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Abstract—We propose a real-time mapping procedure for
data matching to deal with hybrid ToF multi-camera rig data
fusion. Our approach takes advantage of the depth information
provided by the ToF camera to calculate the distance-dependent
disparity between the two cameras that constitute the system.
As a consequence, the not co-centric binocular system behaves
as a co-centric system with co-linear optical axes between their
sensors. The association between mapped and non-mapped image
coordinates can be described by a set of look-up tables. This, in
turn, reduces the complexity of the whole process to a simple
indexing step, and thus, performs in real-time. The experimental
results show that in addition to being straightforward and easy
to compute, our proposed data matching approach is highly
accurate which facilitates further fusion operations.

Index Terms—Time of flight, sensor fusion, 3D data fusion,
multimodal sensors, multi-sensor systems, data matching, map-
ping.

I. INTRODUCTION

IME-OF-FLIGHT cameras are relatively new 3-D sen-

sors that promise to be an alternative to other 3-D
sensing systems such as stereo vision systems, laser scanners
or structured light. They present several advantages such as
simultaneously providing intensity and depth information for
every pixel at a high frame rate. Moreover, the recent advances
in industrializing and producing economic, compact, robust to
light and illumination changes ToF cameras is starting to have
an impact on commercial applications [1], [2]. However, ToF
cameras and especially the industrial ones, cannot yet attain
the resolution and precision of alternative 3-D sensing systems.
Indeed, two main drawbacks are currently restricting the use of
ToF cameras in a wide range of computer vision and robotics
applications; namely, the noise within depth measurements and
the low resolution of the given depth maps. The low resolution
problem is even more prominent in industrial ToF cameras as a
compromise for their higher robustness to ambient conditions,
i.e., larger working temperature range and higher reliability
under sun lighting. We note that in contrast to 3-D sensing
devices intended for gaming applications or research purposes
such as Microsoft’s Kinect camera [3], ToF cameras that are
used for automotive applications or applications in industrial
automation have resolutions lower than (64 x 64) pixels.
Therefore, in applications where the limited resolution of a

ToF camera is critical, a very promising strategy is sensor
fusion [4], [5], [6], [7], [8], [9], [10], [11], i.e., combining
ToF data with data provided by other sensors, usually 2-D
colour cameras [12]. Indeed, current research efforts in ToF
and 2-D data fusion have proven to deliver dense depth maps
at near real-time frame rates, outperforming, in some cases,
alternative 3-D sensing systems [4], [6]. We talk about a low-
level data fusion in contrast to higher fusion levels in which
the fusion deals with post-processed data (feature or decision
level fusions) [13]. While it is true that these low-level fusion
algorithms can now perform in real-time, they all assume a
perfect alignment of the data to be fused, which is far from
a trivial task for most real-world data and scenarios. In fact,
forward warping techniques [14], [15], that match the distance
measurements from the ToF camera onto the colour camera
are straightforward procedures which lead to the assignment
of a colour value to each of the (low-resolution) ToF pixels.
However, we herein propose to tackle just the opposite case,
i.e., backward warping. Our objective is to assign to each high-
resolution 2-D pixel an accurate distance value. This requires
mapping the 2-D image onto the ToF image, which is not
straightforward if one has to take into account the distance
dependency of the disparity. Furthermore, such dependency
on the distance requires to recompute the whole mapping
procedure for each recorded frame and thus, it makes the real-
time implementation quite challenging.

In this paper, we propose an original framework to align
the data recorded by each of the cameras that constitute the
hybrid ToF multi-camera rig. We note that our method is
not only intended to map the data from low-resolution ToF
cameras but conceptually applies also to other 3-D sensing
modalities such as the recently emerging ToF laser scanners,
i.e., the ibeo LUX [16] or the Eco Scan FX8 [17] whose
resolutions are also far below the resolutions of standard
2-D cameras. In contrast to stereo vision approaches, we
use the distance information provided by the 3-D sensor to
calculate the distance-dependent disparity that relates each of
the devices that constitute the hybrid ToF multi-camera rig.
Our mapping procedure yields to an accurate data matching
that facilitates further data fusion techniques to overcome the
above mentioned ToF drawbacks. Furthermore, we represent
the relationship between non-mapped and mapped image co-



ordinates by an associative array, i.e., look-up table, reducing
the complexity of the whole mapping procedure to a simple
indexation step and thus, enabling for a real-time performance.

The outline of this paper is as follows: In Section II, we
introduce the distance-dependent disparity that is related to
the field of view (FOV) effect in hybrid ToF multi-camera rig.
In Section III, we describe our technique to map the image
coordinates relative to each camera to a unified coordinate
frame and propose, in Section IV, the data matching proce-
dure. In Section V, we illustrate and quantify the results of
our proposed technique. Finally, we give our conclusions and
perspectives in Section VL.

