A NEW 1-D COLOUR MODEL AND ITS APPLICATION TO IMAGE FILTERING
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ABSTRACT

This paper introduces a new 1-D model to encode coloured
images for an efficient subsequent processing. This repre-
sentation is equivalent to, but more compact than, the 3-D
HCL conical representation. It consists in gathering all the
hue, chroma and luminance information in one component,
namely, the cumulative spiral angle, where the spirals in
question are defined as a sampling of the solid HCL cone.
We use the proposed model for joint bilateral upsampling of
low-resolution depth maps. The results show that, in addition
to preserving the perceptual properties of the HCL colour
representation, using the proposed model leads to a solution
that is more accurate than when using grayscale images.

I. INTRODUCTION

Many image processing algorithms consider grayscale im-
ages as input data. Although the results can be more accurate
when considering the full colour information, most systems
are restricted by processing time and memory constraints,
mainly if real-time is a requirement. A grayscale image is
defined as a linear combination of the red, green, and blue
channels in the RGB space. This combination leads to a
non-unique representation of the true colours, which may
cause serious artefacts such as missing features, bad image
matching, or non-detection of salient points. As a result,
a more accurate processing of images requires calling upon
their true colours, and using three components. Indeed, most
algorithms have their definitions extended to three channels
such as bilateral filtering [1], [2], image sharpening and
denoising [3], image enhancement [4], etc. Paris et al. tested
several alternatives on a colour image [2]. They first filtered
an RGB image as three independent channels. Despite a cor-
relation between the three channels, they showed that edges
may be smoothed in one channel while they are preserved
in another channel. This consequently induces incoherent
results between channels. They then tested reducing these
inconsistencies, that result in bleeding effect, by processing
the R, G, and B channels altogether. The downside of
this approach was, however, a longer computational time

required for processing. The same authors tested filtering
images in the CIE-Lab space, which is known to be percep-
tually meaningful. Indeed, this solved the colour-bleeding
problem but not the demanding computation time. In this
paper, we propose to reduce the complexity of processing
3 channels by compactly storing the same information in
only one channel. To that end, we exploit the geometrical
structure of 3-D conical colour spaces and show how to
accurately define one parameter to represent the solid HCL
conical colour space [5]. We equip this representation with
an associated colour similarity measure inspired from the
cylindrical distance used for cylindrical and conic colour
spaces such as HSV/HSL [5], [6], [7]. The proposed colour
model represents a novel colour ordering that might be
useful in the context of colour morphology [8]. Indeed,
morphological colour operators, i.e., morphological filters
such as opening and closing or morphological centre, can
be adapted to the proposed colour ordering for further image
processing such as image denoising. We note that our work
is not only related to data compression from 3-D to 1-D [9]
but deals also with a colour codification for an efficient
subsequent processing.

The organization of the paper is as follows: In Section 2,
we refer to our prior work on the reduction of a 3-D colour
space to 2-D. We then go one step further and propose in
Section 3 to reduce the dimensionality to one, where the
entire cone space is approximated by a single parameter. In
Section 4, we directly use the proposed 1-D colour model for
low-resolution depth map bilateral filtering. We present, in
Section 5, the experimental results and conclude in Section 6.

II. PRIOR WORK: FROM 3-D TO 2-D

We proposed in [10] to describe the colour information
contained in the HCL (hue, chroma, luminance) conic space,
shown in Fig. 1(a), by approximating the cone using two
parameters, 6 and [, instead of using the three coordinates
(h, ¢,1). Our key idea is to approximate the chromaticity disk
with a spiral, as shown in Fig. 1(b). To that end, we choose
to use the Archimedean spiral [11] whose radial distance



is defined as r(¢) := a - 0, where a = ;1. is a constant
defining the distance between successive turns, and 6 is the
polar angle of the spiral, such that 6 € [0, 27K], K being the
total number of turns. We then save the luminance value [,
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Fig. 1. (a) HCL colour space model. (b) Chromaticity disk
approximation with a spiral. (¢c) Approximation of the HCL
cone by a set of spirals.

and rewrite h and c as functions of a new variable 6 such
that: 3
9:h—27rround(K-c—). @)
2T
In what follows, our next objective is to define one spiral
for the approximation of the whole HCL solid cone.

