ̃(x) = 0,x ∈ Ωφ} (15)

In this case, φ̃(x) is not defined beyond the crack tip. So, two possibilities are considered for the angle θ of
the Branch functions. If t · ∇r ≤ 0, then the regular polar angle from −t is computed. If t · ∇r > 0, θ is
considered as in [28]:

θ = arctan(
−φ√
r2 − φ2

) (16)

3.2 Numerical Integration

3.2.1 Numerical Integration for LME

The numerical integration of LME shape functions poses similar challenges as that of the shape functions
used in meshless methods. In particular, the integrands used in the assembly of the stiffness matrix are non-
polynomial and (depending on the values of the parameter γ) the supports of the shape functions overlap
more than in standard finite elements. However, the shape functions are smooth so only a relatively small
number of integration points are required.

In the examples we considered, we used quadrilateral background integration cells for integrating the
shape functions whose support does not intersect the crack. For the values of γ between 4.8 and 1.8, and
for uniformly spaced nodes and square we found that the 4× 4 Gauss quadrature rule is sufficient to ensure
optimal convergence. Moreover, a quadrature rule with 8×8 Gauss points provides close to exact integration
(i.e. the results change by less than 10−6 when the number of Gauss points is further increased).

3.3 Numerical Integration for Enriched LME

The usual numerical integration methods, for example Gauss quadrature, are less accurate for PU-enriched
methods for fracture. This happens due to the discontinuity along the crack, and the singularity at the crack
tip. The usual rule is to use a simple splitting of integration cells crossed by the crack [29]. In [30], a method
was proposed in which each part of the elements that are cut or intersected by a discontinuity is mapped
onto the unit disk using a conformal Schwarz-Christoffel map. However, for straight cracks, a triangulation
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of the elements cut by the crack which takes into account the location of the discontinuity is relatively easy
to implement and was used in this work.

For the integration cells that contain the crack tip, special care has to be taken. These cells contain the
discontinuity and a singularity together. So, simply refining the triangles that make up the integration cells
leads to less accurate numerical results. A simple solution is to refine locally each split triangle, until an
acceptable estimate of the integrands is achieved. Unfortunately, this method is expensive. To solve this
problem, the almost polar integration was introduced in [29]. The main idea is to build a quadrature rule
on a triangle from a quadrature rule on the unit square (see Figure 3). The map is:

Figure 3: Transformation of an integration method on a square into an integration method on a triangle for
crack tip functions.

T : (x, y) −→ (xy, y)

which maps a square into a triangle. By looking at the integrands which contain the derivatives of the
branch functions, we notice that the Jacobian of the transformation T , will cancel the r−1/2 singularity.
This integration method gives excellent results with a low number of integration points and is used on the
sub-triangles having the crack tip as a vertex. In the other integration cells, we found it is sufficient to use
standard Gauss quadrature over a background mesh (such as the Delaunay triangulation of the nodes that
takes in to account the discontinuity for the cells cut by the crack).

An important distinction between meshless methods and standard finite elements is that, in the former,
the numerical integration is almost never exact. Recent work [31] has shown that integration errors in
meshless methods negatively impact the stability of the method when a large number of degrees of freedom
is involved. In particular, as the value of the discretization parameter h decreases, the accuracy of the
numerical integration should increase proportionally, so that optimal convergence can be obtained. We have
conducted a detailed study on the effect of approximate integration for one of the numerical examples shown
below.

3.4 Condition number

There are two ways to choose the enrichment area: topological enrichment in which the area of enrichment
shrinks with the nodal spacing h, and geometric enrichment which uses a fixed enrichment area. In topolog-
ical enrichment, the branch functions are multiplied by shape functions on a small set of nodes around the
crack tip. These singular functions live on a compact support vanishing as h goes to zero. In the context
of meshless methods, only topological enrichment has been studied, which leads to non-optimal convergence
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rate. However, the numerical results of this paper show that the enrichment area should have a size indepen-
dent of the mesh parameter (i.e. it should be geometric) to obtain optimal convergence, as seen for standard
XFEM in [29, 32]. Unfortunately, adding singular functions on all the nodes within a fixed area around the
crack tip leads to an increase in the number of degrees of freedom and an increase in the condition number
(see Figure 4).