II. DISTANCE-DEPENDENT DISPARITY

A hybrid ToF multi-camera rig provides multi-modal data
related to the camera reference frame from which the data has
been recorded. In our case, our hybrid ToF multi-camera rig
is composed by a conventional 2-D camera, with a reference
frame A, and an industrialized ToF camera with a reference
frame 5. In general, the two reference frames .4 and 5 are not
co-centric, i.e., the two cameras are displaced with respect to
each other by a distance between the centres of projection, O 4
and Op, respectively. This distance is known as the baseline b
of the hybrid ToF multi-camera rig. The distance Z at which
a point P is located with respect to the baseline b is obtained
from the similar triangles (p.4,P,pr) and (O 4,P,Op3) such

that
b+x4—ap . b 1
Z—-f Z
where x4 and xp are the coordinates of the projections p .4
and pp with respect to the principal points ¢4 and cp, and

f is the common focal length. Solving (1) for Z, we obtain
b
Z=f-, 2)
p

where p = x4 — xp, the binocular disparity, measures the
difference in retinal position between the corresponding points
in the two images. In stereo systems, the disparity leads
to the estimation of the distance Z. However, this requires
the detection of the projections p4 and pp which relates
to the well-known correspondence problem [18], which is
typically performed by feature matching or correlation analysis
and thus, numerically demanding and suffering from shadow
effects or texture patterns. In contrast, we tackle the opposite
case by the use of the ToF camera as it provides the distance
with respect to its own reference frame B, i.e., Zg, at which
each point is located within the given depth maps. This allows
us to estimate the disparity p(Zp) for each of the ToF camera
pixels, which simplifies the mapping by avoiding demanding
operations such as feature matching and image correlation (see
Section III).

We note that the relationship between the Zz measure-
ments and the disparity p(Zp) causes a dependency on the
scene. Therefore, it has to be recalculated whenever the scene
changes, which is typically the case for every frame of data
acquisition, and for each ToF camera pixel as it is not constant
for all pixel locations. By differentiating disparity p(Zg) in
(2) with respect to the distance Zp, we define the absolute

disparity variation Ap(Zp) as a function of the absolute depth
variation AZg, and obtain
AZg
Ap(ZB) = fBb 72
B

where f is the focal length of the ToF camera. We note that
only in situations where the depth variation of the object in the
scene AZp is small enough compared to the squared distance
Z% from the object to the system, the disparity p(Zz) can be
assumed as constant and thus, included in a simple projective
transformation for all recorded frames. Actually, this scenario
is commonly used in research efforts that integrate non-
industrial ToF cameras such as the SwissRangerTMToF camera,
in their ToF multi-camera rig [4], [19], [20]. In this case,
the rather small FOV provided by the SwissRangerTMcamera,
i.e., 47.5° x 39.6°, forces such systems to be installed at a
relatively large distance from the object. As a consequence,
these systems can still function while neglecting the distance-
dependent disparity, which is not the case for the majority of
ToF cameras, which require the variation of disparity to be
taken into account. In what follows we propose to solve this
problem by defining a new matching procedure that exploits
the distance-dependent disparity. As a result, any ToF camera
available on the market can be integrated in a hybrid ToF
multi-camera rig intended for low-level data fusion regardless
of its specifications.

3)

IITI. UNIFIED REFERENCE FRAME FOR A HYBRID TOF
MULTI-CAMERA RIG

We denote the intensity images given by the 2-D camera
as I with image coordinates (uly,v%). Similarly, we denote
the low-resolution depth maps given by the ToF camera as D
with image coordinates (ug, vg). In the following we present
the transformation or mapping of these image coordinates to
a unified reference frame C, which is the basis for the data
matching (or warping) described in Section IV.

A. Background: image coordinate transformation

Let P = [X,Y,Z]" be a point related to the camera
reference frame. Its projection on the camera image frame
results in a new point p = [z, v, 2]T defined as follows:

T X
p=K-Ps |y | =K-|Y [, 4)
z A

with K the matrix of intrinsic camera parameters defined as
follows:

K = K.K¢
[ 6,1 0 ¢ f 00
= 0 6! ¢ 0 f 0
| O 0 1 0 0 1
(671 f 0 e
= 0 6;1f Cy , 5)
| 0 0 1
where f is the focal length, J, and J, are the effective

horizontal, and respectively vertical pixel size, and (¢, ¢cy) is



the position of the optical axis or principal point in the image
(all units are in millimetres). The image coordinates in pixels,
ie., p' = [u,v,1]T are given by:

u=z/z = u=u/Z,
v=y/Z,

as z = Z from (4). We note that p = Z - p’. From (4) and (6),
and considering (5), the image coordinates (u,v) are defined

as
{ u=08;'f% +ca,
’u:é;lf%Jrcy.