III. PROPOSED 1-D COLOUR MODEL

In order to include the luminance parameter in the defi-
nition of the spiral model in (1), we propose to uniformly
sample the luminance axis into (K_ + 1) values [,,. We thus
have:
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where n € {0,1,--- ,K_}. At each luminance level [,,, we
define a spiral of radius r(6,,) = a - 6,,, with 8,, € [0, 27n)].
In other words, for larger sections of the cone, we impose
a larger number of spiral turns, as shown in Fig. 1(c). In
order to keep a single parametrization of all the K spirals,
we need to relate all of them to the same parameter. To that
end, for a point on the spiral at the level [,,, we introduce
the cumulative angle (CA) ( as:

¢=Cn1+0, 3)

with )
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We note that (,,_; is the CA of the spirals at level [,,_;.
The colour model proposed in (3), that we call CA model,
reduces the HCL space to a 1-D representation by a single
parameter (. We also notice that the CA model is reversible
from and to the original HCL space and consequently to all
colour spaces that can be converted from and to HCL, such

as RGB. To do so, one simply needs to follow two steps;
first to retrieve [ or its approximation [,, and second find
the pair (h,c) at the corresponding level. By definition, we
find that:

Cn71§<<<n:l%lnandezg_gnfb &)

By solving the two inequalities in (5), we find an analytical
expression for n avoiding a search among the intervals
[Cn—1,Cnl. As an intermediary step, we get:

(—1+\2/1+;§<) e (1+,/21+;‘;§). ©
Given that n € N, we find:
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and from (2) we obtain l,,. To obtain the pair (h,c), we
simply need to follow the same steps presented in [10] using
the 0 angle from (3). We finally get the following result:

h=( mod 2,
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With equations (8) at hand, we fully defined a bijective
transformation from (h,c¢,l) to ¢. This means that the CA
representation encodes in one channel all the information
contained in three channels with an easy way to back-
transform. Such a model gives the possibility to apply
the same algorithms used with grayscale images on full
color information, but without extending the algorithms to 3
channels. We illustrate this by using the CA model for depth
map filtering.

IV. APPLICATION TO DEPTH MAP FILTERING

We consider as an application example the joint bilateral
upsampling filter (JBU) [1]. The JBU enhances a low-
resolution depth map R acquired by a range camera to the
same spatial resolution of a 2-D image I acquired from the
same point of view. This multilateral filter has two weighing
terms, often chosen to be Gaussian functions. The first one
is spatial, Gs(+), with a standard deviation o, and the second
one G,(-), operating on the 2-D images I, with a standard
deviation o,. The output of the JBU filter is defined as:

> aen(p) Gs (Ip—dl) - G, (d(I(p),I(a))) - R(q)
Y aen(p) Gs(lp —dl)- G (d(I(p),I(q)))

where N(p) is the neighbourhood at the pixel location
p = (i,4)T, where i corresponds to rows and j corresponds
to columns. d (I(p),I(q)) is a distance between two image
intensity values, I(p) and I(q). In the standard case of
grayscale images, this distance is Euclidean. The resulting
filtered image J is an enhanced version of R, that presents

J(p) =




less discontinuities and a significantly reduced noise level.
Nevertheless, the JBU filter fails when edges in the original
coloured image are lost after converting it to a grayscale im-
age. We therefore propose to represent the 2-D image I using
the proposed CA model instead. We hence need to replace
d with a new distance d, between two values (, = I(p)
and (q = I(q). We define d., as an approximation of the
cylindrical distance d.,; commonly used on the HCL space
and defined as [5]:

eyt (Cps Ca) = \/(AZ)2 +(Ac)2 +4-cp-cq- Sin%%)a
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where ¢, and cq are chrominance values correponding to
Cp and (g, respectively. We simplify this distance for our
model by considering a normalized value A( instead of the
first term Al. The normalization factor a; is such that we
achieve a total distance of one between the two reference
colours black and white, where all the other terms become
zero. Thus, we find a; = m In addition, we
consider the L; norm, and define d, as:

dCA (CIMCQ) =a1 |AC| + |AC| +2- VEp  Cq

A
sin(;‘:)‘ )

While the above expression is relatively complex, due to
computing chrominance values from (8), it is a first step
towards defining a better distance d ,, and evaluating the
CA model as presented in Section 5.