Some methods were proposed to improve the condition number of the stiffness matrix, such as precondi-
tioning schemes. Here we use a method introduced in [32] which relies on a Cholesky decomposition of the
diagonal blocks of the stiffness matrix corresponding to enriched nodes. This method noticeably improves
the condition number (see Figure 4), but not the rate of increase as the mesh is refined. A robust precondi-
tioning scheme for XFEM was proposed in [33], which is based on a domain decomposition and results in a
condition number close to the finite element matrices without enrichment. Another promising development
for improving the condition number of geometric enrichment has been developed in [34]. This improvements
will be discussed in a future work.
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Figure 4: The condition number of geometric and topological enrichment for γ = 1.8 and γ = 4.8, using a
direct solver and the preconditioning method.
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4 Numerical Examples

4.1 Infinite plate with a horizontal crack

Consider an infinite plate containing a straight crack of length 2a under a remote uniform stress field σ as
shown in Figure 5. The analytical solution near crack tip for stress fields and displacement in terms of local
polar coordinates from the crack tip are [14]

σxx(r, θ) =
KI√
r

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
σyy(r, θ) =

KI√
r

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
σxy(r, θ) =

KI√
r

sin
θ

2
cos

θ

2
cos

3θ

2

ux(r, θ) =
2(1 + υ)√

2π

KI

E

√
r cos

θ

2

(
2− 2υ − cos2 θ

2

)
uy(r, θ) =

2(1 + υ)√
2π

KI

E

√
r sin

θ

2

(
2− 2υ − cos2 θ

2

)
where KI = σ

√
πa is the stress intensity factor, υ is Poisson’s ratio and E is Young’s modulus.

Figure 5: Infinite plate with a center crack under uniform tension and modeled geometry ABCD.

The analytical solution is valid for region close enough to the crack tip. We consider a square ABCD of
length 10 mm × 10 mm, a = 100 mm, E = 107 N/mm

2
, υ = 0.3, σ = 104 N/mm

2
and the modeled crack
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length is 5 mm. In all problems of this paper, plane strain state is assumed. We use Dirichlet boundary
conditions on the bottom, right and top edges and Neumann boundary conditions on the left edge which
includes the crack. As we mentioned in Section 2, LME shape functions satisfy a weak Kronecker delta
property. This property allows us to impose Dirichlet boundary conditions by computing a node-based
interpolant or an L2 projection of the boundary data. The latter can also be used for edges that contain
enriched nodes. Numerical integration is performed on a background mesh of rectangular elements and the
almost polar integration is used on the elements containing a crack tip.
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Figure 6: Error in the L2 norm for the horizontal crack problem.
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Table 1: Error for energy norm and SIF together with the running time and efficiency ratio (17) for a problem
discretized with 36× 36 nodes.

Method XFEM γ = 4.8 γ = 3.8 γ = 2.8 γ = 1.8 γ = 0.8
Rad. of Infl. 1 2 2 3 3 6
L2 error 0.00023 0.00023 0.00020 0.00015 0.00008 0.00002

Energy error 0.04610 0.04532 0.04161 0.03160 0.01752 0.00640
SIF error 0.08821 0.08474 0.07020 0.03979 0.01016 0.00226

Assembly time 7.2 26.2 24.4 59.7 58.8 226.0
Solution time 0.4 1.4 1.3 2.8 2.9 8.0

Post-proc. time 9.0 22.9 21.5 39.3 38.3 109.6
Total time 16.6 50.5 47.2 101.8 100.1 343.6

Efficiency (L2) 1.000 0.338 0.405 0.258 0.506 0.663
Efficiency (energy) 1.000 0.335 0.390 0.238 0.437 0.348

Efficiency (SIF) 1.000 0.343 0.442 0.362 1.443 1.886
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Figure 7: Error in the energy norm for the horizontal crack problem.