(6)

v=y/z =

)

In order to determine the coordinates of the point P with
respect to a different camera reference frame C, i.e., P¢, an
additional coordinate transformation must be considered. In
general, this coordinate transformation is given by the extrinsic
camera parameters, being a (3x3) rotation matrix R and a
translation vector t = (t,t,,t,)7, ie.,

Pc:R{P—t}. (®)

Hence, from (4) and (8), the image coordinates p, =

[uc,ve, 1T with respect to the reference frame C result from
Z K

¢ = - KeRK! [p' = 2t 9

Pc Ze C p 7 9)

B. Distortion correction

A necessary step to be completed before starting the image
coordinates transformation is the correction of the distortion
due to the camera lens. This is a classical step in system
calibration that consists in correcting the raw distorted images
I and D according to the intrinsic and extrinsic camera
parameters that are to be determined. The research on ToF
camera calibration is not yet extensive, but new insights have
been proposed in [21], [22], [23]. We may resort to classical
calibration tools such as Bouguet’s toolbox for Matlab [24]
or image processing tools such as those included in Intel’s
computer vision library OpenCV [25]. Once the camera pa-
rameters are known, we correct the distortion for the 2-D
image coordinates and the ToF image coordinates and proceed
with the resulting undistorted image coordinates (u, vY) and
(uR,vR), respectively.

C. Choice of the unified reference frame

The image coordinates p’ 4 = [uy, 0%, 1]T of a point P 4 =
[X4,YA, Z|" related to the 2-D camera reference frame A
are transformed to the unified reference frame C using (9), i.e.,

Za

K4
pe = 7KCRACKA [pA - thAc}

with R 4¢ and t4¢ the rotation matrix and translation vec-
tor from the reference frame A to the reference frame C,
respectively. Since the image transformation in (10) requires
the knowledge of the coordinate Z 4, we choose the unified
reference frame C to be co-centric to the 2-D camera reference
frame A, i.e., t4c = [0,0,0]T. Hence, (10) amounts to

(10)

pe = KcRacKp/y = Hac - Py, (11)

with H 4¢ a plane-to-plane transformation or projective trans-
formation from reference frame A to reference frame C.
Similarly, the transformation of the image coordinates of a
point p’B, related to the ToF camera reference frame B, to the
unified reference frame C is analogous. Thus, using (9), we
find

Z
pc = jKCRBCKB{ Zfstgc}
A Kp
= 7HBC {PB ZigtBC} (12)

where Rpe and tze are the rotation matrix and the translation
vector from the reference frame B to the reference frame
C, respectively. Hpe is the projective transformation from
reference frame B to reference frame C. We note that in this
case the distance Zp is known as it results from

Zp = D(ug,vg) - /i (13)

d(ug,vg)’

with

\/fB 0o 5(uR —Co.8)) + (0y,5(v8 —cy.8)) ",

(14
and D being a radial measurement as acquired by the ToF
camera. The conversion in (13) is therefore necessary to obtain
the distance Zg that relates to each pixel (ug,vg) in D. This
in turn allows the transformation of the image coordinates
from the reference frame 5 to the reference frame C.

U’B7UB

D. Distance-dependent disparity shift

The transformation of the image coordinates in (12) consists
of two steps. The first step concerns the binocular disparity
shift, i.e.,

"o ZB / KB

57 7. 5)

th} )

followed by the the projective transformation p;, = Zg/Z¢ -
Hpcp%. The factor Zg/(Zg+t.) in (15), where ¢, is the third
component of the vector tpe = [tz ty,t.]T, leads to writing
pj in homogeneous coordinates, ie., pj = Wy, v'g, 1T,
For our setup, we may neglect t., ie., t, = 0, since the
two cameras in the hybrid ToF multi-camera rig are chosen
to be co-planar, i.e., the rotation matrix Rpge is a rotation
in two dimensions and Zp = Z¢. As a result, Hge can be

approximated by an affine transformation, and (15) simplifies
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which corresponds to pjz minus the binocular disparity intro-
duced in (2). The possible error when determining the focal
length fz of the ToF camera can be neglected as fz << Zp
when correcting the disparity in (16). The binocular disparity
in (16) is decomposed into two components as p(Zp) =
p=(ZB) - €x + py(Zp) - €,, where €, and €, are respectively
the unit vectors along the x and y axes of the ToF reference
frame B.

We note that the order of the two previous steps can be
exchanged by multiplying in (12) the transformation Hpe
inside the disparity shift, i.e.,

Kc¢Rise K¢
pc = Hueps — ~. tee = pC — A tie
¢ c

a7
with the baseline t'zc = [t},t,,t.]" measured from the
reference frame C and pj being transformed to p;; by Hpc.
Analogously to (15), (17) simplifies to

|
Pc= | Y¢
| 1
[ w/E 1 5;éfc 0 CzC 'y
= /U/CD — 7 O 6y_7éfc Cy7c t/y
1 5 0 0 1 0
(w2 [ S,efeta/Z8
= | B | = | 6, 8fe /28
| 1 | L 0
W 1 [ealZe) ] [we ] 4o [ bec
= U/CD - Py(ZB) = U'CD *Zf by,C
1 |0 1 Lo
(18)

We see from (18) that image coordinates pj; are first trans-
formed to p and then the disparity is computed using the
intrinsic parameters in C and the distance Zg given by the
ToF camera. The values of the depth map D are, however,
not invariant under this disparity shift, but may be recomputed

according to (see equations (13) and (14)):

d /D /D
D'(2,0'2) = 7. 2B V'5) ‘jcl;“ 5) (19)

where (u'g,v'g) are the image coordinates shifted by the
disparity, according to (16).