V. EXPERIMENTAL RESULTS

First, we perform a global evaluation of the CA model
by testing 100 different coloured images of objects from the
Amsterdam Library of Object Images (ALOI) [12]. These
images are in the RGB space. We transform them to the
proposed CA colour model by following the steps presented
in Section II and Section III. Fig. 2 plots the root mean
square error (RMSE) between the original RGB images and
the recovered ones for K and K varying from 0 to 255.
We see that the error drops whenever K is less than K,
which means that a very sparse sampling of the luminance
component can be sufficient for an accurate representation.
Moreover, as soon as K reaches approximately 100, the error
approaches zero. While this number may vary depending
on the nature of the images, it clearly does not need to
be set greater than 255, as the intensity of digital images
falls between O and 255. We proceed by evaluating the
performance of an extension of the JBU filter, the pixel
weighted average strategy (PWAS) filter [13], when filtering
considering grayscale or CA encoded images. We use data
from the Middlebury stereo dataset [14]. Each selected scene
is represented by a 2-D RGB image and the corresponding
depth map. We downsample the original depth maps by a
factor of 8 in order to use them as low-resolution depth
maps inputs (R in (9)), Fig. 3. After the filtering process, we
compare the resulting enhanced depth maps with the original

Fig. 2. RMSE between 100 images from the ALOI database
and their CA transformed versions.

ones by using the structural similarity index (SSIM) [15].
Table I reports the computed SSIM values, where 1 means
that the enhanced depth map perfectly coincides with the
original one. Note that the PWAS filter always performs
better when considering CA images. This significant im-
provement is well illustrated in Fig. 4 where we zoomed
on a region from the Teddy scene. Fig. 4 also illustrates the
enhanced depth map using the 2-D guidance image with
different colour representations, similarly to experiments
in [2]. Edge blurring and texture copying are clearly visible
when considering a grayscale image (Fig. 4(d)). These
artefacts are significantly reduced when filtering using RGB
images, but colour bleeding is another artefact that remains
due to filtering the 3 channels independently (Fig. 4(e)).
If one filters all channels together (Fig. 4(f)), then some
bleeding still occurs. Instead, filtering using an HCL image
achieves satisfactory results (Fig. 4(g)), which are similar to
those obtained from filtering using the proposed CA image
(Fig. 4(h)).

Table I. SSIM comparison for the four scenes shown in
Fig. 3 (1 corresponds to a perfect matching).

Venus | Cones Art Barn
SSIM for Grayscale | 0.974 | 0.835 | 0.837 | 0.948
SSIM for CA model | 0.989 | 0.888 | 0.873 | 0.974

VI. CONCLUSION

We have presented a new colour model to overcome the
limitations due to grayscale image filtering without modi-
fying filtering algorithms. Indeed, the proposed cumulative
angle model reduces the dimensionality of 3-D HCL rep-
resentation to a unique dimension while preserving original
perceptual properties. We derived the cumultive angle model
by sampling the HCL cone in two dimensions using spirals.
The two sampling rates are important parameters that need
to be further investigated in order to evaluate the extent
of the colour data compression rate. Finding a simple and
discriminative distance for the proposed model is another
open question important for real-time colour filtering.



(x)

Fig. 3. Comparison between PWAS filtering considering grayscale and CA images. 15¢ col.: RGB images. 2"? col.: Grayscale
images. 3" col.: Original depth maps. 4" col.: Downsampled input depth maps. 5" col.: Enhanced depth maps considering
grayscale images (05 = 10, 0, = 0.02). 6! col.: Enhanced depth maps considering CA images (05 = 10,0, = 0.1). 15 row:
Venus scene. 2"% row: Cones scene. 3¢ row: Art scene. 4'" row: Barn scene.
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Fig. 4. Region from the Teddy scene. (a) RGB image. (b) Grayscale image. (c) Ground truth depth Map. (d) PWAS output
using the grayscale image (b). (¢) PWAS output using “per-channel RGB image” (a). (f) PWAS output using the RGB image
(a). (g) PWAS output using the HCL image. (h) PWAS output using the CA image.
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