Approximation errors in L2 norm and energy norm are illustrated in Figures 6 and 7 for different values of
γ. Figure 8 shows the percentage error for stress intensity factor (SIFs). It is obvious from these figures that
in this case there is an optimal value for the parameter γ of around 1.8 for which accuracy is maximized. For
very low values of γ, convergence is degraded. This is due to numerical integration. With a higher number
of Gauss points and γ = 0.8, the optimal rate of convergence for a plane elasticity problem was recovered
in [5]. But in that case, the method is very expensive. The LME results converge to the standard XFEM
results as γ increases.
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Figure 8: Percentage error of stress intensity factor for horizontal crack.

As shown in Figures 6 and 7, the rate of convergence for different values of γ, the parameter that controls
the support of the shape functions, is 2 for L2 norm and 1 for the energy norm. This agrees with the a
priori error estimates for XFEM established in the literature (see [35]). For a fixed number of nodes, when γ
decreases the error also decreases. For example, for n = 36× 36 we see from Table 1 that the error becomes
smaller as γ decreases to 0.8. However, as γ decreases, because the support of the LME shape functions
becomes larger, we also need to consider a larger radius of influence (the distance of the neighbor search
between the nodes), which leads to more function evaluations and increases the computational cost. In this
study, we found that choosing γ = 1.8, which corresponds to a radius of influence of 3 nodes, provides a
reasonable balance between accuracy and computational cost.

We note from Table 1 that LME is significantly slower than XFEM for the same number of nodes, and
that the computational cost increases as γ decreases due to larger radius of influence. However, especially
for γ = 1.8, the method is much more accurate than XFEM, which makes up for some of the computational
cost. This is particularly true for the computation of the stress intensity factor, where the error is almost 9
times smaller (although the method is 7 times slower). For γ = 0.8 and 36 × 36 nodes the method is even
more accurate, but unfortunately as was discussed before, the method becomes prohibitively expensive.

In Table 1, we also show the computational efficiency of the method which we define by:

efficiency =
% improvement in accuracy

% increase in total computational time
(17)

We note that an efficiency index of 1 indicates the method is as efficient as XFEM, an index greater than
1 indicates the method is more efficient than XFEM, and an index less than 1 indicates the method is less
efficient. Because of the additional overhead required (Newton iterations, neighbor node search, less-sparse
stiffness matrix), XLME in the current implementation is generally less efficient than XFEM. The ratios
showed in Table 1 are representative for any number of nodes and for the other model problems considered
later in this paper. In general, the results agree with other findings in literature, which show that LME is
more efficient than MLS but less efficient than FEM [36].

13



For the problems studied in this work, even in the cases of standard XFEM, the integration is not exact.
This is because the Branch enrichment functions (8) - (11) are non-polynomial in nature. To study the
effect of approximate integration on the accuracy and stability of the solution, we have considered Gauss
quadratures with a varying number of evaluation points. The relative errors in energy norm obtained for
XFEM and for XLME with γ = 1.8 are shown in Figure 9. The figure shows the convergence study for a
larger number of nodes (up to n = 196× 196). We observe that for both XFEM and XLME, a 3× 3 Gauss
quadrature is not sufficient for a stable solution and the results diverge in the case of XFEM, or become
unstable in the case of XLME. However, with a Gauss quadrature of 4×4 or more points, the error in XFEM
remains constant and optimal convergence is achieved (the lines corresponding to 4 × 4, 5 × 5 and 6 × 6
Gauss points overlap and have slope m = 1.00).

For XLME with γ = 1.8 and with a 4× 4 Gauss quadrature, the convergence rate becomes sub-optimal
as the number of degrees of freedom increases (the slope is m = 0.83). However, the lines corresponding
to 5× 5 and 6× 6 Gauss points overlap almost completely, with only a slight difference that appears when
the number of degrees of freedom is very large (greater than 100,000). The slope of the convergence line
that best fits the data points is m = 0.95 in both cases. This indicates that the error due to numerical
integration when 5 × 5 or more Gauss points are used is very small. It is possible that as the number of
degrees of freedom increases, an even larger number of Gauss points per integration element will be needed,
in line with the results obtained by [31]. In such cases, an adaptive numerical quadrature method may be
needed. However, the LME shape functions are very smooth (C∞), so in general the integration should be
less problematic in comparison to other meshless methods.
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Figure 9: Error in the energy norm for XLME and XFEM and different quadrature rules.