1V. DATA MATCHING

Data matching results from mapping the images I and D’
on a common grid of pixels related to the reference frame
C, where the mapped images will be pixel aligned. Let us
consider I to be the 2-D image of (M x N) pixels with
image coordinates {(uY ., 0% )y m = 1,...,M;n =
1,...,N}. Similarly, we consider D’ to be the disparity
shifted depth mz}g of (K x L) pixels with image coordi-
nates {(v'g s, v'gr), k = 1,...,K;1 = 1,...,L}. Due
to the transformation to the common grid, these image co-
ordinates become {(u . Ve )y m = 1,...,M;n =
1,...,N} and {(UCD,kbU]CD,kl)’ k=1,...,K;l=1,...,L},
respectively. We define such a common mesh grid as
¥ = {(pij,qi;j), i =1,...,M; j=1,..., N}, where the pair
(pij, qij) represents the location of the image pixel corre-
sponding to the row index ¢ and the column index j. We
set the grid ¥ to be of the same resolution (M x N) as
the 2-D camera. There is, however, no restriction regarding
the resolution of the resulting mapped images. Our choice of
M and N in this paper is motivated by the low-level data
fusion, which is intended for enhancing the ToF depth map
up to the same 2-D camera resolution. In general, state-of-
the-art approaches that deal with the mapping of images to a
common grid intended for data matching are based on forward
warping [14], [15]. Thus, each mapped image coordinate from
I and D are assigned to the nearest pixel of the common
grid. However, in most of the cases, the resolution of the
depth map D is far below the resolution of the 2-D image
I ie, K << M and L << M, as illustrated in Fig. la.
As a result, the warping of such a depth map D onto the
common grid presents a large number of missing depth pixels.
In other words, forward warping generates a sparse number
of warped depth pixels, as shown in Fig. 2a. In contrast, we
propose a backward warping approach in which we determine
for each pixel (p;;,¢;;) on the common grid, the nearest pixel
(UE yrims V& mn) ON the image T after being transformed onto
C, as illustrated in Fig.1b. Similarly, we determine for each
pixel (pij,¢;;) the nearest pixel (ugkl,vgkl). As a result,
our mapped images, Ic and D¢ are perfectly aligned with
a major advantage of D¢ being a dense depth map. Indeed,
we show in Fig. 2b a comparison of the deth maps obtained
using a forward mapping and our proposed counterpart; that
could be referred to as backward warping. The two techniques
are overall equivalent. Our proposed approach has however
one clear advantage. It provides a dense depth map while the
forward warping provides a very sparse depth map. As a result
if there is a requirement for depth map downsampling, which
is common for a real-time implementation, the downsampled
sparse depth map becomes unusable. We claim therefore that
our proposed backward warping is more appropriate for real-
time applications.
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Fig. 1: Image coordinate transformation. (a) Shown are the
transformed 2-D image coordinates (ul,vl) depicted as '+,
the transformed ToF image coordinates (u/'g,v's) depicted
as 'x’, and the mesh grid ¥ coordinates (p,q). (b) Detail
of the mapping procedure. It is apparent that a certain ToF
pixel (k,{) will be mapped to several mesh grid pixels (i, j).
Reference frames A, B, and C are depicted in blue, red, and
green, respectively.

A. 2-D camera LUT

The relationship between the raw images and the mapped
ones can be represented by an array that associates each pixel
coordinates in the unified reference frame C to a unique pixel
in A and B, as illustrated in Fig.3. This associative array
or look-up table (LUT) can be computed off-line in order to
reduce the complexity of the mapping procedure to a single
indexing operation and leading to real-time implementation.

We define the mapping (4,5) — (m,n) = Lac(i,7),
as L-AC(i’j) = arg min(m,n) || (pij’ ng) - (ué,mn’ vé,mn) ”2
The stored LUT L 4¢ allows to generate the new mapped
image as follows I¢(i,j) = I(Lac (i, 4)), for all 7, .

