

Dipl.-Ing. Florian Hoffmann

- 2004 2010 RWTH Aachen Werkstoffinformatik (Computational Material Science)
- 2007 Student research assistant at IOB Finite Element Analysis
- 2013 Research project at University of Bristol (UK) Residual Stresses due to Quenching

2008/09 Student research assistant at IBF

- Inverse Modeling of Heat Transfer Coefficients
- Advanced Rolling Model for AG der Dillinger Hüttenwerke

2018 Diplom Thesis

Effects of Chemistry on Forgeability of 21Cr-9Mn-6Ni Austenitic Steel, Saarschmiede GmbH Freiformschmiede Völklingen

2021 University of Luxembourg

PhD student at the Department of Engineering RUES

IN ENGINEERING

Research Team

Modeling

Thermochemical Processes

in Granular Media

SEARCH UNIT

UNIVERSITÉ DU LUXEMBOURG

□ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Outline

Motivation

- Background Granular Media
- Thermo Chemical Reactors
- eXtended Discrete Element Method (XDEM)

Multiphase Modeling

- Single Particle Model
- Granular Medium/Packed Bed Model
- Conclusion and Outlook

RESEARCH UNIT

RUFS

• The processing of granular media consumes **10% of the** world energy production.

[Duran, J., Sands, Powders and Grains. Springer. New York. 2000].

 Particle technology accounts for 40% of all money investments of the U.S. chemical industry.

[Ennis, B. J. and Green, J. and Davies, R., 1994. Chem. Eng. Prog. 90, 32-43].

• The science of granular flow is **not yet well understood** and well developed as other class of materials.

[Poschel, T. and Schwager, T. Computational Granular Dynamics. Springer. Berlin. 2005].

RUFS

Thermo Chemical Reactors

Forward/Backward acting grates

Blast Furnace Process

Image source: "Modern Blast Furnace Ironmaking - An introduction", M. Geerdes et al.

- Hostile Environment (300-1400 C)
- Multiphase
 - Solid (coke, iron ores, dust, ...)
 - Gas
 - Liquid (liquid iron, slag)
- Processes
 - Chemical reactions
 - Heat transfer
 - Mass transfer
 - Fluid flow

Multi-physics simulation toolbox modelling granular materials and processes:

Multi-physics simulation toolbox modelling granular materials and processes:

Particle Motion

- Sand
- Snow
- . .

Multi-physics simulation toolbox modelling granular materials and processes:

Particle Motion

- Sand
- Snow
- . .

Chemical Reactions

Coke
Iron ore
Biomass
Waste
....

Multi-physics simulation toolbox modelling granular materials and processes:

Blast Furnace Process: Shaft Model

Image source: "Modern Blast Furnace Ironmaking - An introduction", M. Geerdes et al.

• Domain:

Charging -> Cohesive Zone

- High resolution (locality)
- Processes
 - Chemical reactions

RUES

- Heat transfer
- Mass transfer
- Gas flow
- Solid motion

RESEARCH UNIT

IN ENGINEERING

XDEM BF Shaft Process Model

Particle Motion

RESEARCH UNIT

IN ENGINEERING SCIENCES

XDEM Conversion – Single particle model

Particle (for example Fe_xO_y)

XDEM Conversion – Single particle model

XDEM Conversion – Single particle model

XDEM Conversion, Ensemble model

RESEARCH UNIT

SCIENCES

RUES

XDEM Conversion, Ensemble model

UNIVERSITÉ DU LUXEMBOURG

Thermal Conversion of Coke and Iron ore

Thermal conversion T_Inlet=1173 K t=10s t=300s t=700s T_particle (mean) (K) 1450 T_Gas (K) 1450 1400 1400 1300 1300 1200 1200 1100 1100 x z 1173 K

Thermal conversion

Thermal conversion

t=10s t=300s t=700s

Conclusion and Outlook

- Multiphysics -> Coupled Approach
 - Granular Medium
 - Thermo Chemical Processes
 - Fluid Flow

- Validation of a small scale Packed Bed with experimental data
- Shaft Process Model

Thank you for your attention

20

5.00

3,00

9.00 Velocity

Visit us at www.xdem.de

RESEARCH UNIT

IN ENGINEERING

RUES