We compute the stress intensity factors by the interaction integral method, where the domain form of
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the interaction integral is given by [37]

I(1,2) =

∫
A

[
σ

(1)
ij

∂u2
i

∂x1
− σ(2)

ij

∂u1
i

∂x1
−W (1,2)δ1j

]
∂q

∂xj
dA

The domain of integration, A, is set to be the union of all the elements which have a node within a ball
of radius rd around the crack tip (see Figure 10). Since we use a fixed area enrichment, rd is also a fixed
distance. We found that most accurate results are obtained when rd is half of the modeled crack length.
This results in a superconvergent (O(h2)) rate for KI , as also reported for XFEM in [29] and [32].

Figure 10: Elements which have a node within a ball of radius rd around the crack tip.

The weight function q is taken to have a value of unity for all nodes within the ball rd, and zero on
the outside of the ball. Hence, the bilinear shape functions are used as the weight functions. W (1,2) is the
interaction strain energy density

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij

σ
(1)
ij and ε

(1)
ij are computed stresses and strains and σ

(2)
ij and ε

(2)
ij are auxiliary stresses and strains derived

by Westergaard and Williams, corresponding to mode 1 and mode 2 as described in [37].

4.2 Edge crack under shear traction

The second problem investigated in this paper, is a finite dimensional plate subjected to uniform shear on
the top of the plate τ = 1.0 N/mm

2
and the bottom is fixed, as shown in the Figure 11. We choose Young’s

modulus E = 3× 107 Pa and Poisson’s ratio ν = 0.25.
The stress intensity factors KI and KII , are calculated by the extended LME method and compared to

the reference solutions [38]:

Kref
I = 34.0

Kref
II = 4.55
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Figure 11: Edge-cracked plate under shear stress.

We note that these values were calculated using a boundary collocation method and are given with an
accuracy of 3 significant digits. The SIFs KI and KII calculated by the extended LME method on a fine
mesh converge to the following values (accurate to 4 significant digits):

K0
I = 34.04

K0
II = 4.537

We note that there is a very good agreement between the reference solution and our computed solution.
To study the convergence of the method we calculated the percentage error between the computed SIFs at
various levels of refinement and K0

I and K0
II .

Figures 12 and 13 illustrate the percentage error for KI and KII . As evident from these figures, the
smallest error for this problem is obtained by γ = 1.8 and γ = 2.8. We note that for these values of γ the
error becomes less than 0.01%, which is equal to K0

I and K0
II up to the given significant digits. For values

of γ that are lower than 1.8, computing the SIF accurately becomes expensive due to the large support of
the shape functions. Therefore, we will not consider the case γ = 0.8 in the following examples.
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Figure 12: Percentage error of KI for edge-cracked plate under shear stress.
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Figure 13: Percentage error of KII for edge-cracked plate under shear stress.
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4.3 Slanted crack in an infinite plate

Consider an infinite plate containing an angled crack as shown in Figure 14a. This problem is a mixed mode
I-II problem. The analytical near-tip field solution for this problem in polar coordinates is given in [39]

σxx(r, θ) =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)
σyy(r, θ) =

KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

σxy(r, θ) =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

+
KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)

ux(r, θ) =
KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2 sin2 θ

2

)
+
KII

2µ

√
r

2π
sin

θ

2

(
κ+ 1 + 2 cos2 θ

2

)
uy(r, θ) =

KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2 cos2 θ

2

)
− KII

2µ

√
r

2π
cos

θ

2

(
κ− 1− 2 sin2 θ

2

)
Here µ is the shear modulus, κ = 3− 4υ for plane strain. The angle θ and the distance r from the crack tip
are indicated in Figure 14b.
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Figure 14: a) Slanted crack in an infinite plate where the principal stress is not perpendicular to the crack.
b) An infinite plate rotated with respect to the crack’s angle.