B. ToF camera LUT

The same procedure as the one presented for determin-
ing the 2-D camera LUT applies for the ToF camera LUT
that we refer to as Lpc. Thus, we place the same mesh
grid ¥ onto the disparity corrected and transformed image
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(b) Proposed backward warping

Fig. 2: Comparison of the dense depth map obtained using
our method, i.e., backward warping (b) and the sparse depth
map points obtained by forward warping (b). We refer the
reader to the electronic version of the paper in order to better
appreciate the differences between the forward and backward
warping result.
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m k

Fig. 3: The look-up tables L 4¢ and L associate each pixel
coordinates in C to a unique pixel in A and B, respectively.

coordinates (u2,v?) and we perform a nearest neighbour
search to determine the pixel (k,[) from D’ with the position
(u,v®) nearest to (p;j,qij). The mapped depth map D¢
results from D¢ (4, j) = D(Lpc(i, j)), for all (i,5). We note
that the mapping described by this mesh grid also upsamples
the mapped image coordinates to the 2-D camera resolution
(M x N). We did not consider other interpolation techniques
such as linear or bilinear interpolation because they may
generate unwanted artefacts when applied on ToF data due
to their characteristics such as incorrect measurements at
large distances. These pixel values must not be considered
in an interpolation, but require a special treatment. Also,
real distances within the edges in the scene should not be
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[Zk+1, Zk) defined by equidistant disparity values p(Zg) =
k x p. Within each interval, the disparity p varies less than 1
pixel size §.

interpolated. At the end of the mapping process, both resulting
images I and D¢ generated from their respective L 4¢ and
Lpc LUTs are pixel aligned. Nevertheless, Lc that generates
D¢ is distance-dependent. Due to the disparity shift presented
in Section III-D, the resulting Lz LUT depends on the depth
map information and thus on the scene configuration. The
easiest way to deal with this dependence would be computing
the Lgec LUT for each recorded ToF frame; however, this
implies a high computational time, and consequently, it will
not be viable if real-time performance is required. Indeed, the
off-line computation of a single Lg¢ is close to 15 minutes
using Matlab for Windows on the system we have used to run
our experimental results.

In order to achieve real-time performance on dynamic
scenes, we propose to consider an array {Lpcr}, k =
0,...,K — 1, of LUTs where each LUT Lpc ; tackles a
different disparity pi(Zg), corresponding to a plane at a fixed
distance Zj = fc - % to the system. We choose the discrete
disparities as multiples of the pixel size in the mapped depth
map De, ie., pr, = spk,k =0,..., K — 1 where s, = b/|b|
is the unit vector of the baseline shift. Dividing the Z range
of the ToF camera into K intervals [(x11, (k] around Zj, with

o = o0

G = f- [b]

(k—3)
one finds that for each pixel of the ToF camera with a Z
value in the interval [(j1, k], the disparity equals py(Zg),
with an error less than §/2, i.e., half the size of a pixel in the
mapped depth map D¢, as shown in Fig. 4. The maximum
binocular disparity is given by the minimum Z—measurement
range of the ToF camera, Z,,;, (the minimum Z value in the
setup). The number K of different disparities to be considered
is givenby K > f- % + % The mapping is then performed
by the iterative Algorithm 1, where Z denotes the image of
Zp values calculated from the depth map D using (13). This
mapping procedure allows the low-resolution depth map D
to be mapped in real-time to a depth map D¢, where each
pixel matches a pixel in the already mapped Ic image. In

e (20)

k=1,...

the occlusion handling block, we check if the condition Z €
[Ck+1, Ck] is fulfilled. If not, the selected pixel is labelled as
occluded.

Algorithm 1 Mapping algorithm

for ; =1 to N do
for j =1to M do
k=K
{Search Z, interval}
while (k> 0) and
k+—k—-1
end while
{Occlusion handling}
if (k<K) and (Z(Lgck(i,j)) < Crt1) then
k< k+1
end if
{Mapping}
De (i, j) = D'(Lsc k(i 5))
end for
end for

(Z(Lpck(i,7)) > ¢) do

Algorithm 2 Optimized mapping algorithm
for i =1 to N do
for j =1 to M do
k=K
{Search Z, interval}
while (¢ > 0) and
do
k+—k—-1
end while
{Occlusion handling}
if (k< K) and
then
k< k+1
end if
{Mapping}
ZC(ivj) = Z/(LBC,O(i’j - Sk))
end for
end for

(Z'(Lpc,o(i, g — sk)) > (k)

(Z'(Lpc,o(i,j — sk)) < Cry1)

Although we achieve a high performance within the map-
ping procedure, the memory required to store the K LUTSs
is considerable, being a problem to deal with in case of real
embedded applications. To that end, we propose a procedure
to reduce the memory requirements which is applicable to
hybrid ToF multi-camera systems with co-planar cameras.
In this case, we proceed by considering the transformation
Hpc inside the disparity shift, as discussed in Section III-D
(see (18)). In our case, the = axes of the camera reference
frames are chosen to be parallel to the baseline between the
cameras, i.e., b = [b;,0,0]T, and thus the disparity shift
extends in the x direction of the image frame. The disparity
differs by exactly one pixel in z direction when calculated at
two different distances Zj, and Zj,. The corresponding two
LUTs are then related via Lpc k+1(¢,7) = Lpcr(i,7 — s)
with s = sign(b) = %1 being the sign of the baseline shift



with respect to the x axis, i.e., indicating on which side of
the ToF-camera the 2-D camera is positioned with respect to
the x axis of the unified reference frame. Consequently, it
is sufficient to store a single LUT Lgc calculated on an
extended mesh grid ¥ of size M x (N + k), which defines all
K LUTs via LBC,k(i7j) = L3c70(i,j—8k) withi =1,..., M,
j=1...,N,and k=0,...,K — 1. Unlike the range image
D, the Z image needs to be recalculated by the same projective
transformation resulting in a new Z’ image (see (13)). We
proceed by using the Algorithm 2, where Z is the resulting
matrix of Zp coordinates on the common coordinate grid in
the unified reference frame. The latter allows to calculate a
radial distance image D¢ using (19) for the coordinates of the
common coordinate grid.

V. EXPERIMENTAL RESULTS

We herein evaluate the proposed real-time mapping proce-
dure for hybrid ToF multi-camera rig data matching. We have
performed our experiments based on various scenes including
our own recorded sequences as well as scenes from the
Middlebury stereo dataset!. The Middelbury dataset provides
ground truth disparity maps in addition to the corresponding
2-D RGB images from different views. For our own record-
ings, we have used a hybrid ToF multi-camera rig composed
of a 3D MLI Sensor  from IEE S.A. [26], and a Flea®2 video
camera from Point Grey Research, Inc. [27] (see Fig. 5). The
3D MLI Sensor ' is an industrialized ToF camera that has a
resolution of (56x61) pixels with a pixel size J of 68 pum
x 49 pm and covers a measurement range up to 7500 mm.
The Flea®2 camera provides a resolution of (648 x488) pixels
with a pixel size of 7.7 um x 7.7 pum. The two cameras
were coupled for a narrow baseline of 30 mm, and they
were frame-synchronized with each other at the ToF camera
frame rate. Regarding the implementation, we programmed the
mapping presented in Section IV in C language, and we ran
the experiments on a Pentium IV, 2.66 GHz with 1 GB of
RAM.

Fig. 5: Frome left to right: 3D MLI Sensor  from IEE S.A.,
Flea®2 video camera from Point Grey Research, Inc and
hybrid ToF multi-camera rig prototype.

A. Hybrid ToF multi-camera rig calibration

We determine the calibration parameters of our test rig
by following a standard calibration method as discussed in
Section III with the insights proposed by Fuchs et al. in [21].

'Middlebury Stereo Dataset, http://vision.middlebury.edu/stereo

(a) 2-D camera calibration pattern.  (b) ToF camera calibration pattern.

Fig. 6: Calibration patterns used to estimate the intrinsic and
relative extrinsic camera parameters.

()

©) (d)

Fig. 7: ToF camera pattern images recorded by the 2-D and the
ToF camera, (a) and (c) respectively, to estimate the relative
extrinsic parameters. The centroid operator detects with sub-
pixel accuracy the centroid of each target, shown in red in (b)
and (d).

Although the calibration procedure does not require special
tools, the calibration pattern must contain circular targets
large enough to be distinguished in the low-resolution ToF
amplitude image A. Amplitude images A result from the
intensity reflected by the active illumination emitted by the
ToF camera. Therefore, we have designed different calibration
targets in order to estimate each camera’s intrinsic parameters,
as shown in Fig. 6. From [28], the determination of the
relative extrinsic parameters, i.e., the parameters of an affine
transformation that relates each camera reference frame to the
unified reference frame, requires four correspondence points
with no three points collinear on either plane. Thus, the same
ToF calibration pattern (see Fig. 6b) can be used as it allows to
estimate up to 20 control points. The control points correspond
to the centroid of each dot in the image, which are determined
with sub-pixel accuracy, only limited by the image resolution
(see Fig. 7b, 7d). In the case where a control point appears
as only one pixel, the centroid will be the image coordinates
of this pixel and therefore will induce a discretization error
in the interval [—4/2,0/2]. Assuming that the discretization
error is statistically equally distributed over that interval, one
can easily calculate the Root Mean Square Error (RMSE) to
be A = §/+/12. When a dot appears as a blob of N pixels,



Test case 3
z=1.0m

Test case 2
z=1.5m

Test case 1
z=0.Tm

(s) © (w)

Test case 6
z€[0.8,1.5]m

Test case 5
z€[0.9,1.5]m

Test case 4
z=1.5m

) (w) x)

Fig. 8: Test cases for data matching. 1°¢ row: 2-D acquisitions. 2"¢ row: ToF acquisitions. 3"¢ row: 2-D mapped. 4" row:

ToF mapped.
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which is then more accurate than when using edges, i.e., A =
§/2. The relative calibration pattern is located at a distance
of 1530 mm from the sensing system and roughly positioned
in the centre of the FOV (see Figure 7c). In addition, we
consider the 20 control points in order to obtain a maximum
accuracy. Thereby, we take as reference the positions detected
in the 2-D image I. In the ToF amplitude image A, the average
size of the detected dots is 7.7 pixels, yielding, according to
(21), a sub-pixel accuracy of the centroid of A, = 7.1 ym
and A, = 5.1 ym. We note that the pixel size of the ToF
camera is 6, = 68 pm and 6, = 49 pm. The RMSE of
the centroid coordinates after relating the centroid coordinates
in A with the centroid coordinates in I is 5.4 ym in the x
direction and 7.9 um in the y direction. We confirm that our
centroid operator achieves an accuracy of the same order as
the one given by (21), which is clearly better than the low
resolution of the ToF camera and close to 1 pixel of the 2-D
camera resolution, which is (7.4 x 7.4)um?.