We redefine the x-coordinate axis to coincide with the crack orientation [40], see Figure 14b. The applied
stress is decomposed into normal and shear components. The stress normal to the crack, σyy, produces pure
mode I loading, while σxy applies mode II loading to the crack. The stress intensity factors for the plate,
can be computed by the relationship between σyy and σxy relative to σ and α through Mohr’s circle [41]

KI = σyy
√
πa = σ cos2 α

√
πa

KII = σxy
√
πa = σ sinα cosα

√
πa

In this problem, we again modeled a square region around the crack tip, the gray square in Figure 14b, and
chose different values for crack’s angle. The same tendency as for the 1st example is observed for this mixed
mode problem. Again, γ = 1.8 gives the most accurate results and this method has a convergence rate of
approximately 2.

Table 2: Error and the average running time when the number of nodes is 36 × 36, the number of Gauss
points is 16, α = 15◦, 30◦ and radius of influence is 2 for γ = 4.8 and γ = 3.8, 3 for γ = 2.8 and γ = 1.8

γ Relative Relative Relative Relative Average total
error error error error running
of KI , of KII , of KI , of KII , time (seconds)
α = 15◦ α = 15◦ α = 30◦ α = 30◦

XFEM 0.088212 0.014660 0.088209 0.014663 15.7
4.8 0.084748 0.013936 0.084753 0.013924 49.0
3.8 0.070224 0.011169 0.070251 0.011112 46.7
2.8 0.039802 0.005500 0.039819 0.005465 101.4
1.8 0.010153 0.002018 0.010146 0.002010 99.9

As shown in Table 2 when γ decreases to the optimal value, in this case γ = 1.8, the error decreases,
however the computational cost increases due to a larger radius of influence of the shape functions. Nev-
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ertheless, we note that the error is much smaller (almost an order of magnitude) between γ = 4.8, which
is virtually the same as standard XFEM, and γ = 1.8. We note that there is only a very small difference
between the α = 15◦ and α = 30◦. This can be explained by the fact that the discretization is identical, the
only difference being the size of the forces applied to the boundaries, as can been seen from Figure 14. The
log-log plots indicating the convergence rates of KI and KII with α = 30◦ are shown in Figures 15 and 16.
We also computed the errors for KI and KII for angles α = 45◦, 60◦, 75◦ with similar results.

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−3

10
−2

10
−1

10
0

h

P
e
rc

e
n
ta

g
e
 e

rr
o
r

 

 

γ = 1.8

γ = 2.8

γ = 3.8

γ = 4.8

XFEM

Slope 2

Figure 15: Percentage error of KI for slanted crack in an infinite plate with α = 30◦.
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Figure 16: Percentage error of KII for slanted crack in an infinite plate with α = 30◦.
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5 Conclusions

We have developed a local maximum entropy approximation scheme for fracture using enrichment functions.
The LME shape functions are non-negative which improves stability, and they possess a weak Kronecker
delta property which makes it easy to impose the boundary conditions. With a fixed area (geometric)
enrichment, optimal convergence is obtained. The LME basis functions are in general not polynomials
but rather particle-based smooth functions, whose support is dictated by a non-dimensional parameter γ.
When γ decreases, the LME shape functions have better approximation properties compared to standard
FEM shape functions, but the size of their support increases. Hence, accurate numerical integration using
standard Gauss quadrature requires a greater number of function evaluations. We conclude that there is an
optimal value of γ of around 1.8 that maximizes the accuracy in relation to computational cost.

For computation of stress intensity factors, this method is competitive in terms of costs compared to
XFEM. Very likely, it is possible to improve the computational efficiency further. In particular, we plan to
investigate the development of an efficient integration scheme, goal-oriented adaptivity for the parameter
γ and the enrichment radius, as well as methods to improve the condition number of the stiffness matrix.
The proposed approximation also shows a lot of potential for other problems which will be examined in the
future, such as crack growth and fracture in thin shell bodies.
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