B. Data matching

In order to analyse the data mapping step, we have con-
sidered six representative test cases in which we recorded the
calibration pattern displaced around the FOV of the sensing
system, and at different depths and orientations (see Fig. 8).
We first quantitatively compare our proposed approach to a
common mapping using a simple projective transformation,
i.e., a plane-to-plane transformation or a 2-D homography.
To that end, we focus on the four first test cases where
the recorded pattern is always located parallel to the sensing
system. In Table I, the two first rows report the RMSE of the
centroids of the mapped control points using a 2-D homog-
raphy. As expected, the use of a 2-D homography performs
better if the distance at which it has been computed coincides
with the distance at which the control points are located
(see the first four test cases in the second row of Table I).
However, if we use a unique homography for these test cases,
the matching error increases as soon as we vary the depth at
which the pattern is located (see the first four test cases in
the first row of Table I). In general cases where the pattern is
arbitrarily located and oriented in front of the sensing system
(see test cases 5 and 6 in Fig. 8 and the last two columns of
Table I), the use of a plane-to-plane transformation reports an
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Fig. 9: Quantitative evaluation of the mapping accuracy and precision over a video sequence of 82 frames: (a) error in x

direction, (b) error in y direction.

error much bigger than using the proposed approach. Indeed,
the proposed data mapping approach presents an accuracy
up to one 2-D pixel, which is caused by the approximation,
given in (20), of Z; by the interval [(jy1,Cx]. We note
that the errors reported in Table I also contain the error of
the centroid operator introduced in Section V-A. Thus, the
evaluation results for our mapping method show a consistent

TABLE I: Data matching error for the six representative
test cases. The table compares the RMSE (in pixels) over
20 control points, separately computed for = and y pixel
coordinates, between our mapping procedure and the mapping
using first a simple projective transformation (two first rows)
and a 3-D transformation without approximations (last row).

Test cases 1 2 3 4 5 6
RMSE using a x | 7.52 | 1.67 | 3.66 | 1.33 | 259 | 3.75
unique proj. transf. | y | 1.45 | 1.26 | 1.23 | 1.88 | 1.42 | 1.57
(z=1.5m)

RMSE using a xz | 129 | 131 | 1.87 | 1.33 | 3.52 | 3.90
computed proj. | vy | 148 | 1.26 | 1.22 | 1.88 | 142 | 1.69

transf. for each test
case

RMSE using the xz | 2.14 | 145 | 1.69 | 1.56 | 1.47 | 2.04
proposed mapping | y | 140 | 1.27 | 1.37 | 1.84 | 143 | 1.72
procedure

RMSE usinga3-D | = | 1.58 | 1.37 | 1.51 | 142 | 148 | 2.00
projection y | 143 | 1.25 | 1.21 | 1.79 | 1.35 | 1.76

error of about 2 mapped image pixels, or less if we take into
account the error due to the centroid operator. This observation
is confirmed by the quantitative evaluation carried out on
a video sequence of 82 frames provided as supplementary
material, and the accuracy results are summarized in Fig. 9.
The recorded video contains frames of a randomly displaced
calibration pattern within the FOV of the sensing system.
We automatically determine the coordinates of the centroids
of each control point for each 2-D frame, using the Hough
transform for circles, and each ToF mapped frame. Fig. 9
plots the mean error between the coordinates of the 2-D
and the ToF centroids over an increasing number of frames
along with the corresponding standard deviation at each point.
We do this evaluation for both z direction (Fig. 9a) and y
direction (Fig. 9b). In both graphs, we start by considering
the centroids of a single and arbitrary frame within the video
sequence. We can observe that both mean errors on x and y
directions are consistently between 1.5 and 2 2-D pixels, and
their standard deviations converge, starting from 20 frames,
to a value of less than one half of a mapped 2-D pixel.
These quantitative results confirm that our proposed mapping
method is accurate and has a subpixel precision. The last
row of Table I reports the error when considering the most
common or general approach for data mapping, i.e., using a
full 3-D projection (with no approximations). By using this



3-D projection, the mapped centroids are matching with more
accuracy than by using the proposed approach. However, the
loss in accuracy is worth a significant gain in speed. We note
that the mean in seconds for computing this 3-D projection
for a single frame is 782.67 seconds (brute force and non-
optimized Matlab implementation), while using the proposed
approach only takes 0.54 seconds for the whole mapping
procedure (also in Matlab).

C. Application to low-level data fusion

We further evaluate our mapping procedure by performing
a low-level data fusion technique that considers our mapped
data. To that end we use the pixel weighted average strategy
(PWAS) for depth sensor data fusion that we presented in [6].
The PWAS filter copes well with inaccurate edge values within
the low-resolution depth map. In contrast to alternative depth
enhancement methods proposed in the literature, the PWAS
filter contains an additional factor Q(+), named credibility map,
and defined at a pixel position q as a weighted function of
the gradient of the low-resolution depth map VR such that
Q(a) = fq(|lVR(q)|). The weighting function is chosen
to be a Gaussian function with standard deviation oq. The
credibility map assigns a reliability weight to each depth map
value as a function of the scene’s geometry. By so doing,
depth measurements that are considered to be unreliable are
replaced by reliable values in their neighbourhood and adjusted
to the 2-D guidance image. Considering Q¢, the credibility
map relative to the unified reference frame C, the PWAS filter
takes the following form:

Y aen(p) [s(P:a) fi(le(p), Ie(q)) Qc(a)Re(q)

aen(p) fs@ @) fi(le(p), Ie(a))Qc(a) o
where the weighting functions fs(-) and fi(-) are also chosen
to be Gaussian functions with standard deviations og and oy,
respectively. The resulting filtered image J is an enhanced ver-
sion of R, that presents less discontinuities and a significantly
reduced noise level. The reduction of the global noise is due
to the nature of the bilateral filter on which the PWAS filter
is based.

Fig. 10 shows a visual example where the enhanced depth
map J results from the PWAS filter applied to the mapped data
recorded by our test rig. Note that J has the same resolution as
the guidance image I with accurate depth measurements along
depth edges. Moreover, the global noise has been significantly
reduced.

Finally, we quantify our mapping using the -cluttered
scenes: Art, Books, and Moebius from the Middlebury dataset
(Fig. 11). To that end, we compute the depth maps related
to each of the views, i.e., view I and view 5, for each scene
considering the provided disparity maps and the given system
parameters. Then, we downsample the computed depth map
at view 5 for each scene and we map them to view I. We
find a global RMSE of less than 0.15% between the mapped
depth map and the one originally computed from the given
system parameters. Notice that this measurement has been
computed without considering the occlusion areas (see the

J(p) =

(a) 2-D guidance image I,(b) Low-resolution depth map R,
(640x480) pixels (61x56) pixels

(c) I¢ resulting from mapping I(d) R¢ resulting from mapping R
using L a¢, (640x480) pixels using Lpc, (640x480) pixels

2000

Y|

(e) Enhanced depth map J, (640x480) pixels

Fig. 10: Low-level data fusion example using the PWAS filter
presented in [6], og = 10, o1 = 10, and oq = 50.
Distance measurements are done in mm.

third column of Fig. 11). This result consolidates the above
mapping experiments.

VI. CONCLUSION

In this paper, we presented a dedicated mapping procedure
intended for hybrid ToF multi-camera rig data matching. The
mapping procedure projects the image coordinates from each
camera reference frame to a unified reference frame where the
projected data is pixel aligned. We showed that this proposed
mapping is suitable for all kinds of ToF cameras even with
large fields of view and low resolutions. This was achieved
by accounting for disparity variations in the mapping model.
Disparity correction becomes then possible by using the depth
information acquired by the ToF camera. Furthermore, we
presented a real-time implementation of this procedure thanks
to a pixel association described in a set of look-up tables that
solve the binocular disparity. Indeed, whereas the computation
of a single look-up table to map a pair of raw data recordings
to the unified reference frame was close to 15 minutes using
Matlab, by using the optimal implementation discussed in Sec-
tion I'V-B, the time for data matching of the same recordings
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Fig. 11: Data fusion on the Art, Books and Moebius scenes from the Middlebury dataset, 1°¢, 2"¢, and 37¢ rows respectively.
1% col.: 2-D guidance image I. 2"¢ col.: Low-resolution depth map R, (downsampled by a factor of 4). 3" col.: Occlusion
map. 4'" col.: Enhanced depth map J using the PWAS filter. (These examples were presented first in [29]).

was reduced to 2 seconds, i.e., reduced by a factor of 450.
In order to verify that the proposed method can run in real-
time applications, we have implemented it in C. We achieved
a computation time of only 2 milliseconds per frame. Our final
experimental results show an accurate pixel alignment that
assists fusion techniques enhancing the initial low resolution
depth maps, and at the same time, reducing their noise level.
The results from fusion techniques based on the calibration
and mapping methods developed herein show promise. More
elaborate fusion techniques such as the multi-lateral filter for
real-time depth enhancement presented in [30] can certainly
be considered. However, real-time in depth enhancement has
been possible by considering the recent fast implementation
techniques for bilateral filtering [31], [32], [33] in which the
data to be filtered must be downsampled. This is the main
reason why we propose a backward warping approach that
generates a dense depth map instead of the sparse depth map
generated using forward warping.
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